JPH035929A - Optical recording medium and its production - Google Patents

Optical recording medium and its production

Info

Publication number
JPH035929A
JPH035929A JP1137382A JP13738289A JPH035929A JP H035929 A JPH035929 A JP H035929A JP 1137382 A JP1137382 A JP 1137382A JP 13738289 A JP13738289 A JP 13738289A JP H035929 A JPH035929 A JP H035929A
Authority
JP
Japan
Prior art keywords
optical recording
layer
recording medium
magneto
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1137382A
Other languages
Japanese (ja)
Other versions
JP2523180B2 (en
Inventor
Masahiko Sekiya
昌彦 関谷
Kiyoshi Chiba
潔 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1137382A priority Critical patent/JP2523180B2/en
Priority to CA002004936A priority patent/CA2004936C/en
Priority to EP89122732A priority patent/EP0373539B1/en
Priority to DE68921308T priority patent/DE68921308T2/en
Priority to KR1019890018547A priority patent/KR900010687A/en
Publication of JPH035929A publication Critical patent/JPH035929A/en
Priority to US07/715,024 priority patent/US5192626A/en
Application granted granted Critical
Publication of JP2523180B2 publication Critical patent/JP2523180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve performances of the medium and durability by constituting a transparent dielectric layer of amorphous tantalum oxynitride. CONSTITUTION:An amorphous tantalum oxynitride layer is formed as a transparent dielectric layer. Since amorphous tantalum oxynitride does not scatter laser light, the noise level can be reduced. The Ta oxynitride layer has lower inner stress, 1/2 - 1/5 of that of Ta oxide, and shows no crack or peeling in an environmental test at high temp. and high humidity. Moreover, the layer is almost free from pin holes. Thus, recording/reproducing property and durability of the magneto-optical recording medium can be largely improved.

Description

【発明の詳細な説明】 [利用分野] 本発明は、レーザー等の光により情報の記録・再生・消
去等を行う光記録媒体に関する。更に詳細には、保護層
又は/及び光干渉層として透明誘電体層を有する光記録
媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to an optical recording medium on which information is recorded, reproduced, erased, etc. using light such as a laser. More specifically, the present invention relates to an optical recording medium having a transparent dielectric layer as a protective layer and/or an optical interference layer.

[従来技術] 光記録媒体は、高密度・大容量の情報記録媒体として種
々の研究が行われている。特に情報の書換可能な光磁気
記録媒体は応用分野が広く、種々の材料・システムが発
表されており、その実用化が待望されている。
[Prior Art] Various studies are being conducted on optical recording media as high-density, large-capacity information recording media. In particular, rewritable information on magneto-optical recording media has a wide range of applications, and various materials and systems have been announced, and their practical application is eagerly awaited.

上述の光磁気記録材料としては、例えば特開昭52−3
1703号公報記載のTbFe、特開昭58−7374
6号公報記載のTbFeCo、 DyFeCo等、既に
多くの提案がある。しかし、これらの光磁気記録媒体の
実用化には、記録・再生特性及び耐久性のより一層の向
上が必要と言われている。この解決策として、光干渉層
兼保護層として透明誘電体層を設け、光干渉効果、すな
わち光の多重反射を利用してKerr回転角の向上をは
かると同時に、基板側から記録層への酸素等の劣化を引
き起こす可能性を持つガスの拡散を防止することが提案
されている。このような透明誘電体層としては、Sl、
N4 、AIN、 ZnS、MgF2等金属の窒化物、
硫化物、弗化物等で形成されることが好ましいとされて
いる。
As the above-mentioned magneto-optical recording material, for example, JP-A-52-3
TbFe described in Publication No. 1703, JP-A-58-7374
There are already many proposals such as TbFeCo and DyFeCo described in Publication No. 6. However, in order to put these magneto-optical recording media into practical use, it is said that further improvements in recording/reproducing characteristics and durability are required. As a solution to this problem, a transparent dielectric layer is provided as an optical interference layer and a protective layer to improve the Kerr rotation angle by utilizing the optical interference effect, that is, multiple reflections of light, and at the same time to improve the Kerr rotation angle from the substrate side to the recording layer. It has been proposed to prevent the diffusion of gases that can cause deterioration. Such transparent dielectric layers include Sl,
Nitride of metals such as N4, AIN, ZnS, MgF2,
It is said that it is preferable to use sulfide, fluoride, or the like.

ところで、これらの中で耐環境性に秀れているといわれ
る513N4 、AINなどについて検討したところ、
その製膜速度が遅いこと、また、膜中ヒズミが大きく、
特にプラスチック基板上に多層膜を形成した場合、環境
試験によりグループに沿つた剥離等が生じる問題があり
、耐酸化性とは別の面で耐久性での問題があることがわ
かった。また、カー回転角向上についても、いずれも屈
折率が2.0程度であるために、光の多重反射を利用し
ても0.5〜0.7°C程度にまで増大するのが限界で
あり、各種仕様に対応し得ない問題もある。従って実用
化面からかかる諸点、特にカー回転角の向上、耐久性の
向上の両面でより一層の改善が望まれている。
By the way, when we examined 513N4, AIN, etc., which are said to have excellent environmental resistance, we found that
The film forming speed is slow, and the distortion in the film is large.
In particular, when a multilayer film is formed on a plastic substrate, environmental tests have revealed that there are problems with peeling along the groups, and there are problems with durability in addition to oxidation resistance. Furthermore, since the refractive index of both cases is about 2.0, the limit for improving the Kerr rotation angle is about 0.5 to 0.7°C even if multiple reflections of light are used. However, there are also problems that cannot be met with various specifications. Therefore, from the standpoint of practical use, further improvements are desired in both of these points, particularly in terms of improved Kerr rotation angle and improved durability.

[発明の目的] 本発明はかかる現状に鑑みなされたもので、透明誘電体
層を改良して、媒体性能が高く耐久性の良い光記録媒体
を提供することを目的とするものである。すなわち、具
体的には前記記録媒体の透明誘電体層の屈折率を大きく
することで、光干渉効果を高め、例えば光磁気記録媒体
の場合には、カー回転角を増大し、媒体性能をアップす
ることを第1の目的とする。また、該透明誘電体層を内
部応力が小さく、また接着性がよいものとすることによ
り特に媒体の割れ、剥離を防止し、同時にピンホール等
の欠陥の発生を抑え媒体全体の耐久性を向上せしめるこ
とを第2の目的とする。
[Object of the Invention] The present invention was made in view of the current situation, and an object of the present invention is to provide an optical recording medium with high medium performance and good durability by improving the transparent dielectric layer. Specifically, by increasing the refractive index of the transparent dielectric layer of the recording medium, the optical interference effect is increased, and for example, in the case of a magneto-optical recording medium, the Kerr rotation angle is increased to improve the medium performance. The primary purpose is to In addition, by making the transparent dielectric layer have low internal stress and good adhesion, it particularly prevents cracking and peeling of the medium, and at the same time suppresses the occurrence of defects such as pinholes and improves the durability of the entire medium. The second purpose is to encourage others.

[発明の構成・作用コ 上述の目的は、以下の本発明により達成される。[Composition and operation of the invention] The above objects are achieved by the invention as follows.

すなわち本発明は、保護層又は/及び光干渉層として透
明誘電体層を有する光記録媒体において、前記透明誘電
体層が非晶質のタンタル(Ta)窒酸化物であることを
特徴とする光記録媒体である。
That is, the present invention provides an optical recording medium having a transparent dielectric layer as a protective layer and/or an optical interference layer, wherein the transparent dielectric layer is made of amorphous tantalum (Ta) nitoxide. It is a recording medium.

上述の発明は以下のようにしてなされたものである。す
なわち、光磁気記録媒体においてカー回転角の向上を目
的に、その透明誘電体層に、屈折率の高いことで知られ
るTa酸化物Ta205の適用を検討しなところ、内部
応力が高いために耐久性評価の高温高湿耐環境性試験に
おいて亀裂や剥離が生じ、ピンホールが多数発生してし
まい、耐久性に欠けることがわかった。そこで、この問
題を解決するために、上述の従来のTa酸化物の特性改
良を検討したところ、窒素を添加して得られた窒化又は
/及び酸化されたTaからなるTa窒酸化物は驚くべき
ことに非晶質であることがわかった。従来のTa酸化物
は結晶質であるなめに、信号の記録・再生を行う際、結
晶粒界によるレーザー光の散乱が起こり、ノイズレベル
が上昇してしまうが、本発明によるTa窒酸化物は非晶
質であるためにレーザー光の散乱はなく、ノイズレベル
を低減できることがわかった。また、Ta窒酸化物は、
従来のTa酸化物に比べ内部応力を172〜115に低
減できるため、高温高湿の耐環境性試験における亀裂・
剥離の発生がなく、またピンホールもほとんど発生しな
いことがわかった。さらに透湿率を測定したところ、T
a窒酸化物においては、10−’g −mrn/rrf
 −dayという、従来の513N4 、AIN等の透
明誘電体では得られないような低い値になることがわか
った。これは外部から侵入する酸素・水分等のガスによ
る記録層の劣化を防ぐ上で有効である。
The invention described above was made as follows. In other words, with the aim of improving the Kerr rotation angle in magneto-optical recording media, we have considered applying Ta205, a Ta oxide known to have a high refractive index, to the transparent dielectric layer, but due to high internal stress, it is not durable. In the high temperature, high humidity environmental resistance test for evaluating the product's properties, cracks and peeling occurred, and many pinholes were generated, indicating that the product lacked durability. Therefore, in order to solve this problem, we investigated how to improve the properties of the conventional Ta oxide described above, and found that Ta nitride oxide, which is made of nitrided and/or oxidized Ta obtained by adding nitrogen, is surprisingly In particular, it was found to be amorphous. Conventional Ta oxide is crystalline, so when recording and reproducing signals, laser light is scattered by crystal grain boundaries, increasing the noise level, but the Ta nitride according to the present invention It was found that because it is amorphous, there is no scattering of laser light, which reduces the noise level. In addition, Ta nitride is
Compared to conventional Ta oxide, the internal stress can be reduced to 172 to 115, which reduces cracking and cracking in high temperature and high humidity environment resistance tests.
It was found that no peeling occurred and almost no pinholes were generated. Furthermore, when we measured the moisture permeability, we found that T
a In nitride oxide, 10-'g -mrn/rrf
-day, which is a low value that cannot be obtained with conventional transparent dielectric materials such as 513N4 and AIN. This is effective in preventing deterioration of the recording layer due to gases such as oxygen and moisture entering from the outside.

