JPH0325737A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0325737A
JPH0325737A JP16201889A JP16201889A JPH0325737A JP H0325737 A JPH0325737 A JP H0325737A JP 16201889 A JP16201889 A JP 16201889A JP 16201889 A JP16201889 A JP 16201889A JP H0325737 A JPH0325737 A JP H0325737A
Authority
JP
Japan
Prior art keywords
magneto
film
optical recording
sensitivity
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16201889A
Other languages
Japanese (ja)
Other versions
JPH081709B2 (en
Inventor
Takashi Tomie
崇 冨江
Kimio Kinoshita
木下 公夫
Kazutomi Suzuki
鈴木 和富
Tadanori Nakatani
中谷 忠則
Kiyoshi Chiba
潔 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16201889A priority Critical patent/JPH081709B2/en
Publication of JPH0325737A publication Critical patent/JPH0325737A/en
Publication of JPH081709B2 publication Critical patent/JPH081709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the magneto-optical recording medium having a high sensitivity and high C/N by forming a metal reflecting layer of an Ag alloy which is formed by incorporating 0.5 to 30at.% Au into Ag and further incorporating 0.5 to 15at.% at least one kind of Ta or Ti therein. CONSTITUTION:The AgCu alloy film is formed by a high-frequency sputtering method on a substrate consisting of glass, acrylic resin, etc. The AgCu alloy film is formed by adding 0.5 to 30at.% Cu to the Ag, by which the high reflectivity is obtd. The reflectivity is not lowered even if the film is rested over a long period of time. In addition, the film has durability as well. The reflectivity degrades in a short period of time if the content of the Cu is smaller than 0.5at.% or larger than 30at.%. The recording sensitivity and the durability are greatly improved if at least one kind of the Ta or Ti is added at 0.5 to 15at.% to the AgCu film. There is no effect of improving the sensitivity if the content of the Ta and Ti is smaller than this range. The reflectivity is low and the C/N is poor as well if the content exceeds this range.

Description

【発明の詳細な説明】 く利用分野〉 本発明はレーザー等の光により、+ft報の記録、再生
、消去等を行なう光磁気記録媒体に関する.更に詳細に
は、透明基板一Eに膜面に垂直な方向に磁化容易方向を
有した金属薄膜よりなる記録層を形成し、光熱磁気効果
により情報を記録し、磁気光学効果により再生する光磁
気記録媒体に関する.く従来技術〉 光記録媒体は高密度・大容量の情報記録媒体として種々
の研究開発が行なわれている.特に情報の消去可能な光
磁気記録媒体は応用分野が広く種々の材料・システムが
発表されており、その実用化が待望されている. 上述の光磁気記録材料としては、例えば、特開昭52−
31703号公報記載のFeTb、特開昭56−126
907号公報記社のFeTbGd、特開昭58−737
46号公報記載のFelbCo、FeCoDy、特開昭
