JPH07141641A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH07141641A
JPH07141641A JP29065193A JP29065193A JPH07141641A JP H07141641 A JPH07141641 A JP H07141641A JP 29065193 A JP29065193 A JP 29065193A JP 29065193 A JP29065193 A JP 29065193A JP H07141641 A JPH07141641 A JP H07141641A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
magnetic recording
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29065193A
Other languages
Japanese (ja)
Inventor
Akihiro Murayama
明宏 村山
Yuzo Shigesato
有三 重里
Kenro Miyamura
賢郎 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Komag Co Ltd
Original Assignee
Asahi Komag Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Komag Co Ltd filed Critical Asahi Komag Co Ltd
Priority to JP29065193A priority Critical patent/JPH07141641A/en
Publication of JPH07141641A publication Critical patent/JPH07141641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having high coercive force and high squareness ratio by forming a magnetic film and implanting ions into the film. CONSTITUTION:A magnetic film is formed by sputtering on a nonmagnetic circular substrate and ions are implanted into the magnetic film to obtain a magnetic recording medium. The compsn. of the magnetic film is represented by the formula Co100-a-b-c-dNiaCrbPtcMd (where M is one or more kinds of substances selected from among B, Ta, Ti, W and oxides, 0<=a<=10at.%, 0<=b<=15at.%, 0<c<=20at.% and 0<=d<=10at.%). When SiO2 or CoO is used as M in the compsn. of the magnetic film, squareness ratio and coercive force in the hysteresis loop are simultaneously enhanced and the objective high density magnetic recording medium having superior magnetic characteristics is obtd. This method is effectively and easily applicable even to an isotropically textured substrate of glass, etc., which cannot utilize a magnetic orienting effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスクなどの高
密度磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high density magnetic recording medium such as a magnetic disk.

【0002】[0002]

【従来の技術】現在、ハード磁気ディスクにおける高密
度記録化に対する要求は増加の一途をたどっており、例
えば直径95mmの磁気ディスクでは300Mbyte以上の記録容
量が達成されている。このような高密度磁気記録を達成
するためには、磁気記録媒体であるCo系合金磁性膜の磁
気ヒステリシスカーブにおける保磁力(Hc)や角型比を
高めることが非常に重要である。高密度記録性能を表す
孤立再生波時間半値幅(PW50)は、Hcや保磁力角型比
(S*)の関数で表され、より高いHcやS*によりPW50は減
少する[17th AIP Conference Proceeding, Part 1, No.
5(1971)738] 。すなわちより高密度に記録しても再生出
力の低下が少ない記録特性の優れたものとなる。また飽
和磁化に対する残留磁化の比で表される角型比(S )を
高めることができれば、飽和磁化膜厚積の小さな磁性膜
でも、残留磁化膜厚積に比例するところの再生出力を確
保することが可能となる。このことは同一再生出力を持
つ磁性膜の幾何膜厚を低減させうることを意味する。こ
のような磁性膜膜厚の低減もPW50の減少効果を持つ[17t
h AIP Conference Proceeding, Part 1, No.5(1971)73
8] 。
2. Description of the Related Art At present, there is an ever-increasing demand for high-density recording in hard magnetic disks, and a magnetic disk having a diameter of 95 mm, for example, has achieved a recording capacity of 300 Mbytes or more. In order to achieve such high density magnetic recording, it is very important to increase the coercive force (Hc) and the squareness ratio in the magnetic hysteresis curve of the Co-based alloy magnetic film that is the magnetic recording medium. The half-width of isolated reproduction wave (PW50), which represents high-density recording performance, is expressed as a function of Hc and coercive force squareness ratio (S * ), and PW50 decreases with higher Hc and S * [17th AIP Conference Proceeding , Part 1, No.
5 (1971) 738]. That is, even if the recording is performed at a higher density, the reproduction characteristics are less deteriorated and the recording characteristics are excellent. If the squareness ratio (S), which is the ratio of the residual magnetization to the saturation magnetization, can be increased, a reproduction output that is proportional to the residual magnetization film thickness product can be secured even with a magnetic film having a small saturation magnetization film thickness product. It becomes possible. This means that the geometric thickness of the magnetic film having the same reproduction output can be reduced. Such reduction of the magnetic film thickness also has the effect of reducing PW50 [17t
h AIP Conference Proceeding, Part 1, No.5 (1971) 73
8].