その上、このTa窒酸化物は屈折率に関しては、窒素含
有量に対する依存性が小さく、広い範囲にわたって2.
2〜2,3という高い値が得られることがわかった。但
し、窒素量が少ないと膜が褐色に着色してしまうため、
信号の記録・再生時にレーザ−光の吸収が起こる。これ
を避けるためには窒素含有量を少くともlat%以上に
設定することが好ましい。逆に、窒素量が多い場合には
、屈折率、膜の透明性については問題ないが、透明基板
、特に透明高分子基板との密着性が低下し、高温・高温
耐環境性試験における亀裂・剥離が発生し易くなる。従
って、窒素含有量は45at%以下が好ましい。この透
明基板との密着性をより高めるためには、上述のTa窒
酸化物中に、さらにIn又は/及びSnを含有させるこ
とが有効であることがわかった。
Moreover, the refractive index of this Ta nitride has a small dependence on nitrogen content and has a refractive index of 2.
It was found that high values of 2 to 2,3 were obtained. However, if the amount of nitrogen is small, the film will turn brown, so
Absorption of laser light occurs when recording and reproducing signals. In order to avoid this, it is preferable to set the nitrogen content to at least lat% or more. On the other hand, if the amount of nitrogen is large, there will be no problem with the refractive index or transparency of the film, but the adhesion to the transparent substrate, especially the transparent polymer substrate, will decrease, resulting in cracks and cracks in high temperature/high temperature environment resistance tests. Peeling is likely to occur. Therefore, the nitrogen content is preferably 45 at% or less. In order to further improve the adhesion with the transparent substrate, it has been found that it is effective to further include In and/or Sn in the above-mentioned Ta nitride.

この場合、密着性向上のためにはIn又は/及びSnの
含有量は少くともlat%以上であれば十分であること
を見出しな。ところで、このIn、SOはTa窒酸化物
中にはTaと同様In又は/及びS[1の窒酸化物の形
で含まれるが、このIn、 Soの酸化物の屈折率は2
.0種度と小さいためにTa窒酸化物中へのこれら元素
の多量の添加は膜全体としての屈折率を低Fさせてしま
う。記録媒体としての大きな光干渉効果、具体的には光
磁気記録のカー回転角向上効果及びレーザー光の閉じ込
め効果等を得たい場合には、透明誘電体膜の屈折率は2
.0以上、より好ましくは2.1以上必要と言われてお
り、かかる光干渉層として用いる場合には、In又は/
及びSnの含有量は25at%以下、より好ましくは1
5at%以下である。
In this case, it has been found that it is sufficient for the content of In and/or Sn to be at least lat% or more in order to improve adhesion. By the way, this In and SO are contained in the Ta nitride oxide in the form of In and/or S[1 nitride oxide, like Ta, but the refractive index of this In and So oxide is 2.
.. Since the degree of oxidation is as small as 0, adding a large amount of these elements to Ta nitride oxide lowers the refractive index of the film as a whole. If you want to obtain a large optical interference effect as a recording medium, specifically the effect of improving the Kerr rotation angle in magneto-optical recording and the effect of confining laser light, the refractive index of the transparent dielectric film should be 2.
.. It is said that 0 or more, more preferably 2.1 or more is required, and when used as such an optical interference layer, In or /
and Sn content is 25 at% or less, more preferably 1
It is 5 at% or less.

なお、以上の本発明の単なる、もしくは!D又は/及び
Snを添加したTa窒酸化物には、上記のTa、In、
 Sn、 O,N以外の元素も不純物オーダーで含まれ
てよいことは言うまでもない。
In addition, the above-mentioned present invention is simple or! The Ta, In, and Ta nitrides added with D and/or Sn are
It goes without saying that elements other than Sn, O, and N may also be included on the order of impurities.

前記本発明のTa窒酸化物膜の製造方法としては、公知
の真空蒸着法、スパッタリング法等のPVD法、あるい
はCVD法なと種々の薄膜形成法が適用できる。しかし
、光記録媒体として高温高温耐環境性試験で剥離を生じ
ない充分な耐久性を得るためには、特に高分子基板との
密着性が大きい条件で作製することが好ましい。このた
めにはスパッタリング法が好ましい。中でもTa酸化物
のターゲットを用い、Arと心の混合ガスでの反応性ス
パッタリング法が異常放電等が少なく安定運転面、生産
性面で好ましい。
As a method for producing the Ta nitride oxide film of the present invention, various thin film forming methods can be applied, such as a known vacuum evaporation method, a PVD method such as a sputtering method, or a CVD method. However, in order to obtain sufficient durability as an optical recording medium without causing peeling in a high-temperature high-temperature environment resistance test, it is preferable to manufacture the optical recording medium under conditions where the adhesion to the polymer substrate is particularly high. For this purpose, a sputtering method is preferred. Among these, the reactive sputtering method using a Ta oxide target and a mixed gas of Ar and core is preferable from the viewpoint of stable operation and productivity since abnormal discharge is less likely to occur.

ところで本発明の光記録媒体は、前述の通り前記Ta窒
酸化物を保護層又は/及び光干渉層としたものであり、
その他の構成については特に限定されないことは本発明
の趣旨から明へかである。例えば、光反射記録層、相変
化光記録層、光磁気記録層等公知の各種光記録力゛式の
光記録媒体に適用できる。
By the way, as mentioned above, the optical recording medium of the present invention uses the Ta nitoxide as a protective layer and/or an optical interference layer,
It is clear from the spirit of the present invention that other configurations are not particularly limited. For example, it can be applied to various known optical recording media such as a light reflective recording layer, a phase change optical recording layer, and a magneto-optical recording layer.

しかし、前述の本発明のTa窒酸化物の特性、特に大き
な光干渉効果並びに良好な耐透湿性が得t)れる点から
、特に光磁気記録媒体に有利に適用できる。なお、光磁
気記録媒体としては公知の以下のものが挙げられる。
However, since the above-mentioned characteristics of the Ta nitride of the present invention, particularly a large optical interference effect and good resistance to moisture permeation, can be obtained, it can be particularly advantageously applied to magneto-optical recording media. Incidentally, as the magneto-optical recording medium, the following known ones can be mentioned.

すなわち、光磁気記録層としては、光磁気効果により記
録・再生できるもの、具体的には膜面に垂直な方向に磁
化容易方向を有し、任意の反転磁区を作ることにより光
磁気効果に基いて情報の記録・再生が可能な磁性金属薄
膜であればよく、例えばTbFe、 TbFeCo、 
GdTbFe、 GdFeCo、 NdDyFeCo、
NdDyTbFeCo、 NdFe、 PrFe、 C
eFe等の希土類元素と遷移金属元素との非晶質合金膜
、あるいはガーネット膜等各種公知のものが適用できる
。また、これらの磁性金属薄膜のうちの2種以上及び/
又は1種であっても構成元素の組成の異なる2つ以上の
薄膜を積層して、遷移金属元素が交換結合状態にあるよ
うになしな複層膜構成の記録層についても適用できる。
In other words, the magneto-optical recording layer is one that can be recorded and reproduced by the magneto-optical effect, specifically, it has an easy magnetization direction perpendicular to the film surface, and can be created based on the magneto-optical effect by creating arbitrary reversal magnetic domains. Any magnetic metal thin film capable of recording and reproducing information may be used, such as TbFe, TbFeCo,
GdTbFe, GdFeCo, NdDyFeCo,
NdDyTbFeCo, NdFe, PrFe, C
Various known materials can be used, such as an amorphous alloy film of a rare earth element such as eFe and a transition metal element, or a garnet film. In addition, two or more of these magnetic metal thin films and/or
Alternatively, the present invention can also be applied to a recording layer having a multilayer structure in which two or more thin films having different compositions of even one type of constituent element are laminated so that the transition metal elements are in an exchange-coupled state.