61−165846号公報記載のFeed等既に多くの
提案がある。しかし、これらの情報の消去可能な光磁気
記録媒体の実用化には、記録、再生特性のより一層の向
上が必要である.これに対し、光磁気記録層上、もくし
はその上に誘電体層を介して金属反射層を設ける方法が
提案されている.この方式はカー効果とファラデー効果
の併用により高いC/N比を得る点で優れている.従来
この金属反射層として、^1を用いたらのく特開昭58
−83346号公報、特開昭59−132434号公報
、) 、Cuを用いたもの(特開昭59−8150号公
報)、A1系合金を用いたもの(特開昭62−1377
43号公報、特開昭64−4938号公報)、ステンレ
スを用いたもの(特開昭59−171054号公報)、
10を用いたもの(特開昭62−52744号公報)、
非品質金属膜を用いたもの(特開昭61−57053号
公報)等か提案されている.しかしながら、高反射率の
^l,Cu等を用いた場合にはその高熱伝導性のため記
録感度が大幅に低下し、一方比較的熱伝導性の低いステ
ンレス、1eを用いた場合には記録感度は向上するが反
射率か低いため、十分なC/N比が得られないという欠
点を有する. く発明の目的〉 本発明はかかる現状に鴛みなされたもので、高感度で高
C/N比の光磁気記録媒体を提供することを目的とした
ものである. く発明の構成及び作用〉 本発明者らは、上述の欠点を克服すべく鋭意検討した結
果、特定の物質で金属反射層を形或することにより、記
録感度、C/Nが高く、更に経時安定性に潰れた光磁気
記録媒体が得られることを見出した. 即ち本発明は、金属反射層を有する光磁気記録媒体にお
いて、該金属反射層がAQに八uを0.5〜30at%
(原子%)含有せしめ、さらにTa又はTiの少くとも
一秤を0.5〜15at%含有せしめたAg合金からな
ることを特徴とする光磁気記録媒体である.上述の本発
明は以下のようにしてなされたものである.すなわち、
本発明者らは、C/N向上目的に高反射率の八g膜に着
目したが、AQは耐食性のわるい材料であり、八〇膜の
みでは実川的でない.そこで、その改良として他金属の
添加を検討したところ、スライドガラス上に形成したC
uを0.5〜30at%添加した^gCu合金膜は高反
射率で、光磁気記録媒体の標準的な加速劣化テスト条件
である80”C85%相対湿度雰囲気下で72時間以−
E放置しても反射率が低下せず、耐久性もあることが判
明した.なお、Cuの含有量が0.58t%より少くて
も、308t%より多くても24時間以内に反射率は初
期値の9割以下に低下した, AgCu合金膜は上述の
通り高反射率(例えばAg85Cu15(添字はat%
組成)合金膜では830niの波長で98%の反射*)
であり、耐久性ら悪くないか、このAgCu膜は熱伝導
性が高く、そのためこれを反射膜とする光磁気記録媒体
では記録感度が低下することがさらに判明した.本発明
者らは、さらにこの点の改良を第3元素の添加に着目し
、lii2意研究の結果、AgCu膜にTa又は丁1の
少くとも一押を0.5〜15at%添加すると、記録感
度と耐食性が大きく向上することを見い出し、本発明に
想到した. なお、Ta, Tiの含有量がこの範囲より少いと記録
感度の向上の効果はなく、また逆に多くなると反射率が
低下し、C/Nが悪くなる.更にTa, Tiの含有量
は、感度向上効果が大きく、且つC/N向上の効果が瓜
l害されない点で2〜10at%かより好ましい.なお
、経時安定性を更に改善するために、Cr, Nb、l
leなどの他の元素を少i添加してもよい. この金属反射層の膜厚は100〜1000人が好ましく
、200〜70α入が更に好ましい.厚すぎる場合には
感度が低下し、薄すぎる場合には反射率が低下しC/N
がわるくなる. なお、本発明において金属反射層の光磁気記録層開と反
対側に接して、付加的に11等の熱伝運率の小さい金属
膜、又は誘電体膜を設けてもよい.特に熱伝導を抑える
ために本発明の金属反射層か400八以下と薄いときに
はTi等の金属膜を設けると反射率の低下を防止すると
ともに耐食性が向上して更に好ましい結果が得られる.
同様に誘電体膜は、光磁気記録媒体がきわめてきびしい
環境下で仙川されることが想定される時は、保護層とし
て設けるとよい. 前記金属反射ノーの形戒方法としては、公知の真空蒸着
法、スパッタリング法、イオンビームスパッタリング法
、CVD法などが考えられるか、下地層との接着性、合
金組成の制御性、組成分布などの点でスパッタリング法
が好ましい.また膜の堆積速度、スパッタガス圧などは
、生産性、Iff応力を考慮し、適宜選択される. 本発明の光磁気記録層としては、光熱磁気効果により記
録できるものであればよく、公知の、膜而に垂直な方向
に磁化容易方向を有し、磁気光学効果の大きい磁性金属
薄膜、例えば前述のrelb合金、FeTbCo合金、
FeTbGd合金及びNdDyl’eCo合金、等の希
土類元素一遷移金属元素の非品質合金が代表例として挙
げられる.光磁気記録層の膜厚は150〜1000入、
好ましくは200〜500入である.本発明における′
#.磁気記録媒体は、その金属反射層が光磁気記録層の
光入射面と反対側に形成される点を除いてその構戒は特
に限定されない.なお、金属反射層は光磁気記録層上に
直接設けても、またその上に感度、C/N向上の目的で
透明誘電体層を介して設けてもよい.しかし本発明の前
述の18又は丁1の少なくとも一方とCuを含有ずるA