【0003】現在、磁性膜のHcを高める方法としては、
CoPt系合金[IEEE Trans. magn., MAG-19(1983)1514, J.
Appl.Phys., 54(1983)7089, IEEE Trans. Magn., MAG-1
9(1983)1638]やCoCr系合金などの磁性膜合金をベース
[J.Vac.Sci.Technol., A4(1986)1] に、下地膜としてス
パッターNiP 膜[ 米国特許第4786564 号、IEEE Trans.m
agn., MAG27(1991)4727] やCr膜[J.Vac.Sci.Technol.,
A4(1986)1] を用いる媒体が提案されている。CoCr系合
金を用いる場合にはスパッター条件として例えば200 ℃
以上の基板加熱や成膜中に基板バイアス印加を行うな
ど、成膜エネルギーを高めることがHc増大に有効である
ことが報告されている[IEEE Trans. Magn.,MAG26(1990)
1282] 。また磁性合金中にTaやB[第14回日本応用磁気
学会8pB-18(1990)、特願平3-359511] 、あるいはSiO2
どの酸化物[特願平3-282301号]を添加するといった方
法が提案されている。これらの方法によりHcを増加させ
る物理的機構としては、まず磁性膜のCo六方格子の膜面
内配向やその結晶磁気異方性を増大させることが考えら
れる。また積層欠陥のような磁壁移動を妨げるPinningS
iteの導入も考えられる。これらの磁性膜は微視的に見
ると結晶粒子の集合体であり、その結晶粒子間を物理的
に分離させることによりその磁気的な孤立性が強まり、
結果としてHcが増大することが理論的[J.Appl.Phys., 6
3(1988)3248]にも実験的[IEEE Trans.Magn.MAG24(1988)
2700] にも知られており、前述のNiP 下地膜の利用や、
高エネルギー成膜、添加元素効果などはいずれもこのよ
うな磁気的分離構造の促進によるものと理解されてい
る。しかしながら、このような結晶粒子間の磁気的分離
によりHcが増大する場合には、本質的にその角型比は低
下し[J.Appl.Phys., 63(1988)3248]、実用上PW50の悪化
を招くことになるので磁気記録特性上必ずしも好ましい
ものとは言えない。
Currently, as a method for increasing the Hc of a magnetic film,
CoPt type alloy [IEEE Trans. Magn., MAG-19 (1983) 1514, J.
Appl.Phys., 54 (1983) 7089, IEEE Trans. Magn., MAG-1
9 (1983) 1638] and CoCr alloys and other magnetic film alloys
[J.Vac.Sci.Technol., A4 (1986) 1], a sputtered NiP film as a base film [US Pat. No. 4,786,564, IEEE Trans.m.
agn., MAG27 (1991) 4727] and Cr film [J.Vac.Sci.Technol.,
A4 (1986) 1] has been proposed. When using a CoCr alloy, the sputtering condition is, for example, 200 ° C.
It has been reported that increasing the film-forming energy by heating the substrate or applying a substrate bias during film formation is effective in increasing Hc [IEEE Trans. Magn., MAG26 (1990).
1282]. Also, Ta or B [14th Japan Society for Applied Magnetics 8pB-18 (1990), Japanese Patent Application No. 3-359511] or oxide such as SiO 2 [Japanese Patent Application No. 3-282301] is added to the magnetic alloy. Such a method has been proposed. As a physical mechanism for increasing Hc by these methods, first, it is considered that the in-plane orientation of the Co hexagonal lattice of the magnetic film and the crystal magnetic anisotropy thereof are increased. In addition, PinningS that prevents domain wall movement such as stacking fault
It is also possible to introduce ite. Microscopically, these magnetic films are aggregates of crystal particles, and by physically separating the crystal particles, their magnetic isolation is enhanced,
As a result, it is theoretical that Hc increases [J.Appl.Phys., 6
3 (1988) 3248] experimentally [IEEE Trans.Magn.MAG24 (1988)
2700], using the NiP underlayer described above,
It is understood that the high-energy film formation, the effect of additional elements, etc. are all due to the promotion of such magnetic separation structure. However, when Hc is increased due to such magnetic separation between crystal grains, the squareness ratio is essentially reduced [J.Appl.Phys., 63 (1988) 3248], and PW50 is practically used. It is not always preferable in terms of magnetic recording characteristics because it will cause deterioration.