特に、積層させた複数の磁性金属薄膜のうち、基板に近
い方に設けたもの、すなわち信号の続出層をカー回転角
の大きい材料とした場合には、本発明のTa窒酸化物は
、その大きな屈折率による光干渉効果で、媒体のカー回
転角の向上において一層顕著な効果を奏する。また本発
明のTa窒酸化物は、その耐透湿性等により上述の希土
類・遷移金属合金のような酸化し易い材料の記録層に対
して耐久性の面で特に有効である。
In particular, when a material with a large Kerr rotation angle is used for the one provided closer to the substrate among the plurality of laminated magnetic metal thin films, that is, the signal successive layer, the Ta nitride of the present invention The optical interference effect due to the large refractive index provides a more significant effect in improving the Kerr rotation angle of the medium. Furthermore, the Ta nitride oxide of the present invention is particularly effective in terms of durability for recording layers made of easily oxidized materials such as the above-mentioned rare earth/transition metal alloys due to its moisture permeation resistance and the like.

透明基板の材料としては、ポリカーボネート樹脂、アク
リル樹脂、エポキシ樹脂、4−メチルペンテン樹脂など
またそれらの共重合体等の高分子樹脂、もしくはガラス
などが適用できる。中でも機械強度、耐候性、耐熱性、
透湿性の点でポリカーボネート樹脂が好ましい。
As the material for the transparent substrate, polymer resins such as polycarbonate resin, acrylic resin, epoxy resin, 4-methylpentene resin, or copolymers thereof, or glass can be used. Among them, mechanical strength, weather resistance, heat resistance,
Polycarbonate resin is preferred in terms of moisture permeability.

ところで、本発明のTa窒酸化物は前述の通り基板との
密着性、膜の内部応力、透湿性等の面で優れた特性を有
しており、かかるポリカーボネート樹脂等の透明高分子
基板を用いた光磁気記録媒体において特に効果的である
。そしてこの構成において複合酸化物膜と光磁気記録膜
との間に、Ag、Cu、 Au、 Al、 Si、 T
i、 Cr、 Ta、 Zr、Re、 Nbからなる群
より選ばれた少くとも1種の元素を用いた金属薄膜を設
けることが耐酸化性、耐透湿性の面より好ましい。この
金属薄膜の膜厚は、記録・再生面から50A以下である
ことが必要で、さらに媒体のCNRを高めるという点か
ら20Å以下が好ましい。
By the way, as mentioned above, the Ta nitride of the present invention has excellent properties in terms of adhesion with the substrate, internal stress of the film, moisture permeability, etc., and it is suitable for use with transparent polymer substrates such as polycarbonate resin. This is particularly effective for magneto-optical recording media. In this structure, between the composite oxide film and the magneto-optical recording film, Ag, Cu, Au, Al, Si, T
From the viewpoint of oxidation resistance and moisture permeability, it is preferable to provide a metal thin film using at least one element selected from the group consisting of Cr, Ta, Zr, Re, and Nb. The thickness of this metal thin film must be 50 Å or less from the recording/reproducing surface, and preferably 20 Å or less from the viewpoint of increasing the CNR of the medium.

このように本発明は、高分子基板上に前述のTa窒酸化
物よりなる透明誘電体層、上述の透明金属保護層、光磁
気記録層をこの順序で具備した構成の光磁気記録媒体に
おいてその効果は顕著である。
As described above, the present invention provides a magneto-optical recording medium having the above-mentioned transparent dielectric layer made of Ta nitride, the above-mentioned transparent metal protective layer, and magneto-optical recording layer in this order on a polymer substrate. The effect is remarkable.

なお、本発明は、以上説明した光磁気記録媒体を基本と
して、その他公知の通り光磁気記録層の基板と反対側に
裏面保護層、又は透明誘電体層を介して又は介さず保護
を兼ねた反射層を設けた構成、更にはこれらの構成の媒
体に平板又は同じ媒体を貼り合わせた構成等、全てに適
用できる。
The present invention is based on the above-described magneto-optical recording medium, and also includes a backside protective layer or a transparent dielectric layer on the side opposite to the substrate of the magneto-optical recording layer, which also serves as protection with or without intervening, as is known in the art. It can be applied to all configurations including a configuration in which a reflective layer is provided, and furthermore, a configuration in which a flat plate or the same medium is bonded to a medium of these configurations.

この裏面保護層又は/及び反射層の干渉層に用いる透明
誘電体としては、膜表面から光磁気記録層への酸素やH
2Oの侵入を防ぐなめに亀裂やピンホールの少ない物質
が好ましく、AIN、MgF2、znS、 CeF3、
AlF3 ・3NaF 、 SI3 N4 、SIQ、
5i02、Zr2O3、In203.5n02などの窒
化物、弗化物、酸化物、又はこれらの混合体などが適用
できる。
The transparent dielectric material used for the back protective layer and/or the interference layer of the reflective layer is suitable for oxygen and H
In order to prevent the intrusion of 2O, materials with few cracks or pinholes are preferable, such as AIN, MgF2, znS, CeF3,
AlF3 ・3NaF, SI3 N4, SIQ,
Nitride such as 5i02, Zr2O3, In203.5n02, fluoride, oxide, or a mixture thereof can be used.

特に、本発明の前述のTa窒酸化物は、耐久性試験によ
る剥離・亀裂を生じないという理由がら、かかる保護層
又は/及び干渉層としても適したもので、本発明はかか
る構成も含むものである。また裏面保護層又は/及び反
射層として金属保護層を用いる場合には、Ag、 Cu
、 Au、 Al、 Si、 Ti、 Or、Ta、 
Zr、 Re、 Nbスはこれらの合金などからなる金
属膜が適用できるが、記録時レーザービームスポットか
への熱拡散を少なくするために熱伝導度の小さい物質、
すなわちTi、 Cr、 Ta、 Re又はこれらの合
金からなる金属膜が好ましく、さらに反射層を兼ねる場
合には反射膜としての機能を損なわないようAg、 C
u、Au、 AI又はこれらの合金中にTi、C「、T
a、 zr、 Reのうち1種以上の金属を添加した金
属膜が特に好ましい。以上の反射層及びその干渉層を含
む無機保護層は、公知の真空蒸着法、スパッタリング法
等のPVD法等で作製できる。
In particular, the aforementioned Ta nitride of the present invention is suitable as such a protective layer and/or interference layer because it does not cause peeling or cracking in a durability test, and the present invention also includes such a structure. . In addition, when using a metal protective layer as the back protective layer and/or reflective layer, Ag, Cu
, Au, Al, Si, Ti, Or, Ta,
Metal films made of alloys of these Zr, Re, Nb, etc. can be applied, but in order to reduce heat diffusion to the laser beam spot during recording, materials with low thermal conductivity,
That is, a metal film made of Ti, Cr, Ta, Re, or an alloy thereof is preferable, and when it also serves as a reflective layer, Ag, C is preferably used so as not to impair the function as a reflective film.
Ti, C'', T in u, Au, AI or their alloys.
A metal film containing one or more metals among a, zr, and Re is particularly preferred. The above-described inorganic protective layer including the reflective layer and its interference layer can be produced by a known PVD method such as a vacuum evaporation method or a sputtering method.

更に、裏面保護層として有機物保護層を用いることがで
きる。かかる有機物保護層としては公知の各種感光性樹
脂等が適用でき、コーティング法等により形成できる。
Furthermore, an organic material protective layer can be used as the back surface protective layer. As such an organic substance protective layer, various known photosensitive resins can be used, and it can be formed by a coating method or the like.

なお、有機保護層は前述の無機保護層と組み合わせ、無
機保護層が記録層に接するように配置して用いることが
好ましい。裏面保護層としては上記各保護層の組み合わ
せでもよい。なお裏面保護層は少くとも記録層の側面ま
で被覆するように設けるのが好ましい。
Note that it is preferable to use the organic protective layer in combination with the above-mentioned inorganic protective layer so that the inorganic protective layer is in contact with the recording layer. The back surface protective layer may be a combination of the above protective layers. Note that the back surface protective layer is preferably provided so as to cover at least the side surfaces of the recording layer.

なお、上述の各社保護層は、光磁気記録媒体以外の例え
ば相変化型等の光記録媒体にも適用できることはその特
性等から明らかである。
It is clear from the characteristics that the above-mentioned protective layers of each company can be applied to optical recording media other than magneto-optical recording media, such as phase change type optical recording media.

上述の本発明の効果は以下の通りである。The effects of the present invention described above are as follows.