(I合金からなる金属反射膜は光磁気記録層に接して直
接設けた構成で、その記録感度とC/Hにおいて実用上
充分な性能を示し、上記透明誘電体層が不要となるので
、この構成が生産性と媒体コストの観点より好ましい. なお、光磁気記録層と金属反射層との間に、透明誘電体
層を設ける場合においても、この透明誘電体層は最適性
能を得るためには600入以下と薄くする必要があり、
その断熱作用が小さくなるため、本発明は効果的である
.また、一般的に、該透明誘電体層が厚くなる程、その
断熱効果が高くなり、本発明の金属反射膜のTa又はT
iの含有量は少なくてよい. 本発明の光磁気記録媒体は、また、基板と光磁気記録層
の間に、C/N向上、媒体の反射率低減、さらには透湿
防止の目的で透明誘電体層を設けてもよい. 上記構成に用いる光磁気記録層の基板側,金属反射層側
の両透明誘電体層としては、その目的により光干渉効果
、力一効果エンハンスメント等の効果を奏することが必
要で、ある程度以上の高屈折率を有することが好ましい
.また使用するレーザー光に透明であることが必要であ
り、透明誘電体層としては公知の通り金属の酸化物、窒
化物、硫化物、炭化物、弗化物もしくはこれらの複合体
が適用できる.具体的には酸化ケイ素、酸化インジウム
、酸化タンタル、酸化アルミニウム、チッ化ケイ素、チ
ッ化アルミニウム、チヅ化チタン、硫化亜鈴、フッ化マ
グネシウム、フッ化アルミニウム、炭化ケイ素及びこれ
らの複合物が挙げられるが、これに限定されないことは
言うまでもない.またバリレン、ポリイミド、バラフィ
ンなど有機物も適用できる.これら透明誘電体層の膜厚
は、媒体横成、屈折率により最!!i値が変化し、一義
的に決めることはできないが、通常400〜1500六
程度、特に500〜1000八が好適に用いられる.こ
れら透明透電体層は常法により達成される.關えば前述
の無機物よりなるものは公知の真空蒸着法、スパッタリ
ング法、イオンビームスパッタリング法、CVD法等で
作製される. また基板としては、ガラス、アクリル樹脂、ポリカーホ
ネート樹脂、エボキシ樹脂、4−メチルベンテン樹脂及
びそれらの変成品などが好適に用いられるが、機械的強
度、価格、耐候性 耐熱性、透湿産の点でポリカーボネ
ート樹脂が好ましい.以下、本発明の実施例を説明する
が、本発明は以下の実施例に限定されるものではない.
く実施例.比較例〉 直径130−、厚さ1.2順の円盤で1.6μmピッチ
のグループを有するポリカーボネート樹脂(PC)製の
ディスク基板を、3ターゲット設置可能な高周波マグネ
トロンスバッタ装置(アネルバ■IjiJSPF−43
011型)の真空槽内に配置し、4X10’■0r『に
なるまで排気した. 次にA『、N2の混合ガス(Ar : N2 =70:
 30vol%)を真空槽内に導入し、圧力10n T
orrになるようにAr/ N2混合ガス流量を調整し
た.夕一ゲヅトとしては直径100+ni,厚さ5曲の
AlsoSlso(以下、添数字は組成(原子%)を示
す)の焼結体からなる円盤を用い、放電電力500W,
放電周波数13.56Hllzで高周波スパッタリング
を行ない、PC基板を回転(自転)させながら、透明誘
電体として^ISiN I漠を80O A堆積した.続
いて光磁気記録層として、Tb21『e71C08合金
ターゲットを用い、A『ガス圧2IITorr、放t電
力isowの条件で高周波スパッタリングを行ない、約
300入のTbFeCO合金膜を堆積した.更に引き続
いて、”8!)”15合金ターゲットを用い、適宜5I
llI角X 1 m tのTaチップをターゲット上に
配し、^rカス圧211TOrr、放電電力100−の
条件で高周波スパッタリングを行い、表−1の各組成で
400Aの金属反射層を堆積し、PC基板/ASiN 
/lbFeco/金属反射層の積層楕戒の光磁気ディス
クを得た.金属反射層の各AiJCLITa合金膜のI
a量はAgCu合金ターゲット上のTaチップの数を変
化させて各組成に調整した. これら各層の形成時において、PC基板は20rplで
回転させた. 得られた光磁気ディスクは光磁気記録再生装置(ナカミ
チ■製083−1000型)を用い、下記条件でC/N
とfi適記録レーザーバワーを評価した.書込み時の半
導体レーザーパワーを変化させ、再生信号の二次高調波
が最小となる時が最適記録条件とした. [記録条件] ディスク回転速度: 1800rDI ,記鎚トラック
位置二半径30III11位置、記録周波数:3.7H
IIz、記録時の印加磁界=500エルステッド [再生条件] ディスク回転速度: 1800rpl 、読出レザーパ
ワー: 1.2mW I&週記録レーザーバワー及びC/Nの測定結果を表−
1に示す. なお、表−1の比較例1は金属反射層以外は実施例1〜
4と同じ横或で、金属反射層を実施例1〜4のTaチッ
プを除去して形成したTaを含有しない”’85Cu1
5合金とした光磁気ディスクである.また、比較例2と
して、金属反射層を除いた池の構成は実施例1〜4と同
じで、金属反射層としてTaチップを配したA1ターゲ
ットを用い、実施例1〜4の金属反射層と同じように高
周波スパッタリングすることにより、^I92Taa合
金膜を40OA積層形或した光磁気ディスクを作製し、
同様に評価した. また表−1の比較例1の最適記録レーザーバワ− 10
IIW以上は、用いたレーザーの最大出力10問でも記
録できなかったことを表わす. 表−1 し、そのf&紫外線照射により硬化させ、約20μmの