【0004】またCr下地膜上にCoCr系合金磁性膜を積層
し、なおかつ成膜中のスパッター条件として200 ℃程度
以上の基板温度、-200V 前後の基板バイアス印加などを
設定することで基板テクスチャー方向に一軸の磁気異方
性を誘起させる、いわゆる配向メディアと呼ばれる媒体
においては、その一軸異方性によりヘッド走行方向であ
る円周テクスチャー方向に高保磁力かつ高角型比が得ら
れることは良く知られている[ 日本応用磁気学会誌Vol.
13(1989)493]。しかし、以下に述べる問題点を持ってい
る。すなわち次世代の高密度磁気記録に対しては、ヘッ
ドの再生出力を高めたりPW50を減少させるため、ヘッド
と磁性膜の間のスペーシングを極限まで狭めることが重
要となってくる[17th AIP Conference Proceeding, Par
t 1, No.5(1971)738] 。このようなスペーシングの削減
には剛性の高いガラス基板を用いたり、テクスチャーを
有するヘッド・ディスク摺動領域とテクスチャーを設け
ず表面が平滑な記録領域を分離したいわゆるゾーンテク
スチャーなどが必要となる。ガラス基板には必要最小限
の粗さを化学的処理[特開昭64-37718号]や微細粒子塗
布[特開平1-194128号]、あるいは低融点金属[特開平
3-73419 号]、その酸化物[特願平5-76219 号]などの
スパッター膜で形成する方法などが提案されているお
り、これらの方法で作成されたテクスチャーは円周方向
に形状異方性を持たない等方テクスチャーである。ゾー
ンテクスチャーはその記録面は平滑な表面であり、両者
とも上記の磁気的配向効果は適用できないことは明らか
である。
In addition, a CoCr alloy magnetic film is laminated on a Cr underlayer, and the substrate texture direction is set by setting a substrate temperature of about 200 ° C. or more and a substrate bias application of about −200V as sputtering conditions during film formation. It is well known that, in so-called oriented media, which induces uniaxial magnetic anisotropy, a high coercive force and a high squareness ratio can be obtained in the circumferential texture direction, which is the head traveling direction, in the so-called oriented media. [The Journal of Applied Magnetics of Japan Vol.
13 (1989) 493]. However, it has the following problems. In other words, for the next-generation high-density magnetic recording, it is important to minimize the spacing between the head and the magnetic film in order to increase the read output of the head and reduce the PW50 [17th AIP Conference Proceeding, Par
t 1, No. 5 (1971) 738]. In order to reduce such spacing, it is necessary to use a glass substrate having high rigidity, a so-called zone texture in which a head / disk sliding area having a texture and a recording area having a smooth surface are separated without providing a texture. The glass substrate is chemically treated to the minimum required roughness [JP-A-6437718], fine particle coating [JP-A-1-194128], or low melting point metal [JP-A-
3-73419], oxides thereof [Japanese Patent Application No. 5-76219], and other methods have been proposed, and the texture created by these methods is anisotropic in shape in the circumferential direction. It is an isotropic texture with no property. It is clear that the zone texture has a smooth recording surface, and the above magnetic orientation effect cannot be applied to both.

【0005】[0005]

【発明が解決しようとする課題】上記のように、今後よ
り一層の高密度磁気記録を実現するためには、保磁力を
高めるとともに角型比も高め、孤立再生波時間半値幅を
狭める必要がある。本発明においては、円周方向に溝状
テクスチャーを持たないガラス基板なども含めて、保磁
力と角型比がいずれも高い磁気記録媒体を提供すること
を課題とする。
As described above, in order to realize higher density magnetic recording in the future, it is necessary to increase the coercive force, the squareness ratio, and the isolated reproduction wave time half width. is there. An object of the present invention is to provide a magnetic recording medium having a high coercive force and squareness ratio, including a glass substrate having no groove-like texture in the circumferential direction.

【0006】[0006]

【課題を解決するための手段】本発明は、非磁性円形基
板上にスパッター法により磁性膜を形成した後、該磁性
膜中にイオン注入を行ってなることを特徴とする磁気記
録媒体を提供する。
The present invention provides a magnetic recording medium characterized by forming a magnetic film on a non-magnetic circular substrate by a sputtering method, and then implanting ions into the magnetic film. To do.

【0007】特に本発明は、前記磁性膜組成がCo
100-a-b-c-dNiaCrbPtcMd(M は B、Ta、Ti、W または酸
化物より選ばれた1種類以上の物質)と表され、0 ≦a
≦10原子%、0 ≦b ≦15原子%、0 <c ≦20原子%、0
≦d ≦10原子%であることを特徴とする磁気記録媒体を
提供する。
Particularly, in the present invention, the magnetic film composition is Co
100-abcd Ni a Cr b Pt c M d (M is one or more substances selected from B, Ta, Ti, W or oxides), and 0 ≤ a
≤10 atomic%, 0 ≤b ≤15 atomic%, 0 <c ≤20 atomic%, 0
There is provided a magnetic recording medium characterized in that ≤d ≤10 atomic%.

【0008】本発明において上記MdとしてSiO2またはCo
O を選ぶことができる。
In the present invention, SiO 2 or Co is used as the M d.
You can choose O.

【0009】また、上記磁性膜はスパッター法により形
成されたCr、NiP またはNiB からなる下地膜上に形成さ
れていることが好ましい。
Further, the magnetic film is preferably formed on a base film made of Cr, NiP or NiB formed by a sputtering method.

【0010】また本発明において、前記注入イオンとし
てアルゴンなどの希ガス元素、窒素、酸素、水素、炭素
などの非金属元素のイオンを用いることができる。
In the present invention, ions of a rare gas element such as argon and a non-metal element such as nitrogen, oxygen, hydrogen and carbon can be used as the implanted ions.

【0011】また本発明において、前記注入イオンとし
て Cr,W などの金属元素のイオンを用いることができ
る。
Further, in the present invention, ions of metal elements such as Cr and W can be used as the implanted ions.

【0012】また本発明において、前記注入イオンの注
入量を1×1016個/cm2 以上、1×1019個/cm2 以下の
範囲で選ぶことができる。
[0012] In the present invention, the injection amount of the implanted ions to 1 × 10 16 / cm 2 or more, can be selected in the range of 1 × 10 19 / cm 2 or less.

【0013】また本発明において、前記注入イオンのエ
ネルギーを制御することにより、磁性膜の膜厚方向のイ
オン濃度を変化させ、実質的に保磁力などの磁気特性が
膜厚方向で異なる磁性膜を形成させてなる磁気記録媒体
を提供する。
In the present invention, the ion concentration in the film thickness direction of the magnetic film is changed by controlling the energy of the implanted ions, so that the magnetic film having substantially different magnetic characteristics such as coercive force in the film thickness direction is formed. A formed magnetic recording medium is provided.