前述の通り、透明プラスチック基板を用い、膜面反射に
よるカー回転角を大きくするなめ、基板と光磁気記録層
との間に透明誘電体層を設けた代表的構成の光磁気ディ
スクにおいて、誘電体膜として代表的な従来例のSin
、AIN、5t3N4.5i02等を用いた場合、これ
らの媒体のカー回転角は0.5〜0,7°であり、誘電
体層における光の多重反射の効果によるカー回転角の向
上がまだ十分とは言えない。これは、上記各誘電体の屈
折率が1.9〜2.0種度と小さいためであると考えら
れる。
As mentioned above, in a magneto-optical disk with a typical configuration in which a transparent plastic substrate is used and a transparent dielectric layer is provided between the substrate and the magneto-optical recording layer in order to increase the Kerr rotation angle due to film surface reflection, the dielectric Typical conventional film is Sin
, AIN, 5t3N4.5i02, etc., the Kerr rotation angle of these media is 0.5 to 0.7°, and the Kerr rotation angle is still sufficiently improved due to the effect of multiple reflection of light in the dielectric layer. It can not be said. This is considered to be because the refractive index of each of the dielectrics described above is as small as 1.9 to 2.0 degrees.

さらに、これら従来の誘電体を用いた光磁気ディスクを
高温高温又は/及びヒートサイクルにより耐久性試験を
行うと、ディスクに亀裂がはいり、光磁気特性が急激に
劣化することが観察された。
Furthermore, when magneto-optical disks using these conventional dielectrics were subjected to durability tests at high temperatures and/or heat cycles, it was observed that cracks appeared in the disks and the magneto-optical properties rapidly deteriorated.

これは主にプラスチック基板界面での誘電体膜の剥離に
起因する。
This is mainly due to peeling of the dielectric film at the interface of the plastic substrate.

これに対して、透明誘電体層に前述のTa窒酸化物を用
いた本発明の前述の代表的構成の光磁気ディスクではカ
ー回転角をO18〜1.Ooと大幅に増犬させることが
できると同時に前述の耐久性試験においてもプラスチッ
ク基板との界面での劣化による剥離や亀裂が生じない。
On the other hand, in the magneto-optical disk of the above-described typical configuration of the present invention in which the above-mentioned Ta nitride is used for the transparent dielectric layer, the Kerr rotation angle is 018 to 1. Oo, and at the same time, no peeling or cracking occurs due to deterioration at the interface with the plastic substrate in the durability test mentioned above.

これは該Ta窒酸化物の屈折率が2,1〜2.3と大き
く、更にポリカーボネート基板等の有機高分子樹脂基板
との親和性が大きいことによるものと考えられる。この
ように本発明により媒体性能が向上すると共に、通常の
環境下での長期安定性ならびにヒートサイクル、ヒート
ショックに対する耐久性も向上する。
This is thought to be due to the fact that the Ta nitride oxide has a large refractive index of 2.1 to 2.3, and also has great affinity with organic polymer resin substrates such as polycarbonate substrates. As described above, the present invention not only improves media performance but also improves long-term stability under normal environments and durability against heat cycles and heat shock.

更に、媒体の記録・再生・消去の際に生じるノイズの原
因として、従来の結晶構造の誘電体膜ではその結晶粒界
に起因する光の散乱、記録ビットの乱れが挙げられるが
、上述のTa窒酸化物は非晶質であり、かかる散乱、乱
れはほとんどなく、前述の従来例の光磁気ディスクに比
べ、記録・再生時のノイズが低減できることがわかった
Furthermore, in conventional crystalline dielectric films, scattering of light and disturbance of recorded bits due to crystal grain boundaries are the causes of noise that occurs during recording, reproduction, and erasing of media. Nitoxide is amorphous, so there is almost no such scattering or disturbance, and it has been found that noise during recording and reproduction can be reduced compared to the conventional magneto-optical disk described above.

以上の本発明の作用効果は、光磁気記録媒体に限られる
ことはなく、相変化型、反射型等、公知の光記録媒体に
おいても同様に奏し得るものであることは明らかである
。よって本発明は広く光記録媒体に適用できるものであ
る。このように本発明は光記録媒体、中でも特に光磁気
記録媒体の耐久性を含めた特性向上に大きな寄与をなす
ものである。
It is clear that the effects of the present invention described above are not limited to magneto-optical recording media, but can be similarly achieved in known optical recording media such as phase change type and reflective type. Therefore, the present invention is widely applicable to optical recording media. As described above, the present invention greatly contributes to improving the characteristics of optical recording media, especially magneto-optical recording media, including their durability.

以下、本発明を、実施例を用いて説明する。Hereinafter, the present invention will be explained using examples.

[実施例1・〜13、比教例1〜3] 以下のようにして基板上に透明誘電体膜を作成し、その
特性を評価した。
[Examples 1 to 13, Teaching Examples 1 to 3] A transparent dielectric film was created on a substrate in the following manner, and its characteristics were evaluated.

直径130mm 、厚さ1.2mmの円盤で、1.6μ
mピッチのグループを有するポリカーボネート樹脂(P
C)のディスク基板、Siウェハー(10mmx 10
mmの正方形)、スライドガラス(長さ76mmx幅2
6mmX厚さ1mm)、薄板ガラス(直径18mmX厚
さ0、1ma+の円盤)の各基板を3ターゲツトの高周
波マグネトロンスパッタ装R(アネルバ■製5PF−4
30H型)の真空槽内に固定し、4 X 10’−’T
orrになるまで排気する。
A disc with a diameter of 130mm and a thickness of 1.2mm, 1.6μ
Polycarbonate resin (P
C) disk substrate, Si wafer (10mm x 10
mm square), slide glass (length 76 mm x width 2
6mm x 1mm thick) and thin glass (18mm diameter x 0, 1ma+ disk) using a 3-target high frequency magnetron sputtering system R (5PF-4 made by ANELVA).
30H type) in a vacuum chamber, 4 x 10'-'T
Exhaust until it reaches orr.

次にAr/N2混合ガスを真空槽内に導入し、圧力5i
TorrになるようにAr/N2ガス流量を調整した。
Next, Ar/N2 mixed gas was introduced into the vacuum chamber, and the pressure was 5i.
The Ar/N2 gas flow rate was adjusted to Torr.

ターゲットとしては直径100mm 、厚さ5mmの円
盤のTa2O,焼結体を用い、必要に応じてこの上に1
[1203又は/及び5n02の酸化物焼結体のチップ
(直径5mmX厚さinmの円盤)を適宜、適当数配置
しな。放電電力ioow、放電周波数13.56M)I
Zで高周波スパッタリングを行い、A「/N2混合ガス
ながのN2分圧を調整することにより、表1の膜組成の
欄に示すところの組成をもつTa窒酸化物膜を約100
0人堆積し、表1の各実施例のサンプルを得な。
As a target, a Ta2O sintered body with a diameter of 100 mm and a thickness of 5 mm is used, and if necessary,
[Arrange an appropriate number of 1203 or/and 5n02 oxide sintered chips (discs with a diameter of 5 mm and a thickness of inm). Discharge power ioow, discharge frequency 13.56M)I
By performing high-frequency sputtering in Z and adjusting the N2 partial pressure in the A/N2 mixed gas, a Ta nitride oxide film having the composition shown in the film composition column of Table 1 can be formed by approximately 100%
0 people deposited and obtained samples of each example in Table 1.

まず、Siウェハーに堆積したサンプルを用いて、波長
830nniの光に対する薄膜の屈折率を求めた。
First, using a sample deposited on a Si wafer, the refractive index of the thin film with respect to light with a wavelength of 830 nni was determined.

測定装置としては、■情況光学工業所製、自動エリプソ
メーターDIIA−OLWを用いた。その結果を表1の
屈折率の欄に示す。
As a measuring device, an automatic ellipsometer DIIA-OLW manufactured by Shotoku Kogaku Kogyo Co., Ltd. was used. The results are shown in the refractive index column of Table 1.

次に、薄板ガラス上に堆積したサンプルを用いて、薄膜
の内部応力を求めた。測定にはTENCOftINST
RUMENTS製、触針式表面粗さ計alpha−st
ep200を用い、触針により2mmの長さを走査した
ときのそり量を測定し、内部応力σを求めた。その結果
を表1の内部応力の欄に示す。
Next, the internal stress of the thin film was determined using the sample deposited on the thin glass. TENCOftINST for measurement
Stylus type surface roughness meter alpha-st manufactured by RUMENTS
Using EP200, the amount of warpage was measured when a length of 2 mm was scanned with a stylus, and the internal stress σ was determined. The results are shown in the internal stress column of Table 1.

また、スライドガラス上に堆積したサンプルを用い、結
晶状態の測定を行った。測定には理学電機■製、s力x
as折装置)11G)IPQWERtlNIT &lO
[11EI。
In addition, the crystalline state was measured using a sample deposited on a glass slide. For measurement, manufactured by Rigaku Denki, s force x
as-folding device) 11G) IPQWERtlNIT &lO
[11EI.

D−3Fを用いた。結果を表1の結晶状態の欄に示す。D-3F was used. The results are shown in the column of crystalline state in Table 1.

さらに、PCディスク基板上に堆積したサンプルを用い
、薄膜とpc基板との密着性の測定を行った。セキスイ
社製、セロハン粘着テープJISZ1522を薄膜の表
面に貼り着け、基板面に対して水平な方向にセロテープ
を引きはがしたときの薄膜の剥離の状態を目視、及び顕
微鏡で観察した。
Furthermore, using a sample deposited on a PC disk substrate, the adhesion between the thin film and the PC substrate was measured. A cellophane adhesive tape JIS Z1522 manufactured by Sekisui Co., Ltd. was attached to the surface of the thin film, and when the cellophane tape was peeled off in a direction parallel to the substrate surface, the state of peeling of the thin film was observed visually and with a microscope.