有機保護層を設けた.これらのサンプルを、温度80℃
、湿度85%の条件で1000wf間の加速試験を行な
ったところ、実施例2では全く変化が見られなかったが
、比較例2ではピンホールが十数個発生した. 更に、実施例1〜4と同じにして、ただ丁aのかかわり
にTiのチップを^gCuターゲット上に配置して金属
反射層を表−2のAgCul i合金とした以外は全く
同じ構成の光磁気ディスクのサンプルを作成し、同じよ
うにして評価した.その結果を表−2に示す. 表−2 また実施関1と比較例2のディスクの金属反肘層上に、
スピンコーターで紫外線硬化型のフェノールノボラック
エボキシアクリレート樹脂を塗布以上、実施例に示した
如く、本発明のCuと、Ta又はTiの少くとも一方と
を含有した八〇合金からなる金属反射膜ではC/N、感
度が優れ、かつ耐久性も高い光磁気記録媒体を得ること
ができる.特にTa, Tiの含有量か2at%以上の
範囲でζよ、最適記録レーサーパワーの低下すなわち記
録感度の向上か顕著で、かつC/Nも公知の、例えば^
lTa合金膜を反q・t Ig!とずる光磁気ディスク
より格段にすぐれている.かかる効果の点でTa、Ti
の富有量は2〜1031%が特に好ましい.
Detailed Description of the Invention Field of Application The present invention relates to a magneto-optical recording medium in which +ft information is recorded, reproduced, erased, etc. using light such as a laser. More specifically, a recording layer made of a metal thin film having an easy magnetization direction perpendicular to the film surface is formed on a transparent substrate 1E, and information is recorded by a photothermal magnetic effect and reproduced by a magneto-optic effect. Regarding recording media. Prior Art> Various research and developments are being conducted on optical recording media as high-density, large-capacity information recording media. In particular, a wide variety of materials and systems have been announced for use in erasable magneto-optical recording media, and their practical application is eagerly awaited. As the above-mentioned magneto-optical recording material, for example, JP-A-52-
FeTb described in Publication No. 31703, JP-A-56-126
FeTbGd of Publication No. 907, JP-A-58-737
There have already been many proposals such as FelbCo and FeCoDy described in Japanese Patent Laid-Open No. 165846/1984. However, in order to put these information erasable magneto-optical recording media into practical use, it is necessary to further improve the recording and reproducing characteristics. In contrast, a method has been proposed in which a metal reflective layer is provided on the magneto-optical recording layer or on top of it with a dielectric layer interposed therebetween. This method is superior in that it obtains a high C/N ratio by combining the Kerr effect and Faraday effect. Conventionally, ^1 was used as this metal reflective layer in Taranoku JP-A-58
-83346, JP-A-59-132434), those using Cu (JP-A-59-8150), and those using A1 alloy (JP-A-62-1377).