【0014】また本発明は、非磁性円形基板上に磁性膜
を形成した磁気記録媒体において、磁性膜形成後に膜中
にイオン注入を行い、磁気ヒステリシスカーブにおける
保磁力と角型比を高めたことを特徴とする磁気記録媒体
を提供する。
Further, according to the present invention, in a magnetic recording medium having a magnetic film formed on a non-magnetic circular substrate, ions are implanted into the film after forming the magnetic film to enhance the coercive force and squareness ratio in the magnetic hysteresis curve. A magnetic recording medium characterized by the above.

【0015】本発明において、上記注入イオンの注入エ
ネルギーは、5keV 以上、50keV 以下の範囲で選ぶこと
ができる。
In the present invention, the implantation energy of the implanted ions can be selected within the range of 5 keV or more and 50 keV or less.

【0016】また本発明は、インライン型スパッター装
置において、非磁性円形基板上に磁性膜を形成した後、
真空を破らずに続けてイオン注入を行い、さらに続けて
イオン注入された磁性膜上に保護膜を形成することを特
徴とする磁気記録媒体の製造方法を提供する。
Further, the present invention is, in an in-line type sputtering apparatus, after forming a magnetic film on a non-magnetic circular substrate,
Provided is a method for manufacturing a magnetic recording medium, characterized in that ion implantation is continuously performed without breaking the vacuum, and a protective film is further formed on the magnetic film that has been ion-implanted continuously.

【0017】本発明者らは前述の課題を解決するため
に、磁性膜成膜後にその磁性膜中に真空中でアルゴンな
どの希ガス元素や窒素、酸素などの非金属元素のイオン
を注入することを検討し、磁性膜組成や注入イオンの種
類や濃度、エネルギーなどを詳細に調べることにより、
磁気ヒステリシスカーブ上の保磁力と角型比が同時に著
しく高められる現象を見いだした。さらにこのような効
果は特に、Co100-a-b-c-dNiaCrbPtcMd(M は B、Ta、T
i、W または酸化物より選ばれた1種類以上の物質)と
表され、0 ≦a ≦10原子%、0 ≦b ≦15原子%、0 <c
≦20原子%、0 ≦d≦10原子%(ただしここでa とb は
同時には0 とならない)なる組成を持つ磁性膜におい
て、1×1016個/cm2 以上、1×1019個/cm2 以下のア
ルゴン、窒素、酸素などのイオンを注入した場合に特に
顕著であることを明らかにした。勿論この効果は他の磁
性膜や、注入イオン種類や濃度においても発現するもの
である。またこの効果はガラス基板上のいわゆる磁気的
等方媒体に適用できることも明らかにした。特開平5-20
5257号に、磁性膜に局所的に窒素イオン注入を行い飽和
磁化を減少させ磁気的に異なる領域を形成させ、離散的
磁気記録トラックを設ける方法が述べられている。その
中で、イオン注入によりCoCrTa磁性膜の保磁力の増加を
観測した例が記載されているが、この場合イオン注入に
より同時に飽和磁化が半分以下にまで減少しており、以
下の理由により本発明とは全く異なる現象であると断定
される。すなわち、保磁力Hcは磁性膜を構成する結晶粒
子の膜面内方向磁気異方性定数Kuと飽和磁化Msを用いる
と、Hc= α(2Ku /Ms)と表すことができる。ここでα
は結晶粒子の磁気的分離度を表す定数である。すなわち
飽和磁化が半分となれば当然保磁力は著しく高められ
る。同記載例によれば、イオン注入により飽和磁化が半
分以下となりその際の保磁力増加は高々10%程度(1600
Oeから1800 Oe)なので、十分飽和磁化の減少効果で説明
できる。換言すれば、同記載事項を我々の目的に利用し
ようとするならば、実用上重要な再生出力を確保するた
めに磁性膜膜厚をあらかじめ厚くしておく必要がある。
すなわち飽和磁化が半分になるのでその磁性膜膜厚は倍
にしておく必要があり、得られるHcははなはだ低いもの
になってしまうと考えられる。なお角型比に関しては記
述がない。
In order to solve the above-mentioned problems, the present inventors implant ions of a rare gas element such as argon or a non-metal element such as nitrogen or oxygen in a vacuum after forming the magnetic film. By investigating the above and examining the magnetic film composition, the type and concentration of implanted ions, the energy, etc. in detail,
We have found a phenomenon in which the coercive force and the squareness ratio on the magnetic hysteresis curve are significantly increased at the same time. Furthermore, such an effect is particularly caused by Co 100-abcd Ni a Cr b Pt c M d (M is B, Ta, T
i, W or one or more substances selected from oxides), 0 ≤ a ≤ 10 atomic%, 0 ≤ b ≤ 15 atomic%, 0 <c
In a magnetic film having a composition of ≦ 20 atomic% and 0 ≦ d ≦ 10 atomic% (where a and b do not become 0 at the same time), 1 × 10 16 pieces / cm 2 or more, 1 × 10 19 pieces / It was clarified that it was particularly remarkable when ions such as argon, nitrogen, and oxygen below cm 2 were implanted. Of course, this effect is also exhibited in other magnetic films, the type and concentration of implanted ions. It was also clarified that this effect can be applied to a so-called magnetically isotropic medium on a glass substrate. Japanese Patent Laid-Open No. 5-20
No. 5257 describes a method of forming discrete magnetic recording tracks by locally implanting nitrogen ions into a magnetic film to reduce saturation magnetization and form magnetically different regions. Among them, an example in which an increase in the coercive force of the CoCrTa magnetic film was observed by ion implantation is described, but in this case, the saturation magnetization was simultaneously reduced to less than half by ion implantation. It is concluded that this is a completely different phenomenon. That is, the coercive force Hc can be expressed as Hc = α (2Ku / Ms) by using the in-plane magnetic anisotropy constant Ku of the crystal grains forming the magnetic film and the saturation magnetization Ms. Where α
Is a constant representing the magnetic separation degree of crystal grains. That is, if the saturation magnetization is halved, the coercive force will be remarkably increased. According to the example, the saturation magnetization is reduced to less than half by the ion implantation, and the increase in coercive force at that time is about 10% at most (1600
Since it is Oe to 1800 Oe), it can be explained by a sufficient reduction effect of saturation magnetization. In other words, in order to utilize the above described items for our purpose, it is necessary to increase the thickness of the magnetic film in advance in order to secure a practically important reproduction output.
That is, since the saturation magnetization is halved, it is necessary to double the film thickness of the magnetic film, and it is considered that the obtained Hc will be much lower. There is no description about the squareness ratio.