結果を表1の密着性の欄に示す。この欄で用いた記号の
意味は次の通りである。
The results are shown in the column of adhesion in Table 1. The meanings of the symbols used in this column are as follows.

◎:密着性良好で、全く剥離なし ○:顕微鏡観察で、グループ2〜3本分程度の剥離が認
められる。
◎: Good adhesion, no peeling at all ○: Peeling of about 2 to 3 groups was observed by microscopic observation.

×:膜が全面的に剥離 また、比較のため、従来例のTa205、ZnS、人I
Nの薄膜を以下のように作成し評価した。
×: The film is completely peeled off.For comparison, conventional examples of Ta205, ZnS, and Human I
A thin N film was prepared and evaluated as follows.

実施例1〜13と全く同様にして、PCディスク基板、
Slウェハー、スライドガラス、薄板ガラスの各基板を
用意し、これらを3ターゲツトの高周波マグネトロンス
パッタ装置(アネルバ■製、5PF−43011型)の
真空槽内に固定し4 X IQ ’Torrになるまで
排気する。
In exactly the same manner as in Examples 1 to 13, a PC disk board,
Prepare the Sl wafer, slide glass, and thin glass substrates, fix them in a vacuum chamber of a three-target high-frequency magnetron sputtering device (manufactured by ANELVA, model 5PF-43011), and evacuate until the temperature reaches 4 X IQ 'Torr. do.

次いで、ターゲットとしてTa205 、 ZnS、A
INの各焼結体を夫々用い、スパッタリングガスをそれ
ぞれのターゲットについて記載順にA r / 02、
純Ar (5N) 、Ar/N2とする以外は実施例1
〜13と全く同じ用にして表1の比較例の各サンプルを
作成し、屈折率、内部応力σ、結晶状態の測定を行った
。結果を表1に示す。
Then, Ta205, ZnS, A
Using each sintered body of IN, the sputtering gas was A r / 02,
Example 1 except that pure Ar (5N) and Ar/N2 were used.
Samples of the comparative examples shown in Table 1 were prepared in exactly the same manner as in 13 to 13, and the refractive index, internal stress σ, and crystal state were measured. The results are shown in Table 1.

以上の実施例1〜13、比較例1〜3より、本発明によ
るTa窒酸化物は、窒素の添加により、その内部応力が
1/2〜115に低減できると共に、N含有量によらず
、広い範囲で2.05〜2.35の高い屈折率が得られ
ることがわかった。これは製造上、スパッタリングガス
中のN2分圧の変化に対して屈折率のマージンが広いと
いうことを意味している。
From the above Examples 1 to 13 and Comparative Examples 1 to 3, the internal stress of Ta nitride according to the present invention can be reduced to 1/2 to 115 by adding nitrogen, and regardless of the N content, It was found that a high refractive index of 2.05 to 2.35 can be obtained over a wide range. This means that in manufacturing, there is a wide margin in the refractive index with respect to changes in the N2 partial pressure in the sputtering gas.

なお、Ta含有量が1oat%以上では2.1以上の高
い屈折率が得られることがわかる。また、本発明による
Ta窒酸化物は驚くべきことに非晶質状態となることが
わかった。従って、記録・再生時のレーザー光の結晶粒
界による散乱や、ビット形成時の熱伝導の不均一性によ
るビット形状の乱れが小さいなど、媒体ノイズの低減を
する効果をもつと考えられる。薄膜とPC基板との密着
性に関しては、Ta窒酸化物であっても、従来のTa2
05、 ZnS、AINと比べれば密着性は向上できる
が、更に密着性を高めるなめには、In又は/及びSn
を含むTa窒酸化物を用いることが好ましい。
It is understood that when the Ta content is 1 oat% or more, a high refractive index of 2.1 or more can be obtained. Moreover, it was surprisingly found that the Ta nitride oxide according to the present invention is in an amorphous state. Therefore, it is thought to have the effect of reducing media noise, such as by reducing the scattering of laser light by crystal grain boundaries during recording and reproducing and by minimizing disturbances in the bit shape due to non-uniform heat conduction during bit formation. Regarding the adhesion between the thin film and the PC board, even if Ta nitride is used, conventional Ta2
05. The adhesion can be improved compared to ZnS and AIN, but to further improve the adhesion, it is necessary to use In or/and Sn.
It is preferable to use Ta nitride containing Ta.

以上の点より、本発明によるTa窒酸化物を光磁気記録
媒体の誘電体層として用いれば、レーザー光の閉じ込め
効果が向上し、記録感度の向上、CNHの向上が実現さ
れると考えられる。また、内部応力が低減されたことに
より、高温高温耐環境性試験における剥離・亀裂等の欠
陥の発生を抑える効果が期待できる。
From the above points, it is considered that if the Ta nitride according to the present invention is used as a dielectric layer of a magneto-optical recording medium, the laser light confinement effect will be improved, and recording sensitivity and CNH will be improved. In addition, because the internal stress is reduced, it can be expected to have the effect of suppressing the occurrence of defects such as peeling and cracking during high temperature and high temperature environment resistance tests.

以上の実施例1〜13のTa窒酸化物を光干渉層又は/
及び保護層とした光磁気ディスクを作成し、本発明の効
果を確認した。
The Ta nitride of Examples 1 to 13 above is used as an optical interference layer or/
A magneto-optical disk with a protective layer and a protective layer was prepared, and the effects of the present invention were confirmed.

表  1 [実施例14〜26、比較例4〜6] 以下のようにして、第1図に示す構成の光磁気ディスク
を作成し評価した。図において1は基板、2は誘電体、
3は透明金属薄膜層、4は記録層、5は裏面保護層であ
る。
Table 1 [Examples 14 to 26, Comparative Examples 4 to 6] Magneto-optical disks having the configuration shown in FIG. 1 were prepared and evaluated in the following manner. In the figure, 1 is a substrate, 2 is a dielectric,
3 is a transparent metal thin film layer, 4 is a recording layer, and 5 is a back surface protective layer.

直径130mm 、厚さ1.2oonの円盤で、1.6
μmピッチのグループを有するポリカーボネート樹脂(
PC)のディスク基板1を3ターゲツトの高周波マグネ
トロンスパッタ装置(アネルバ(II製5PF−430
H型)の真空槽内に固定し、4 X 1O−7Torr
になるまで排気する。なお、膜形成において基板1は1
5rpIllで回転させた。
A disk with a diameter of 130mm and a thickness of 1.2oon, 1.6
Polycarbonate resin with groups of μm pitch (
A three-target high-frequency magnetron sputtering device (5PF-430 manufactured by ANELVA (II)
Fixed in a vacuum chamber of 4 X 1O-7 Torr
Exhaust until Note that during film formation, the substrate 1
Rotated at 5 rpm.

次に前述の実施例1〜13と同じようにして表2の各実
施例の組成のTa窒酸化物からなる透明誘電体層2を形
成した。すなわちターゲットとしては直径100mm 
、厚さ5mmの円盤状のTa205焼結体を用い、組成
が表2の膜組成の欄に示したようになるよう、ターゲッ
ト上に1n203又は/及び3002のチップを適宜必
要数配置した。そして真空槽内にA r / N2混合
ガスを導入し、圧力5mTorrになるようにA r 
/ N2混合ガスの流量を調整した。次いで放電電力1
00W、放電周波数13.56MHzで高周波スパッタ
リングを行い、誘電体層2として表2の各実施例に示す
ところの組成の窒酸化物膜を約700 人堆積した。
Next, in the same manner as in Examples 1 to 13 described above, a transparent dielectric layer 2 made of Ta nitride having the composition shown in each Example shown in Table 2 was formed. In other words, the target has a diameter of 100 mm.
Using a disk-shaped Ta205 sintered body with a thickness of 5 mm, a required number of 1n203 and/or 3002 chips were appropriately arranged on the target so that the composition was as shown in the film composition column of Table 2. Then, an Ar/N2 mixed gas was introduced into the vacuum chamber, and the Ar
/ Adjusted the flow rate of N2 mixed gas. Then discharge power 1
High frequency sputtering was performed at 00 W and a discharge frequency of 13.56 MHz to deposit about 700 nitride oxide films having the compositions shown in each example in Table 2 as the dielectric layer 2.

続いて透明金属薄膜層3としてターゲットをA1の円盤
上にReのチップ(5X5X1ffim)を配置したも
のに変え、スパッタリングガスをA r / N2より
純Ar(5N)とする以外は上述と同様の放電条件でA
19oRe+o合金膜(添数字は組成(原子%)を示す
)を約15人堆積しな。
Next, as the transparent metal thin film layer 3, the target was changed to one in which Re chips (5X5X1ffim) were arranged on the disk of A1, and the same discharge as above was performed except that the sputtering gas was changed to pure Ar (5N) rather than Ar/N2. A with conditions
Deposit about 15 19oRe+o alloy films (the suffix indicates the composition (atomic %)).