43, JP-A-64-4938), stainless steel (JP-A-59-171054),
10 (Japanese Unexamined Patent Publication No. 62-52744),
A method using a non-quality metal film (Japanese Unexamined Patent Publication No. 61-57053) has been proposed. However, when materials such as ^l, Cu, etc. with high reflectivity are used, the recording sensitivity decreases significantly due to their high thermal conductivity, while when stainless steel and 1e, which have relatively low thermal conductivity, are used, the recording sensitivity decreases. Although it improves the reflectance, it has the disadvantage that a sufficient C/N ratio cannot be obtained because the reflectance is low. OBJECTS OF THE INVENTION The present invention has been made in view of the current situation and aims to provide a magneto-optical recording medium with high sensitivity and a high C/N ratio. Structure and operation of the invention As a result of intensive studies to overcome the above-mentioned drawbacks, the present inventors have found that by forming a metal reflective layer with a specific material, recording sensitivity and C/N can be high, and It was discovered that a magneto-optical recording medium with excellent stability could be obtained. That is, the present invention provides a magneto-optical recording medium having a metal reflective layer, in which the metal reflective layer has an AQ content of 0.5 to 30 at%.
(atomic %) and further contains at least 0.5 to 15 at % of Ta or Ti. The invention described above was made as follows. That is,
The present inventors focused on an 8g film with high reflectance for the purpose of improving C/N, but AQ is a material with poor corrosion resistance, and using only an 80g film is not practical. Therefore, we investigated the addition of other metals as an improvement, and found that the C
The Cu alloy film containing 0.5 to 30 at% of u has a high reflectance and can be used for more than 72 hours in an 80"C 85% relative humidity atmosphere, which is the standard accelerated deterioration test condition for magneto-optical recording media.
EIt was found that the reflectance did not decrease even after being left unused, and that it was durable. In addition, even if the Cu content was less than 0.58 t% or more than 308 t%, the reflectance decreased to less than 90% of the initial value within 24 hours. As mentioned above, the AgCu alloy film has a high reflectance ( For example, Ag85Cu15 (the subscript is at%
Composition) Alloy film has 98% reflection at a wavelength of 830ni*)
It was further found that this AgCu film has high thermal conductivity, which may not be bad in terms of durability, and therefore the recording sensitivity of a magneto-optical recording medium using this film as a reflective film is lowered. The present inventors further focused on the addition of a third element to improve this point, and as a result of a two-dimensional study, it was found that when 0.5 to 15 at% of at least one of Ta or Ta was added to the AgCu film, it was possible to record We discovered that sensitivity and corrosion resistance were greatly improved, and came up with the present invention. Note that if the content of Ta and Ti is less than this range, there is no effect of improving the recording sensitivity, and on the other hand, if the content is too large, the reflectance decreases and the C/N deteriorates. Further, the content of Ta and Ti is more preferably 2 to 10 at%, since the sensitivity improvement effect is large and the C/N improvement effect is not adversely affected. In addition, in order to further improve the stability over time, Cr, Nb, l
A small amount of other elements such as le may be added. The thickness of this metal reflective layer is preferably 100 to 1000, more preferably 200 to 70. If it is too thick, the sensitivity will decrease, and if it is too thin, the reflectance will decrease and the C/N
I feel sick. In the present invention, a metal film having a low thermal conductivity such as No. 11 or a dielectric film may be additionally provided in contact with the metal reflective layer on the side opposite to the opening of the magneto-optical recording layer. In particular, when the metal reflective layer of the present invention is as thin as 400% or less in order to suppress heat conduction, providing a metal film such as Ti prevents a decrease in reflectance and improves corrosion resistance, resulting in more favorable results.