【0018】一方本発明によれば、磁性膜組成と注入イ
オン種とその量、あるいはそのエネルギーなどを最適化
することで、例えば実施例に述べるように、約1割の飽
和磁化の減少に対して約4割の保磁力増加が得られてお
り、単純な飽和磁化減少効果では全く説明できない。ま
た角型比の著しい増大効果を始めて見いだすことができ
た。
On the other hand, according to the present invention, by optimizing the composition of the magnetic film, the implanted ion species and the amount thereof, or the energy thereof, it is possible to reduce the saturation magnetization by about 10% as described in the examples. As a result, a coercive force increase of about 40% was obtained, which cannot be explained by a simple saturation magnetization reducing effect. Moreover, the effect of significantly increasing the squareness ratio could be found for the first time.

【0019】[0019]

【作用】上記イオン注入法により形成された磁気記録媒
体は、その磁気ヒステリシスカーブにおける保磁力と角
型比が同時に高められ、今後のハード磁気ディスクなど
の高密度磁気記録媒体として優れた磁気特性を持つこと
が明らかになった。また本発明は、従来の円周方向テク
スチャー処理を施した基板において発現する、いわゆる
磁気的配向効果が利用できないガラスなどの等方テクス
チャー基板にも有効に、しかも簡単に適用できるもので
ある。
The magnetic recording medium formed by the above-mentioned ion implantation method has a high coercive force and squareness ratio in the magnetic hysteresis curve at the same time, and has excellent magnetic characteristics as a high density magnetic recording medium such as a hard magnetic disk in the future. It became clear to have. Further, the present invention can be effectively and easily applied to an isotropic textured substrate such as glass in which a so-called magnetic orientation effect, which is exhibited in a conventional substrate subjected to a circumferential texture treatment, cannot be used.

【0020】[0020]