次に光磁気記録層4としてターゲットをTbwsFea
9COa合金(添数字は組成(原子%)を示す)の円盤
に変え、AlRe合金膜と同様の放電条件でTb23F
e6qCOa合金膜を約400A堆積した。
Next, the target is TbwsFea as the magneto-optical recording layer 4.
9COa alloy (the suffix indicates the composition (atomic %)) was replaced with a Tb23F disk under the same discharge conditions as the AlRe alloy film.
An e6qCOa alloy film was deposited at a thickness of about 400A.

さらに、裏面保護層5として反射層を兼ねてターゲット
をAl上にReチップを配置したものに戻し、上述と同
様の放電条件でA19oReto合金膜を約500人堆
積した。
Furthermore, the target was returned to one in which Re chips were placed on Al to serve as a reflective layer as the back surface protective layer 5, and approximately 500 A19oReto alloy films were deposited under the same discharge conditions as described above.

以上の順序で表2の各実施例の組成のTa窒酸化物を透
明誘電体層とし、その他は同じ構成の第1図に示すとこ
ろの積層構成の光磁気ディスク(実施例14〜26)を
得な。
In the above order, magneto-optical disks (Examples 14 to 26) having the laminated structure shown in FIG. 1 with the same structure as the transparent dielectric layer made of Ta nitride having the composition of each example in Table 2 were prepared. Good value.

この光磁気ディスクのカー回転角の測定結果(レーザー
波長λ: 633nm)を表2のカー回転角の欄に示す
。次にこのディスクのCNRを測定した。
The measurement results of the Kerr rotation angle of this magneto-optical disk (laser wavelength λ: 633 nm) are shown in the Kerr rotation angle column of Table 2. Next, the CNR of this disk was measured.

測定には光磁気記録再生装置くナカミチ0MS−100
0TypeI[i)を用い、ディスクを1800rpm
で回転させ、半径30mmHの位置で記録・再生・消去
を行った。
For measurement, magneto-optical recording and reproducing device Kunakamichi 0MS-100 was used.
Using 0TypeI[i], the disc was rotated at 1800 rpm.
Recording, reproduction, and erasing were performed at a position with a radius of 30 mmH.

信号の再生は1.2mWのレーザーパワーで行った。Signal reproduction was performed with a laser power of 1.2 mW.

記録時の最適レーザーパワーは、信号再生時の1次高周
波と2次高周波の差が最大となる値に決定した。信号の
周波数は2、OMB2とした。各媒体の最適レーザーパ
ワーを表2の記録パワーの欄に示す。尚、記録・消去の
際の印加磁界は5000e (エルステッド)である。
The optimum laser power during recording was determined to be the value that maximizes the difference between the primary high frequency and secondary high frequency during signal reproduction. The signal frequency was set to 2, OMB2. The optimum laser power for each medium is shown in the column of recording power in Table 2. The magnetic field applied during recording and erasing is 5000e (Oersted).

ノイズレベルは1mWを基準とした絶対レベルを示すd
Bmの単位で表示した。
The noise level indicates the absolute level based on 1mW.d
It was expressed in units of Bm.

これらのディスクの面を観察したところ、ピンホールや
剥離、亀裂等の欠陥は観察されなかった。
When the surfaces of these disks were observed, no defects such as pinholes, peeling, or cracks were observed.

次にこれらのディスクを80℃、85XRIIの高温高
湿雰囲気下に1000時間放置した。その後カー回転角
及び記録時最適レーザーパワー、CNR、ノイズレベル
を測定しなところ、放置前の測定結果と比較して全く変
化は見られなかった。また媒体面のピンホールや剥離・
亀裂等の欠陥の発生は全く見られなかった。
Next, these disks were left in a high-temperature, high-humidity atmosphere of 80° C. and 85XRII for 1000 hours. Thereafter, when the Kerr rotation angle, optimum laser power during recording, CNR, and noise level were measured, no changes were observed compared to the measurement results before leaving. In addition, pinholes and peeling on the media surface
No defects such as cracks were observed.

また、比較のため、以下のようにして従来例のTa20
5 、ZnS、AINを誘電体層とした以外は実施例1
4〜26と全く同じの第1図に示す構成の光磁気記録媒
体を作成し評価した。
For comparison, the conventional Ta20
Example 1 except that 5, ZnS, and AIN were used as the dielectric layer
A magneto-optical recording medium having the structure shown in FIG. 1, which is exactly the same as that of Examples 4 to 26, was prepared and evaluated.

直径130mm 、厚さ1.2mmの円盤で、1.6.
czmピッチのグループを有するポリカーボネート樹脂
(PC)のディスク基板を、実施例14〜26で用いた
ものと全く同じスパッタ装置中に全く同じ条件で固定し
た。
A disk with a diameter of 130 mm and a thickness of 1.2 mm, 1.6.
A polycarbonate resin (PC) disk substrate with czm pitch groups was fixed in exactly the same sputtering equipment as used in Examples 14-26 under exactly the same conditions.

誘電体層2のTa205又は2nS又はAINは、ター
ゲットとしてTa20q又はZnS又はAINの焼結体
を用い、スパッタリングガスは、それぞれのターゲット
について記載順にA r /′02、純Ar (5N)
、Ar/ N2として700人の厚さに形成し、それ以
外の各層は実施例14〜26と全く同じ条件でスパッタ
リングを行い、誘電体層がTazOう又はZnS又はA
INで、その他の構成は実施例14〜26と全く同じ構
成の光磁気ディスク(比較例4〜6)を作成した。
For Ta205, 2nS, or AIN of the dielectric layer 2, a sintered body of Ta20q, ZnS, or AIN is used as a target, and the sputtering gas is A r /'02, pure Ar (5N) in the order of description for each target.
, Ar/N2 to a thickness of 700 mm, and the other layers were sputtered under exactly the same conditions as in Examples 14 to 26.
Magneto-optical disks (Comparative Examples 4 to 6) having the same configuration as Examples 14 to 26 were produced with IN.

得られた比較例の光磁気ディスクについて実施例14−
26と同様に、カー回転角、記録パワーCNR、ノイズ
レベルの測定を行った。結果を表2の放置前の比較例の
欄に示す。
Example 14- Regarding the obtained magneto-optical disk of comparative example
Similarly to No. 26, the Kerr rotation angle, recording power CNR, and noise level were measured. The results are shown in the column of comparative examples before standing in Table 2.

また、このディスク面を観察したところ、ピンホールや
剥離・亀裂等の欠陥は観察されなかった。
Further, when the disk surface was observed, no defects such as pinholes, peeling, cracks, etc. were observed.

次にこの光磁気ディスクを80℃、85%RH高温高湿
雰囲気下に1000時間放置した。その後のカー回転角
及び記録時!&適レーザーパワー、CNR、ノイズレベ
ルを測定した。結果を表2の放置後の比較例の欄に示す
。放置前に比ベカー回転角、記録感度、CNR、ノイズ
レベルともに劣化していることがわかる。また、そのデ
ィスク面にはピンホールの発生が見られた。
Next, this magneto-optical disk was left in a high-temperature, high-humidity atmosphere at 80° C. and 85% RH for 1000 hours. After that, the car rotation angle and recording time! & Appropriate laser power, CNR, and noise level were measured. The results are shown in the column of comparative examples after standing in Table 2. It can be seen that the relative rotation angle, recording sensitivity, CNR, and noise level were all degraded before being left unused. In addition, pinholes were observed on the disk surface.

[実施例27] 以下のようにして、第2図に示す構成の光磁気ディスク
を作成し評価しな。第2図において、1.2.4は第1
図と同じで、6は裏面保護層の干渉層を兼ねた裏面誘電
体層、7は裏面保護層の反射層を兼ねた金属層である。
[Example 27] A magneto-optical disk having the configuration shown in FIG. 2 was prepared and evaluated as follows. In Figure 2, 1.2.4 is the first
As in the figure, 6 is a back dielectric layer that also serves as an interference layer of the back protection layer, and 7 is a metal layer that also serves as a reflective layer of the back protection layer.

直径130mm 、厚さ1.2mmの円盤で、1.6a
mピッチのグループを有するポリカーボネート樹脂(p
c)のディスク基板を、実施例14〜26で用いたもの
と全く同じスパッタ装宜中に全く同じ条件で固定した。
A disk with a diameter of 130mm and a thickness of 1.2mm, 1.6a
Polycarbonate resin with groups of m pitch (p
The disk substrates of c) were fixed in exactly the same sputter setup as used in Examples 14-26 under exactly the same conditions.

先ず誘電体層2として窒素含有Ta酸化物膜を以Fのよ
うにして形成した。A r / N2混合ガスを導入し
、圧力5mTorrになるようにA「/N2混合ガスの
流量を調整した。ターゲットとしては直径100aun
、厚さ5amの円盤で、組成がTa271nt 07゜
(添数字は原子%)の焼結体ターゲットを用いた。放電
電力100W、放電周波数13.56MHzで高周波ス
バ・ンタリングを行い、誘電体層2として、Ta271
nt 027N45(添数字は原子%)なる組成の窒酸
化物膜を約1000人堆積しな。
First, a nitrogen-containing Ta oxide film was formed as the dielectric layer 2 in the following manner. A/N2 mixed gas was introduced and the flow rate of the A/N2 mixed gas was adjusted so that the pressure was 5 mTorr.The target was a diameter of 100 au.
A sintered target was used, which was a disc with a thickness of 5 am and had a composition of Ta271nt 07° (the subscript number is atomic %). High-frequency subinterning was performed at a discharge power of 100 W and a discharge frequency of 13.56 MHz, and Ta271 was formed as the dielectric layer 2.
Approximately 1,000 people deposited a nitride oxide film having a composition of nt 027N45 (subscript number is atomic %).

次にスパッタリングガスをAr/N2から純Ar (5
Nlに変え、ターゲットとしては、Nd5DyxsTb
a Fe6゜C0t2(添数字は原子%)の組成をもつ
合金ターゲットを用い、上述と同様の放電条件で、ター
ゲットを交換してスパッタリングを行い、第2図に示す
ところの光磁気記録層4として、Nds DytsTb
sPe6oCOx2合金膜を200人の膜厚で堆積させ
た。
Next, the sputtering gas was changed from Ar/N2 to pure Ar (5
Instead of Nl, the target is Nd5DyxsTb.
Using an alloy target with a composition of a Fe6°C0t2 (subscript number is atomic%), sputtering was performed under the same discharge conditions as above, with the target replaced, to form the magneto-optical recording layer 4 shown in Fig. 2. , Nds DytsTb
A sPe6oCOx2 alloy film was deposited to a thickness of 200 nm.

再びターゲットを誘電体層2の窒酸化物膜を形成したT
a271nt 072の焼結体ターゲットに戻し、誘電
体層2と同じ条件で、誘電体層2と同じ窒酸化物のTa
1nONからなる裏面誘電体層5を約500A堆積した
The target is again T with the nitride oxide film of dielectric layer 2 formed.
Return to the sintered target of a271nt 072, and add Ta of the same nitride oxide as dielectric layer 2 under the same conditions as dielectric layer 2.
A back dielectric layer 5 made of 1nON was deposited at a thickness of about 500A.

最後に、ターゲットをAl上にReのチップ(5mmφ
X1m+aの円盤)を配置したものに変え、記録層4と
全く同じ条件で、反射層の金属層6としてA19oRe
xo膜(添数字は原子%)を約500人堆積し、第2図
の積層構成の光磁気ディスクを得た。このディスクにつ
いて実施例14〜26と同様に、カー回転角、記録パワ
ー、CNR、ノイズレベルの測定を行った。測定結果は
カー回転角が1.05度、記録パワーが4.5 mW、
 CNRが54.7dB、ノイズレベルが−60,0d
Bmであった。またこのディスク面を観察したところ、
ピンホールや剥離・亀裂等の欠陥は観察されなかった。
Finally, place the target on Al with a Re chip (5mmφ
A19oRe was used as the metal layer 6 of the reflective layer under exactly the same conditions as the recording layer 4.
Approximately 500 xo films (subscript numbers are atomic %) were deposited to obtain a magneto-optical disk having the laminated structure shown in FIG. Regarding this disk, the Kerr rotation angle, recording power, CNR, and noise level were measured in the same manner as in Examples 14 to 26. The measurement results show that the Kerr rotation angle is 1.05 degrees, the recording power is 4.5 mW,
CNR is 54.7dB, noise level is -60.0d
It was Bm. Also, when I observed this disk surface, I found that
No defects such as pinholes, peeling, or cracks were observed.

次にこのディスクを80℃、85%RHの高温高湿雰囲
気下に1000時間放置した。その後のカー回転角及び
記録時最適レーザーパワー、CNR、ノイズレベルを測
定したところ、実施例14−26と同様、放置前の測定
結果と比較して全く変化は見られなかった。また、媒体
面のピンホールや剥離・亀裂等の欠陥の発生は全く見ら
れなかった。
Next, this disk was left in a high temperature, high humidity atmosphere of 80° C. and 85% RH for 1000 hours. When the Kerr rotation angle, the optimum laser power during recording, the CNR, and the noise level were measured after that, no change was observed compared to the measurement results before being left, as in Example 14-26. Furthermore, no defects such as pinholes, peeling, or cracks on the medium surface were observed.

[実施例28] 以下のようにして、交換結合2層膜を光磁気記録層とし
た第3図に示すところの光磁気記録媒体を作成し評価し
た。第3図において、1.2.5は第1図と同じで、4
a、4bは交換結合した光磁気記録層である。
[Example 28] A magneto-optical recording medium shown in FIG. 3 in which an exchange-coupled two-layer film was used as a magneto-optical recording layer was prepared and evaluated in the following manner. In Figure 3, 1.2.5 is the same as in Figure 1, and 4
a and 4b are exchange-coupled magneto-optical recording layers.

直径130mm 、厚さ1.2mmの円盤で、1.6μ
Dピッチのグループを有するポリカーボネート樹脂(P
C>のディスク基板1を実施例14〜27で用いたもの
と全く同じスパッタ装置中に全く同じ条件で固定した。
A disc with a diameter of 130mm and a thickness of 1.2mm, 1.6μ
Polycarbonate resin with a group of D pitch (P
The disk substrate 1 of Example C> was fixed in exactly the same sputtering apparatus as used in Examples 14 to 27 under exactly the same conditions.

先ず、誘電体層2としてTa窒酸化物膜を以下のように
して形成した。A r / N2混合ガスを真空槽内に
導入し、圧力5mTorrになるようにAr/N2混合
ガスの流量を調整しな。ターゲットとしては直径100
mm 、厚さ5mmの円盤で、組成がTa271nt 
o7゜く添数字は原子%)の焼結体ターゲットを用いた
First, a Ta nitoxide film was formed as the dielectric layer 2 in the following manner. Introduce the Ar/N2 mixed gas into the vacuum chamber and adjust the flow rate of the Ar/N2 mixed gas so that the pressure becomes 5 mTorr. Diameter 100 as a target
mm, 5mm thick disk, composition Ta271nt
A sintered target of o7° (subscript number is atomic %) was used.

放電電力100W、放電周波数13.56M)IZで高
周波スパッタリングを行い、誘電体層2としてTaz7
1nx027N45(添数字は原子%)なる組成の窒酸
化物膜を約700人堆積した。
High frequency sputtering was performed with IZ (discharge power 100W, discharge frequency 13.56M), and Taz7 was used as the dielectric layer 2.
Approximately 700 people deposited a nitride oxide film having a composition of 1nx027N45 (subscript numbers are atomic %).

次に、スパッタリングガスをA r / N2から純A
rに変え、ターゲットとしてGd2.5Fes6CO□
o、 Tb23Fe69C08(添数字は原子%)の合
金ターゲット、及びCu上にTiのチップ(5X5X1
mm)を配室したものの3種を用い、上述の誘電体層2
と同様の放電条件で、ターゲットを交換してスパッタリ
ングを行い、第3図に示すところのGd+4FeqbC
o□0合金からなる第1の記録層4a、 Tb23F 
69CO8合金からなる第2の記録層4b、並びにCu
9sTi5(添数字は原子%)からなる反射層を兼ねた
裏面保護層5を、j頃にそれぞれ150人、250人、
500人の膜厚で堆積させた。ここで、光磁気記録層4
aと4bは交換結合状態をとっている。
Next, the sputtering gas was changed from Ar/N2 to pure A
r and set Gd2.5Fes6CO□ as the target.
o, Tb23Fe69C08 (subscript number is atomic%) alloy target, and Ti chip on Cu (5X5X1
The above-mentioned dielectric layer 2 was
Sputtering was performed under the same discharge conditions as above, replacing the target, and Gd+4FeqbC as shown in Fig.
First recording layer 4a made of o□0 alloy, Tb23F
The second recording layer 4b made of 69CO8 alloy and Cu
The back protective layer 5, which also serves as a reflective layer, made of 9sTi5 (subscript number is atomic%) was applied to 150 people, 250 people, and 250 people, respectively, around j.
It was deposited to a film thickness of 500. Here, the magneto-optical recording layer 4
a and 4b are in an exchange coupled state.

実施例14〜27と同様にカー回転角、記録パワー、C
NR、ノイズレベルの測定を行った。測定結果は、カー
回転角が1.20度、記録パワーが4.7mW 、 C
NRが57.0 dB 、ノイズレベルが−60,2d
Bmであった。
Similar to Examples 14 to 27, Kerr rotation angle, recording power, C
NR and noise level were measured. The measurement results are: Kerr rotation angle is 1.20 degrees, recording power is 4.7 mW, C
NR is 57.0 dB, noise level is -60.2d
It was Bm.

この媒体面を観察しなところ、ピンホールや剥離・亀裂
等の欠陥は観察されなかった9本実施例1〜28及び比
較例1〜6より、本発明によるTa窒酸化物、もしくは
更にIn又は/及びSnを含むTa窒酸化物薄膜を誘電
体層として用いることにより、その特性から期待される
通りカー回転角、記録感度、CNR及び耐久性の向上、
並びにノイズレベルの低減された光磁気記録媒体を実現
できることがわかった。これは実施例1〜13で示した
如く、上記Ta窒酸化物により誘電体層の屈折率が増大
し、これによって光干渉効果、具体的にはレーザー光の
閉じ込め効果が向上し、カー回転角、記録感度、CNR
の向上を実現できることが確認された。
When the surface of the medium was observed, no defects such as pinholes, peeling, cracks, etc. By using a Ta nitride thin film containing / and Sn as a dielectric layer, improvements in Kerr rotation angle, recording sensitivity, CNR, and durability can be achieved as expected from its characteristics.
It was also found that a magneto-optical recording medium with reduced noise level can be realized. As shown in Examples 1 to 13, the Ta nitride increases the refractive index of the dielectric layer, thereby improving the optical interference effect, specifically the laser light confinement effect, and increasing the Kerr rotation angle. , recording sensitivity, CNR
It was confirmed that it is possible to improve the

また、本実施例14〜28の透明誘電体層は実施例1〜
13に示すごとく非晶質状態である。このなめ結晶状態
のTa205 、zoS、AIN等の膜に比べ、記録・
再生時のレーザー光の結晶粒界による散乱やビット形成
時の熱伝導の不均一性によるビット形状の乱れが少なく
、ノイズレベルの低減が実現されている。
In addition, the transparent dielectric layers of Examples 14 to 28 are those of Examples 1 to 28.
As shown in Fig. 13, it is in an amorphous state. Compared to films such as Ta205, zoS, and AIN in this slick crystal state, recording and
There is little disturbance in the bit shape due to scattering of laser light by crystal grain boundaries during reproduction and non-uniformity of heat conduction during bit formation, resulting in a reduction in noise level.

また、実施例5〜13に示したように、Ta窒酸化物に
更にIn又は/及びSnを添加することにより、pc基
板と誘電体膜との密着性は、−層内上できることがわか
った。更に、実施例14−28のTa窒酸化物膜は、実
施例1〜13で示した如く、比軸例のTa205 、z
nS、AINに比べ、内部応力が1/2〜1/4に低下
している。これらの理由により、高温高湿下での加速劣
化試験を行っても、膜の内部応力や、pc基板との密着
力の不足による剥離・亀裂が全く発生せず、耐久性向上
に大きな効果を奏することがわかった。
Furthermore, as shown in Examples 5 to 13, it was found that by further adding In and/or Sn to Ta nitride, the adhesion between the PC substrate and the dielectric film could be improved within the layer. . Furthermore, as shown in Examples 1 to 13, the Ta nitride film of Examples 14-28 has Ta205, z
Internal stress is reduced to 1/2 to 1/4 compared to nS and AIN. For these reasons, even when accelerated deterioration tests are performed under high temperature and high humidity conditions, there is no peeling or cracking due to internal stress in the film or lack of adhesion to the PC board, which has a significant effect on improving durability. I found out that it plays.

以上、本発明は光記録媒体、特に光磁気記録媒体の記録
再生特性並びに耐久性を大きく向上させるものであるこ
とは明らかである。
As described above, it is clear that the present invention greatly improves the recording/reproducing characteristics and durability of optical recording media, particularly magneto-optical recording media.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例14〜26及び比較例4〜6の、第2図
は実施例27の、第3図は実施例28の各光磁気ディス
クの積層構成の説明図である。
FIG. 1 is an explanatory diagram of the laminated structure of the magneto-optical disks of Examples 14 to 26 and Comparative Examples 4 to 6, FIG. 2 is of Example 27, and FIG. 3 is of Example 28.

Claims (1)

【特許請求の範囲】 1、保護膜又は/及び光干渉層として透明誘電体層を有
する光記録媒体において、前記透明誘電体層が、非晶質
のタンタル(Ta)窒酸化物であることを特徴とする光
記録媒体。2、前記タンタル窒酸化物が、さらにIn又
は/及びSnを含む請求項第1項記載の光記録媒体。 3、Ag、Cu、Au、Al、Si、Ti、Cr、Ta
、Zr、Re、Nbからなる群より選ばれた少くとも1
種の元素を用いた金属膜を保護層又は/及び反射層とし
て具備した請求項第1項又は第2項記載の光記録媒体。 4、前記タンタル窒酸化物の窒素含有率が1〜45at
%である請求項第1項〜第3項記載のいずれかの光記録
媒体。 5、前記タンタル窒酸化物の酸素含有率が27〜71a
t%である請求項第1項〜第4項記載のいずれかの光記
録媒体。 6、請求項第1項〜第5項記載のいずれかの光記録媒体
の製造方法において、前記タンタル窒酸化物層を、Ta
の酸化物、若しくはIn又は/及びSnを含むTaの酸
化物をターゲットとし、不活性ガスに窒素を含有させた
反応性ガスよりなる窒素雰囲気下のスパッタリングより
形成することを特徴とする光記録媒体の製造方法。
[Claims] 1. In an optical recording medium having a transparent dielectric layer as a protective film and/or an optical interference layer, the transparent dielectric layer is made of amorphous tantalum (Ta) nitoxide. Characteristic optical recording media. 2. The optical recording medium according to claim 1, wherein the tantalum nitride further contains In and/or Sn. 3.Ag, Cu, Au, Al, Si, Ti, Cr, Ta
, Zr, Re, and Nb.
3. The optical recording medium according to claim 1, further comprising a metal film using a seed element as a protective layer and/or a reflective layer. 4. The nitrogen content of the tantalum nitride is 1 to 45 at.
%. The optical recording medium according to any one of claims 1 to 3. 5. The oxygen content of the tantalum nitride oxide is 27 to 71a
5. The optical recording medium according to claim 1, wherein the optical recording medium is t%. 6. In the method for manufacturing an optical recording medium according to any one of claims 1 to 5, the tantalum nitride layer is made of Ta.
or an oxide of Ta containing In and/or Sn as a target, and is formed by sputtering in a nitrogen atmosphere consisting of a reactive gas containing nitrogen in an inert gas. manufacturing method.
JP1137382A 1988-12-14 1989-06-01 Optical recording medium and manufacturing method thereof Expired - Lifetime JP2523180B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1137382A JP2523180B2 (en) 1989-06-01 1989-06-01 Optical recording medium and manufacturing method thereof
CA002004936A CA2004936C (en) 1988-12-14 1989-12-08 Optical recording medium
EP89122732A EP0373539B1 (en) 1988-12-14 1989-12-09 Optical recording medium
DE68921308T DE68921308T2 (en) 1988-12-14 1989-12-09 Optical recording medium.
KR1019890018547A KR900010687A (en) 1988-12-14 1989-12-14 Optical recording media
US07/715,024 US5192626A (en) 1988-12-14 1991-06-13 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137382A JP2523180B2 (en) 1989-06-01 1989-06-01 Optical recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH035929A true JPH035929A (en) 1991-01-11
JP2523180B2 JP2523180B2 (en) 1996-08-07

Family

ID=15197381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137382A Expired - Lifetime JP2523180B2 (en) 1988-12-14 1989-06-01 Optical recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2523180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272322A (en) * 1994-03-30 1995-10-20 Nec Corp Information optical recording medium
CN100365720C (en) * 2003-06-13 2008-01-30 日本电气株式会社 Optical information recording medium and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133229A (en) * 1987-11-18 1989-05-25 Hitachi Ltd Optical disk and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133229A (en) * 1987-11-18 1989-05-25 Hitachi Ltd Optical disk and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272322A (en) * 1994-03-30 1995-10-20 Nec Corp Information optical recording medium
CN100365720C (en) * 2003-06-13 2008-01-30 日本电气株式会社 Optical information recording medium and method for manufacturing the same

Also Published As

Publication number Publication date
JP2523180B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US5093174A (en) Optical recording medium
US5786078A (en) Magneto-optical recording medium
US5192626A (en) Optical recording medium
JPH0325737A (en) Magneto-optical recording medium
JPH035929A (en) Optical recording medium and its production
JPH03288346A (en) Optical recording medium
JPH03156753A (en) Optical recording medium
JP2960470B2 (en) Magneto-optical recording medium
JPH03122845A (en) Optical recording medium
JP2507592B2 (en) Optical recording medium
JP2528173B2 (en) Optical recording medium
JP2528184B2 (en) Magneto-optical recording medium
JPH03134834A (en) Optical recording medium
KR100194131B1 (en) Optical recording media
JP2559871B2 (en) Optical recording medium
JPH02261822A (en) Optical recording medium and preparation thereof
JPH02128346A (en) Magneto-optical disk
JPH0386951A (en) Magneto-optical recording medium
JPH0752529B2 (en) Magneto-optical recording medium
JP2904848B2 (en) Magneto-optical recording element and method of manufacturing the same
JP2882915B2 (en) Magneto-optical recording medium
JPH01245447A (en) Magneto-optical recording medium
JPH02308454A (en) Magneto-optical recording medium
JPH0490145A (en) Magneto-optical recording medium and its production
JPH05114180A (en) Magneto-optical recording medium