Similarly, a dielectric film may be provided as a protective layer when the magneto-optical recording medium is expected to be used in extremely harsh environments. Possible methods for controlling the metal reflection include known vacuum evaporation methods, sputtering methods, ion beam sputtering methods, CVD methods, etc.; Therefore, sputtering method is preferable. Further, the film deposition rate, sputtering gas pressure, etc. are appropriately selected in consideration of productivity and If stress. The magneto-optical recording layer of the present invention may be any material as long as it can record by photothermal magnetism, and may be a known magnetic metal thin film having an easy magnetization direction perpendicular to the film and having a large magneto-optic effect, such as the above-mentioned thin film. relb alloy, FeTbCo alloy,
Representative examples include non-quality alloys of rare earth elements and transition metal elements, such as FeTbGd alloys and NdDyl'eCo alloys. The film thickness of the magneto-optical recording layer is 150 to 1000 mm,
Preferably it is 200 to 500 pieces. ′ in the present invention
#. The structure of the magnetic recording medium is not particularly limited except that the metal reflective layer is formed on the side opposite to the light incident surface of the magneto-optical recording layer. The metal reflective layer may be provided directly on the magneto-optical recording layer, or may be provided thereon via a transparent dielectric layer for the purpose of improving sensitivity and C/N. However, A containing at least one of the above-mentioned 18 or 1 of the present invention and Cu
(The metal reflective film made of I alloy is provided directly in contact with the magneto-optical recording layer, and exhibits practically sufficient performance in terms of recording sensitivity and C/H, and the transparent dielectric layer described above is not required. This configuration is preferable from the viewpoint of productivity and media cost. Note that even when a transparent dielectric layer is provided between the magneto-optical recording layer and the metal reflective layer, this transparent dielectric layer must be It needs to be thin, less than 600 pieces,
The present invention is effective because its heat insulation effect is reduced. In addition, in general, the thicker the transparent dielectric layer, the higher its heat insulating effect.
The content of i may be small. In the magneto-optical recording medium of the present invention, a transparent dielectric layer may be provided between the substrate and the magneto-optical recording layer for the purpose of improving C/N, reducing the reflectance of the medium, and further preventing moisture permeation. Both the transparent dielectric layers on the substrate side and the metal reflective layer side of the magneto-optical recording layer used in the above structure need to exhibit effects such as optical interference effect and force-effect enhancement depending on the purpose. It is preferable to have a refractive index. It is also necessary to be transparent to the laser beam used, and as the transparent dielectric layer, metal oxides, nitrides, sulfides, carbides, fluorides, or composites of these can be used. Specific examples include silicon oxide, indium oxide, tantalum oxide, aluminum oxide, silicon nitride, aluminum nitride, titanium nitride, dumbbell sulfide, magnesium fluoride, aluminum fluoride, silicon carbide, and composites thereof. , it goes without saying that it is not limited to this. Organic materials such as varylene, polyimide, and paraffin can also be used. The thickness of these transparent dielectric layers depends on the medium composition and refractive index. ! Although the i value varies and cannot be determined uniquely, it is usually about 400 to 1,500, particularly preferably 500 to 1,000. These transparent conductive layers are achieved by conventional methods. In this regard, those made of the above-mentioned inorganic materials are manufactured by known vacuum evaporation methods, sputtering methods, ion beam sputtering methods, CVD methods, etc. Glass, acrylic resin, polycarbonate resin, epoxy resin, 4-methylbentene resin, and modified products thereof are preferably used as the substrate, but mechanical strength, price, weather resistance, heat resistance, and moisture permeability are preferred. From this point of view, polycarbonate resin is preferable. Examples of the present invention will be described below, but the present invention is not limited to the following examples.
Example. Comparative Example> A polycarbonate resin (PC) disk substrate with a diameter of 130 mm and a thickness of 1.2 mm and groups with a pitch of 1.6 μm was installed using a high-frequency magnetron scattering device (ANELVA ■IjiJSPF-) capable of installing 3 targets. 43
011 type) in a vacuum chamber and evacuated to 4X10'■0r'. Next, a mixed gas of A', N2 (Ar: N2 = 70:
30vol%) was introduced into the vacuum chamber at a pressure of 10nT.
The Ar/N2 mixed gas flow rate was adjusted so that it was orr. As the Yuichi gate, a disk made of a sintered body of AlsoSlso (hereinafter, the suffix indicates the composition (atomic %)) with a diameter of 100+ni and a thickness of 5 was used, and the discharge power was 500 W.
High-frequency sputtering was performed at a discharge frequency of 13.56 Hllz, and 800A of ^ISiN I was deposited as a transparent dielectric while rotating (rotating) the PC board. Subsequently, as a magneto-optical recording layer, about 300 TbFeCO alloy films were deposited by high-frequency sputtering using a Tb21 e71C08 alloy target under conditions of A gas pressure of 2 II Torr and discharge power isow. Furthermore, using the "8!)" 15 alloy target, 5I was applied as appropriate.