【実施例】直径65mm板厚0.889mm の円形ガラスディスク
基板を精密洗浄後、スパッターにより膜厚 500ÅのCo81
Ni7Pt12 磁性膜を形成した。その後、バケット型イオン
源により発生したアルゴンイオンを磁性膜中に注入し
た。イオン注入の際には、槽内真空度を2×10-6Torrに
排気した。またイオン注入中の真空度は5×10−5
orrから8×10−5Torrに制御された。イオン
注入中は積極的な基板加熱は行っておらず、イオン注入
に伴う磁性膜の温度上昇は最大80℃であった。アルゴン
イオンは18 keVのエネルギーで注入され、注入濃度は注
入時間を変えることにより制御した。作成された媒体の
磁気ヒステリシスカーブを、振動試料型磁力計により最
大外部磁場5kOe をかけて測定した。注入イオン濃度を
変化させたサンプルの磁気ヒステリシス特性を表1 に示
す。またアルゴンイオンを5×1017個/cm2 注入した場
合に測定された磁気ヒステリシスカーブを、注入しない
場合との比較で図1に示す。イオン注入により保磁力が
1233 Oe から1612 Oe と大幅に増大し、かつ角型比も、
S が0.74から0.81、S*が0.91から0.95と著しく改善され
た。すなわち、磁性膜形成後に膜中にイオン注入を行う
ことにより、磁気ヒステリシスカーブにおける保磁力と
角形比を同時に高めることができた。またこの時の飽和
磁化減少は約1割程度であり、また角型比S の増加によ
り、実用上再生出力を決めている残留磁化にはほとんど
低下が見られていない。そのため再生出力の低下なし
に、保磁力と角型比の改善効果によって優れた磁気記録
特性を得ることができる。
Example: A circular glass disk substrate with a diameter of 65 mm and a plate thickness of 0.889 mm was precision cleaned and sputtered with Co 81 with a film thickness of 500 Å.
A Ni 7 Pt 12 magnetic film was formed. Then, argon ions generated by a bucket type ion source were injected into the magnetic film. At the time of ion implantation, the degree of vacuum in the chamber was evacuated to 2 × 10 -6 Torr. The degree of vacuum during ion implantation is 5 × 10 −5 T
It was controlled to 8 × 10 −5 Torr from orr. The substrate was not heated actively during the ion implantation, and the temperature rise of the magnetic film due to the ion implantation was up to 80 ° C. Argon ions were injected with an energy of 18 keV, and the injection concentration was controlled by changing the injection time. The magnetic hysteresis curve of the prepared medium was measured by applying a maximum external magnetic field of 5 kOe with a vibrating sample magnetometer. Table 1 shows the magnetic hysteresis characteristics of the samples with different implanted ion concentrations. The magnetic hysteresis curve measured when argon ions were injected at 5 × 10 17 ions / cm 2 is shown in FIG. 1 in comparison with the case where it was not injected. Coercive force by ion implantation
Significant increase from 1233 Oe to 1612 Oe, and squareness ratio
S was 0.74 to 0.81 and S * was 0.91 to 0.95. That is, the coercive force and the squareness ratio in the magnetic hysteresis curve could be increased at the same time by implanting ions into the film after forming the magnetic film. At this time, the decrease in saturation magnetization is about 10%, and the increase in the squareness ratio S shows almost no decrease in the residual magnetization that practically determines the reproduction output. Therefore, excellent magnetic recording characteristics can be obtained by the effect of improving the coercive force and the squareness ratio without lowering the reproduction output.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明においては、磁性膜成膜後にイオ
ン注入を行うことにより、磁気記録特性の改善に極めて
有効な高保磁力と高角型比を同時に得ることができるの
で、今後の高密度磁気記録化に対応できる磁気記録媒体
を提供することができる。またこの技術は、従来のCr下
地による円周方向テクスチャー誘起磁気的配向効果によ
る高保磁力化、高角型化技術が実現不可能であった、等
方的なテクスチャーを持つガラス基板における保磁力や
角型比の改善にも適用できる。さらに本イオン注入法に
おいては注入するイオンのエネルギーを制御することに
より、磁性膜膜厚方向の任意の位置にイオン濃度中心値
を設定できる。この手法を用いると、磁性膜膜厚方向の
注入イオン濃度を変化させ、実質的に保磁力などの磁気
特性が膜厚方向で異なる磁性多層膜を容易に形成するこ
とが可能である。このような磁性多層膜の磁気特性もイ
オン注入されていない磁性膜に比べ優れたものとなる。
また本発明において示された磁気特性改善に有効なイオ
ン注入エネルギーやイオン注入密度は、量産性の非常に
高いインライン型スパッター装置に簡単に適用できるも
のである。さらに上述のイオン注入エネルギー制御法に
より、基板表面と磁性膜あるいは下地膜との界面付近に
イオンを注入することにより、磁性膜やその下地膜の基
板に対する機械的付着力が増大するという効果も付加的
に得られた。
According to the present invention, high coercive force and high squareness ratio, which are extremely effective for improving magnetic recording characteristics, can be obtained at the same time by performing ion implantation after forming a magnetic film. A magnetic recording medium that can be used for recording can be provided. In addition, this technology cannot achieve the high coercive force and high squareness technology due to the conventional circumferential texture-induced magnetic orientation effect of Cr underlayer. It can also be applied to improve the mold ratio. Further, in the present ion implantation method, the ion concentration center value can be set at an arbitrary position in the magnetic film thickness direction by controlling the energy of the implanted ions. By using this method, it is possible to change the implanted ion concentration in the film thickness direction of the magnetic film and easily form a magnetic multi-layer film having substantially different magnetic properties such as coercive force in the film thickness direction. The magnetic characteristics of such a magnetic multilayer film are also superior to those of a magnetic film in which ions are not implanted.
Further, the ion implantation energy and the ion implantation density effective for improving the magnetic characteristics shown in the present invention can be easily applied to an in-line type sputtering apparatus having very high mass productivity. Furthermore, by the ion implantation energy control method described above, by implanting ions near the interface between the substrate surface and the magnetic film or underlayer film, the effect of increasing the mechanical adhesion of the magnetic film or underlayer film to the substrate is also added. Was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】CoNiPt磁性膜の磁気ヒステリシスカーブの、イ
オン注入前後の変化。
FIG. 1 shows the change in magnetic hysteresis curve of a CoNiPt magnetic film before and after ion implantation.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】非磁性円形基板上にスパッター法により磁
性膜を形成した後、該磁性膜中にイオン注入を行ってな
ることを特徴とする磁気記録媒体。
1. A magnetic recording medium comprising a magnetic film formed on a non-magnetic circular substrate by a sputtering method and then ion-implanted into the magnetic film.
【請求項2】前記磁性膜組成がCo100-a-b-c-dNiaCrbPtc
Md(M は B、Ta、Ti、W または酸化物より選ばれた1種
類以上の物質)と表され、0 ≦a ≦10原子%、0 ≦b ≦
15原子%、0 <c ≦20原子%、0 ≦d ≦10原子%である
ことを特徴とする請求項1記載の磁気記録媒体。
2. The composition of the magnetic film is Co 100-abcd Ni a Cr b Pt c.
M d (M is one or more kinds of substances selected from B, Ta, Ti, W or oxides), and 0 ≤ a ≤ 10 atomic%, 0 ≤ b ≤
The magnetic recording medium according to claim 1, wherein 15 atomic%, 0 <c ≤ 20 atomic%, and 0 ≤ d ≤ 10 atomic%.
【請求項3】前記磁MdがSiO2またはCoO であることを特
徴とする請求項2記載の磁気記録媒体。
3. The magnetic recording medium according to claim 2, wherein the magnetic M d is SiO 2 or CoO.
【請求項4】前記磁性膜がCr、NiP およびNiB から選ば
れるいずれか1種類のスパッター下地膜上に形成されて
いることを特徴とする請求項1記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the magnetic film is formed on any one kind of sputter base film selected from Cr, NiP and NiB.
【請求項5】前記注入イオンがHe+,Ne+,Ar+,Kr+ または
Xe+ から選ばれた希ガスイオンであることを特徴とする
請求項1記載の磁気記録媒体。
5. The implanted ions are He + , Ne + , Ar + , Kr + or
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is a rare gas ion selected from Xe + .
【請求項6】前記注入イオンが酸素イオン、窒素イオ
ン、水素イオンまたは炭素イオンなどの非金属元素イオ
ンであることを特徴とする請求項1記載の磁気記録媒
体。
6. The magnetic recording medium according to claim 1, wherein the implanted ions are non-metal element ions such as oxygen ions, nitrogen ions, hydrogen ions or carbon ions.
【請求項7】前記注入イオンがCr、W などの金属元素の
イオンであることを特徴とする請求項1記載の磁気記録
媒体。
7. The magnetic recording medium according to claim 1, wherein the implanted ions are ions of a metal element such as Cr and W.
【請求項8】前記注入イオンの注入量が1×1016個/cm
2 以上、1×1019個/cm2 以下であることを特徴とする
請求項1記載の磁気記録媒体。
8. The implantation amount of the implanted ions is 1 × 10 16 / cm 2.
2. The magnetic recording medium according to claim 1, wherein the number is 2 or more and 1 × 10 19 pieces / cm 2 or less.
【請求項9】前記注入イオンのエネルギーを制御するこ
とにより、磁性膜の膜厚方向の注入イオン濃度を変化さ
せ、実質的に保磁力などの磁気特性が膜厚方向で異なる
磁性膜を形成させたてなることを特徴とする請求項1記
載の磁気記録媒体。
9. By controlling the energy of the implanted ions, the concentration of implanted ions in the film thickness direction of the magnetic film is changed to form a magnetic film having substantially different magnetic properties such as coercive force in the film thickness direction. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a vertical structure.
【請求項10】非磁性円形基板上に磁性膜を形成した磁
気記録媒体において、磁性膜形成後に膜中にイオン注入
を行い、磁気ヒステリシスカーブにおける保磁力と角型
比を高めたことを特徴とする請求項1記載の磁気記録媒
体。
10. A magnetic recording medium having a magnetic film formed on a non-magnetic circular substrate, wherein ions are implanted into the film after the magnetic film is formed to enhance coercive force and squareness ratio in a magnetic hysteresis curve. The magnetic recording medium according to claim 1.
【請求項11】前記注入イオンの注入エネルギーが5keV
以上、50keV 以下であることを特徴とする請求項1記載
の磁気記録媒体。
11. The implantation energy of the implanted ions is 5 keV.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is 50 keV or less.
【請求項12】前記注入イオンのエネルギーを制御する
ことにより、磁性膜の膜厚方向の注入イオン濃度を変化
させ、実質的に保磁力などの磁気特性が膜厚方向で異な
る磁性多層膜を形成させることを特徴とする請求項1記
載の磁気記録媒体の製造方法。
12. By controlling the energy of the implanted ions, the concentration of the implanted ions in the film thickness direction of the magnetic film is changed to form a magnetic multilayer film in which magnetic properties such as coercive force are substantially different in the film thickness direction. The method of manufacturing a magnetic recording medium according to claim 1, wherein
【請求項13】インライン型スパッター装置において、
非磁性円形基板上に磁性膜を形成した後真空を破らずに
続けてイオン注入を行い、さらに続けて、イオン注入さ
れた磁性膜上に保護膜を形成することを特徴とする磁気
記録媒体の製造方法。
13. An in-line type sputtering apparatus,
After forming a magnetic film on a non-magnetic circular substrate, ion implantation is continuously performed without breaking the vacuum, and further, a protective film is formed on the ion-implanted magnetic film. Production method.
JP29065193A 1993-11-19 1993-11-19 Magnetic recording medium and its production Pending JPH07141641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29065193A JPH07141641A (en) 1993-11-19 1993-11-19 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29065193A JPH07141641A (en) 1993-11-19 1993-11-19 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH07141641A true JPH07141641A (en) 1995-06-02

Family

ID=17758733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29065193A Pending JPH07141641A (en) 1993-11-19 1993-11-19 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH07141641A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039433A1 (en) * 2000-11-09 2002-05-16 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording apparatus
WO2008035520A1 (en) * 2006-09-21 2008-03-27 Showa Denko K.K. Magnetic recording medium and method for producing the same, and magnetic recorder/reproducer
WO2009116413A1 (en) * 2008-03-17 2009-09-24 Hoya株式会社 Magnetic recording medium and method for manufacturing the same
JP2009238291A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Magnetic recording medium and its manufacturing method
JP2009295226A (en) * 2008-06-04 2009-12-17 Fujitsu Ltd Magnetic recording medium, magnetic recording and reproducing device with the magnetic recording medium, and manufacturing method of the magnetic recording medium
WO2010010843A1 (en) * 2008-07-22 2010-01-28 富士通株式会社 Method of manufacturing magnetic recording medium, magnetic recording medium, and information storage device
US8389048B2 (en) 2006-02-10 2013-03-05 Showa Denko K.K. Magnetic recording medium, method for production thereof and magnetic recording and reproducing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039433A1 (en) * 2000-11-09 2002-05-16 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording apparatus
US6846583B2 (en) 2000-11-09 2005-01-25 Hitachi Maxell, Ltd. Magnetic recording medium and magnetic recording apparatus
US8389048B2 (en) 2006-02-10 2013-03-05 Showa Denko K.K. Magnetic recording medium, method for production thereof and magnetic recording and reproducing device
WO2008035520A1 (en) * 2006-09-21 2008-03-27 Showa Denko K.K. Magnetic recording medium and method for producing the same, and magnetic recorder/reproducer
US8158215B2 (en) 2006-09-21 2012-04-17 Showa Denko K.K. Magnetic recording media and method of manufacturing the same, and magnetic recording/reproduction device
WO2009116413A1 (en) * 2008-03-17 2009-09-24 Hoya株式会社 Magnetic recording medium and method for manufacturing the same
US8414966B2 (en) 2008-03-17 2013-04-09 Wd Media (Singapore) Pte. Ltd. Magnetic recording medium and manufacturing method of the same
US9093100B2 (en) 2008-03-17 2015-07-28 Wd Media (Singapore) Pte. Ltd. Magnetic recording medium including tailored exchange coupling layer and manufacturing method of the same
JP2009238291A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Magnetic recording medium and its manufacturing method
JP2009295226A (en) * 2008-06-04 2009-12-17 Fujitsu Ltd Magnetic recording medium, magnetic recording and reproducing device with the magnetic recording medium, and manufacturing method of the magnetic recording medium
US8329249B2 (en) 2008-06-04 2012-12-11 Fujitsu Limited Magnetic recording medium, magnetic recording and reproducing device with magnetic recording medium, and magnetic-recording-medium manufacturing method
WO2010010843A1 (en) * 2008-07-22 2010-01-28 富士通株式会社 Method of manufacturing magnetic recording medium, magnetic recording medium, and information storage device

Similar Documents

Publication Publication Date Title
JP3809418B2 (en) Magnetic recording medium and magnetic recording apparatus
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US6183606B1 (en) Manufacture method of high coercivity FePt-Si3N4 granular composite thin films
US9899050B2 (en) Multiple layer FePt structure
US8133332B2 (en) Method for preparing FePt media at low ordering temperature and fabrication of exchange coupled composite media and gradient anisotropy media for magnetic recording
JP4084638B2 (en) Fabrication of nanocomposite thin films for high-density magnetic recording media
US5976326A (en) Method of sputtering selected oxides and nitrides for forming magnetic media
JP2003248914A (en) Perpendicular magnetic recording medium and method for producing the same
JP2996442B2 (en) Magnetic thin film recording medium and method of manufacturing the same
JP2004296030A (en) Perpendicular magnetic recording medium and its manufacturing method
JPH07311929A (en) Magnetic recording medium and its manufacture
TW200407450A (en) Fabrication of nanocomposite thin films for high density magnetic recording media
JPH07141641A (en) Magnetic recording medium and its production
US20030133223A1 (en) Magnetic recording head with annealed multilayer, high moment structure
US20010012573A1 (en) Magnetic recording medium, process for fabricating magnetic recording medium and information regenerator
JP2002123930A (en) Magnetic recording medium
JP3157806B2 (en) Magnetic recording media
JPH0817032A (en) Magnetic recording medium and its production
JP3649416B2 (en) Method for manufacturing magnetic recording medium
JP2000339657A (en) Magnetic recording medium
JPH0644549A (en) Magnetic recording medium and its production
JP2002183928A (en) Magnetic recording medium and magnetic recording device
JPH03162736A (en) Production of magneto-optical recording medium
JP2002109714A (en) Information recording medium and information recording device
JPH0729144A (en) Magnetic recording medium