A Ta chip with an llI angle of 1 m t was placed on the target, and high-frequency sputtering was performed under the conditions of a gas pressure of 211 TOrr and a discharge power of 100 - to deposit a metal reflective layer of 400 A with each composition shown in Table 1. PC board/ASiN
/lbFeco/A magneto-optical disk with a laminated elliptical metal reflective layer was obtained. I of each AiJCLITa alloy film of the metal reflective layer
The amount of a was adjusted for each composition by changing the number of Ta chips on the AgCu alloy target. During the formation of each of these layers, the PC board was rotated at 20 rpl. The obtained magneto-optical disk was subjected to C/N using a magneto-optical recording/reproducing device (model 083-1000 manufactured by Nakamichi ■) under the following conditions.
and evaluated the fi-appropriate recording laser power. The semiconductor laser power during writing was varied, and the optimal recording condition was set when the second harmonic of the reproduced signal was minimized. [Recording conditions] Disc rotation speed: 1800rDI, recording track position 2 radius 30III11 position, recording frequency: 3.7H
IIz, Magnetic field applied during recording = 500 oersteds [Reproduction conditions] Disc rotation speed: 1800 rpl, Read laser power: 1.2 mW I & Week Recording laser power and C/N measurement results are shown in the table.
Shown in 1. Note that Comparative Example 1 in Table 1 is the same as Examples 1 to 3 except for the metal reflective layer.
'85Cu1, which does not contain Ta, was formed by removing the Ta chips of Examples 1 to 4 and formed a metal reflective layer on the same side as 4.
This is a magneto-optical disk made of 5 alloy. In addition, as Comparative Example 2, the configuration of the pond except for the metal reflective layer was the same as in Examples 1 to 4, and an A1 target with Ta chips arranged as the metal reflective layer was used, and the metal reflective layer of Examples 1 to 4 was Similarly, by high-frequency sputtering, a magneto-optical disk with a 40OA laminated I92Taa alloy film was fabricated.
It was evaluated in the same way. In addition, the optimum recording laser power of Comparative Example 1 in Table 1 is 10
A score of IIW or higher means that it was not possible to record even with the maximum output of the laser used for 10 questions. Table 1 was cured by F&UV irradiation to form an organic protective layer of about 20 μm. These samples were heated to a temperature of 80°C.
When an accelerated test was conducted for 1000 wf under the condition of 85% humidity, no change was observed in Example 2, but more than ten pinholes were observed in Comparative Example 2. Furthermore, a light beam with the same structure as Examples 1 to 4 was prepared, except that a Ti chip was placed on the Cu target in place of the cylindrical plate, and the metal reflective layer was made of the AgCul i alloy shown in Table 2. A magnetic disk sample was created and evaluated in the same way. The results are shown in Table 2. Table 2 Also, on the metal anti-elbow layer of the discs of Example 1 and Comparative Example 2,
Coating an ultraviolet curable phenol novolak epoxy acrylate resin with a spin coater As shown in the examples, the metal reflective film made of the 80 alloy of the present invention containing Cu and at least one of Ta or Ti /N, a magneto-optical recording medium with excellent sensitivity and high durability can be obtained. In particular, when the content of Ta or Ti is 2 at% or more, the optimum recording laser power decreases, that is, the recording sensitivity increases, and the C/N is also known, for example.
Ig! It is far superior to the magneto-optical disk. In terms of this effect, Ta, Ti
It is particularly preferable that the richness of .

Claims (1)

【特許請求の範囲】 1)金属反射層を有する光磁気記録媒体において、該金
属反射層がAgにAuを0.5〜30at%含有せしめ
、さらにTa又はTiの少くとも一種を0.5〜15a
t%含有せしめたAg合金からなることを特徴とする光
磁気記録媒体。 2)前記金属反射層が光磁気記録層に接して設けられた
請求項第1項記載の光磁気記録媒体。 3)前記Ta又はTiの含有量の合計が2〜10at%
である請求項第1項又は第2項記載の光磁気記録媒体。
[Claims] 1) In a magneto-optical recording medium having a metal reflective layer, the metal reflective layer contains 0.5 to 30 at% of Au in Ag, and further contains 0.5 to 30 at% of at least one of Ta or Ti. 15a
A magneto-optical recording medium comprising an Ag alloy containing t%. 2) The magneto-optical recording medium according to claim 1, wherein the metal reflective layer is provided in contact with the magneto-optical recording layer. 3) The total content of Ta or Ti is 2 to 10 at%
The magneto-optical recording medium according to claim 1 or 2, wherein:
JP16201889A 1989-06-23 1989-06-23 Magneto-optical recording medium Expired - Fee Related JPH081709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16201889A JPH081709B2 (en) 1989-06-23 1989-06-23 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16201889A JPH081709B2 (en) 1989-06-23 1989-06-23 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH0325737A true JPH0325737A (en) 1991-02-04
JPH081709B2 JPH081709B2 (en) 1996-01-10

Family

ID=15746494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16201889A Expired - Fee Related JPH081709B2 (en) 1989-06-23 1989-06-23 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH081709B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612133A (en) * 1993-04-22 1997-03-18 Mitsubishi Materials Corporation Magneto-optical recording medium having a refelecting layer of a silver-magnesium alloy having a magnesium oxide coating
US5948497A (en) * 1992-10-19 1999-09-07 Eastman Kodak Company High stability silver based alloy reflectors for use in a writable compact disk
US6764735B2 (en) 1998-06-22 2004-07-20 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6790503B2 (en) 1998-06-22 2004-09-14 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6841219B2 (en) 1998-06-22 2005-01-11 Han H. Nee Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6905750B2 (en) 1998-06-22 2005-06-14 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7018696B2 (en) 2003-04-18 2006-03-28 Target Technology Company Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7045187B2 (en) 1998-06-22 2006-05-16 Nee Han H Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314659B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or semi-reflective layer of an optical storage medium
US7314660B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314657B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7316837B2 (en) 2000-07-21 2008-01-08 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7374805B2 (en) 2000-07-21 2008-05-20 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948497A (en) * 1992-10-19 1999-09-07 Eastman Kodak Company High stability silver based alloy reflectors for use in a writable compact disk
US5612133A (en) * 1993-04-22 1997-03-18 Mitsubishi Materials Corporation Magneto-optical recording medium having a refelecting layer of a silver-magnesium alloy having a magnesium oxide coating
US6764735B2 (en) 1998-06-22 2004-07-20 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6790503B2 (en) 1998-06-22 2004-09-14 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6841219B2 (en) 1998-06-22 2005-01-11 Han H. Nee Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6852384B2 (en) 1998-06-22 2005-02-08 Han H. Nee Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6896947B2 (en) 1998-06-22 2005-05-24 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6905750B2 (en) 1998-06-22 2005-06-14 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7384677B2 (en) 1998-06-22 2008-06-10 Target Technology Company, Llc Metal alloys for the reflective or semi-reflective layer of an optical storage medium
US7045187B2 (en) 1998-06-22 2006-05-16 Nee Han H Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7045188B2 (en) 1998-06-22 2006-05-16 Nee Han H Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7291374B2 (en) 1998-06-22 2007-11-06 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314659B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or semi-reflective layer of an optical storage medium
US7314660B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314657B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7316837B2 (en) 2000-07-21 2008-01-08 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7374805B2 (en) 2000-07-21 2008-05-20 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7018696B2 (en) 2003-04-18 2006-03-28 Target Technology Company Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7645500B2 (en) 2003-04-18 2010-01-12 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium

Also Published As

Publication number Publication date
JPH081709B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
US5093174A (en) Optical recording medium
US5786078A (en) Magneto-optical recording medium
JPH0325737A (en) Magneto-optical recording medium
US5512364A (en) Magneto-optical recording medium
JP2541677B2 (en) Optical recording medium
JP2507592B2 (en) Optical recording medium
JPH03122845A (en) Optical recording medium
JPH03142728A (en) Optical recording medium
JP2804165B2 (en) Magneto-optical recording medium
JP2001110104A (en) Magneto-optical data memory disk having smooth reflector layer of high conductivity
JPH01269258A (en) Optical recording medium
JPH02308454A (en) Magneto-optical recording medium
JP2559871B2 (en) Optical recording medium
JP2834846B2 (en) Method for manufacturing magneto-optical recording medium
JP2754658B2 (en) Magneto-optical recording medium
JP2678222B2 (en) Magneto-optical recording medium
JP2528184B2 (en) Magneto-optical recording medium
KR100194131B1 (en) Optical recording media
JPH0325738A (en) Magneto-optical recording medium
JPH02128346A (en) Magneto-optical disk
JP2550698B2 (en) Magneto-optical recording medium
JPH0660452A (en) Magneto-optical recording medium
JP2882915B2 (en) Magneto-optical recording medium
JPH08106662A (en) Magneto-optical recording medium
JPH035929A (en) Optical recording medium and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees