JP2002183928A - Magnetic recording medium and magnetic recording device - Google Patents

Magnetic recording medium and magnetic recording device

Info

Publication number
JP2002183928A
JP2002183928A JP2000378224A JP2000378224A JP2002183928A JP 2002183928 A JP2002183928 A JP 2002183928A JP 2000378224 A JP2000378224 A JP 2000378224A JP 2000378224 A JP2000378224 A JP 2000378224A JP 2002183928 A JP2002183928 A JP 2002183928A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic recording
recording medium
main component
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000378224A
Other languages
Japanese (ja)
Other versions
JP4389381B2 (en
Inventor
Makoto Ookijima
真 大木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000378224A priority Critical patent/JP4389381B2/en
Publication of JP2002183928A publication Critical patent/JP2002183928A/en
Application granted granted Critical
Publication of JP4389381B2 publication Critical patent/JP4389381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium having low noise and high coercive force with respect to a magnetic recording medium having a magnetic multilayered film as a magnetic recording layer in which alloy layers essentially comprising Co and layers essentially comprising Pt or Pd are alternately laminated on a nonmagnetic substrate, and to provide a magnetic recording device having high recording density and low noise using the above magnetic recording medium. SOLUTION: The magnetic recording medium has the magnetic multilayered film as the magnetic recording layer produced by alternately laminating alloy layers essentially comprising Co and layers essentially comprising Pt or Pd on the nonmagnetic substrate. In the M-H curve representing the magnetic characteristics of the magnetic multilayered film in the direction perpendicular to the film plane, the gradient A of the curve at the point of M=0 satisfies 1/4π(emu/cc/Oe)<=A<2×1/4π (emu/cc/Oe). The magnetic recording medium is used for the magnetic recording device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体に係
り、詳しくは磁気ディスク装置、フロッピー(登録商
標)ディスク装置、磁気テープ装置等の磁気記録装置に
用いられる磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly, to a magnetic recording medium used for a magnetic recording device such as a magnetic disk device, a floppy (registered trademark) disk device, and a magnetic tape device.

【0002】[0002]

【従来の技術】近年、磁気ディスク装置、フロッピーデ
ィスク装置、磁気テープ装置等の磁気記録装置の適用範
囲は著しく増大され、その重要さが増すと共に、これら
の装置に用いられる磁気記録媒体について、その記録密
度の著しい向上が図られつつある。
2. Description of the Related Art In recent years, the application range of magnetic recording devices such as magnetic disk devices, floppy disk devices, and magnetic tape devices has been remarkably increased, and their importance has been increased. Significant improvement in recording density is being achieved.

【0003】磁気記録媒体の高密度化を達成するために
はノイズを低減することが必要不可欠であり、このため
媒体を形成する粒子の微細化、記録層の薄膜化が進んで
いるが、これら磁性粒子の体積を減少させる手段は、磁
性粒子の超常磁性化を引き起こし、記録の安定性を損な
うことが指摘されている。記録の安定性とは、すなわ
ち、一度記録した情報が経時変化によりいつまで保持で
きるかということであり、近年の高密度化に伴い、この
安定性のレベルが実用上問題となる領域まで低下しつつ
あることが問題化している。
[0003] It is essential to reduce noise in order to achieve a higher density of a magnetic recording medium. For this reason, the particles forming the medium are becoming finer and the recording layer is becoming thinner. It has been pointed out that the means for reducing the volume of the magnetic particles causes superparamagnetization of the magnetic particles and impairs the recording stability. The stability of the recording means that the information once recorded can be retained with the lapse of time, and with the recent increase in density, the level of this stability has been reduced to a practically problematic area. There is a problem.

【0004】これらの課題を解決するため、反強磁性結
合を用いた記録媒体や(E.N.Abbra他,200
0Digests of INTERMAG,AA−0
6)、原理的に磁性膜厚を厚くできる垂直磁気記録媒体
の研究(S.Iwasaki他,IEEE Tran
s. Magn.,MAG−14,849(197
8))が盛んになりつつある。
[0004] In order to solve these problems, a recording medium using antiferromagnetic coupling or (EN Abbra et al., 200
0Digests of INTERMAG, AA-0
6) Research on perpendicular magnetic recording media that can increase the magnetic film thickness in principle (S. Iwasaki et al., IEEE Tran)
s. Magn. , MAG-14, 849 (197
8)) is prosperous.

【0005】特に垂直記録媒体用に磁気記録層に関して
は、高い垂直磁気異方性を実現できるCo/Ptあるい
はPdを、単原子から数原子層づつ交互に積層して人工
的に作り上げた結晶格子構造を持つ人工格子磁性多層膜
(以下、単に磁性多層膜と言う)を用いた磁気記録媒体
が次世代媒体として注目されるようになっている(特許
第30422878号公報)。
In particular, regarding a magnetic recording layer for a perpendicular recording medium, a crystal lattice made artificially by alternately laminating Co / Pt or Pd, which can realize high perpendicular magnetic anisotropy, from a single atom to several atomic layers. A magnetic recording medium using an artificial lattice magnetic multilayer film having a structure (hereinafter, simply referred to as a magnetic multilayer film) has attracted attention as a next-generation medium (Japanese Patent No. 30422878).

【0006】[0006]

【発明が解決しようとする課題】Coを主成分とする合
金層とPtまたはPdを主成分とする層を交互に積層し
た磁性多層膜においては、Coを主成分とする合金層と
PtまたはPdを主成分とする層の界面で膜面に対して
垂直方向に磁気異方性が誘起され、この磁性多層膜が膜
面に垂直な磁気異方性を示すことが知られている(P.
F.Carcia;J.Vac.Sci.Techno
l.A5(4),July/Aug.1987)。この
ため、このCoを主成分とする合金層とPtまたはPd
を主成分とする層を交互に積層した磁性多層膜を磁気記
録層として使用する磁気記録媒体の可能性が注目されて
いる。
In a magnetic multilayer film in which an alloy layer mainly containing Co and a layer mainly containing Pt or Pd are alternately laminated, an alloy layer mainly containing Co and Pt or Pd It is known that magnetic anisotropy is induced in the direction perpendicular to the film surface at the interface of the layer mainly composed of, and this magnetic multilayer film exhibits magnetic anisotropy perpendicular to the film surface (P.
F. Carcia; Vac. Sci. Techno
l. A5 (4), July / Aug. 1987). Therefore, the alloy layer containing Co as a main component and Pt or Pd
Attention has been paid to the possibility of a magnetic recording medium using, as a magnetic recording layer, a magnetic multilayer film in which layers mainly composed of are alternately stacked.

【0007】しかしながら、この磁性多層膜を磁気記録
層に用いる磁気記録媒体は高保磁力にできるため記録安
定性を高くできるという利点がある反面、ノイズが大き
い傾向にあり、まだ実用化に耐えうる段階ではないのが
実状である。Coを主成分とする合金層とPtあるいは
Pdを主成分とする層を交互に積層した磁性多層膜で
は、Coを主成分とする合金層とPtあるいはPdを主
成分とする層の界面において、膜面に対して垂直方向に
磁気異方性が誘起されている。また膜内の結晶粒子間に
強い交換結合が働いている場合が多い。このような膜を
磁気記録層として用いる場合、膜のある微小部分を記録
のため磁化反転しようとした場合、その部分の結晶粒子
の交換結合が強すぎて磁化反転する領域が予定された領
域からずれる、つまり、結晶粒同士の強い交換結合によ
り、反転する領域の外の結晶粒子の磁化が引きずられて
反転したり、反転するべき領域内の結晶粒子が外の結晶
粒子の交換結合力で反転できなかったりする現象が起こ
ることがある。このような、磁気記録時における不完全
な磁化反転は、記録信号のノイズという現象を引き起こ
し好ましくない。
However, a magnetic recording medium using this magnetic multilayer film as a magnetic recording layer has the advantage that the recording stability can be increased due to the high coercive force, but the noise tends to be large and the magnetic recording medium is still ready for practical use. This is not the case. In a magnetic multilayer film in which an alloy layer containing Co as a main component and a layer containing Pt or Pd as a main component are alternately laminated, at the interface between the alloy layer containing Co as a main component and the layer containing Pt or Pd as a main component, Magnetic anisotropy is induced in a direction perpendicular to the film surface. In many cases, strong exchange coupling works between crystal grains in the film. When such a film is used as a magnetic recording layer, when a small portion of the film is magnetized for recording reversal, the region where the exchange coupling of the crystal grains in the portion is too strong and the magnetization reversal is performed from a predetermined region. Deviated, that is, due to strong exchange coupling between crystal grains, the magnetization of the crystal grains outside the area to be inverted is dragged and inverted, or the crystal grains in the area to be inverted are inverted by the exchange coupling force of the outside crystal grains Some phenomena may not be possible. Such incomplete magnetization reversal at the time of magnetic recording is not preferable because it causes a phenomenon of noise of a recording signal.

【0008】従来、結晶粒子間の交換結合を低減させる
ために、スパッタ成膜時のArガス圧を高くする検討が
行われた例はあったが(K.Ouchi他,J.Mag
n.oc.Japan,21,p301(199
7))、その効果は十分ではなかった。本発明は上記の
従来の問題点を解決し、低ノイズかつ高保磁力を有し、
記録再生特性に優れた磁気記録媒体を提供することを目
的とする。
Conventionally, in order to reduce exchange coupling between crystal grains, there has been an example in which the Ar gas pressure during sputter deposition is increased (K. Ouchi et al., J. Mag.).
n. oc. Japan, 21, p301 (199
7)), the effect was not enough. The present invention solves the above conventional problems, has low noise and high coercive force,
An object of the present invention is to provide a magnetic recording medium having excellent recording and reproducing characteristics.

【0009】[0009]

【課題を解決するための手段】このような、結晶粒子間
の交換結合が非常に強い磁性多層膜は、通常、膜面に対
して垂直方向のM−H曲線の傾きはほとんどなく垂直と
なっている。本発明者は、この磁性多層膜の結晶粒子間
の交換結合を、磁気記録に適するように弱め、磁性多層
膜の膜面に対して垂直方向のM−H曲線を特定の範囲に
傾いた特性とすることにより、該磁性多層膜の磁気記録
特性が向上することを見いだし、本発明に到達した。
Such a magnetic multilayer film in which the exchange coupling between crystal grains is very strong is usually perpendicular to the film surface with almost no inclination of the MH curve. ing. The inventor weakened the exchange coupling between crystal grains of the magnetic multilayer film so as to be suitable for magnetic recording, and inclined the MH curve perpendicular to the film surface of the magnetic multilayer film to a specific range. It was found out that the magnetic recording characteristics of the magnetic multilayer film were improved by the above, and the present invention was reached.

【0010】つまり本発明の要旨は、非磁性基板上に、
磁気記録層として、Coを主成分とする合金層と、Pt
あるいはPdを主成分とする層を、交互に積層した磁性
多層膜を有する磁気記録媒体であって、該磁性多層膜の
膜面に垂直方向の磁気特性を表すM−H曲線のM=0の
点での傾きAが、下記の式を満足することを特徴とする
磁気記録媒体および、該磁気記録媒体を用いた磁気記録
装置に存する。
That is, the gist of the present invention is that a non-magnetic substrate
An alloy layer containing Co as a main component;
Alternatively, a magnetic recording medium having a magnetic multilayer film in which layers containing Pd as a main component are alternately stacked, wherein M = 0 of an MH curve representing a magnetic characteristic in a direction perpendicular to the film surface of the magnetic multilayer film. A magnetic recording medium characterized in that a slope A at a point satisfies the following expression, and a magnetic recording device using the magnetic recording medium.

【0011】1/4π(emu/cc/Oe)≦A<2
×1/4π(emu/cc/Oe) 本発明の磁気記録媒体では、上記の特性とすることによ
って、低ノイズかつ高保磁力を有する磁気記録媒体を実
現することができる。
1 / 4π (emu / cc / Oe) ≦ A <2
× 1 / π (emu / cc / Oe) With the magnetic recording medium of the present invention, a magnetic recording medium having low noise and high coercive force can be realized by having the above characteristics.

【0012】[0012]

【発明の実施の形態】本発明の磁気記録媒体は、非磁性
基板上に、磁気記録層として、Coを主成分とする合金
層と、PtあるいはPdを主成分とする層を、交互に積
層した磁性多層膜を有する磁気記録媒体であって、該磁
性多層膜の膜面に垂直方向の磁気特性を表すM−H曲線
のM=0の点での傾きAが、下記の式を満足することを
特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION In the magnetic recording medium of the present invention, an alloy layer mainly composed of Co and a layer mainly composed of Pt or Pd are alternately laminated as a magnetic recording layer on a non-magnetic substrate. A magnetic recording medium having a magnetic multilayer film according to claim 1, wherein a slope A at a point of M = 0 of an MH curve representing a magnetic characteristic in a direction perpendicular to a film surface of the magnetic multilayer film satisfies the following expression. It is characterized by the following.

【0013】1/4π(emu/cc/Oe)≦A<2
×1/4π(emu/cc/Oe) ここで、M−H曲線の測定には通常VSM(振動試料型
磁力計)などが使用される。M−H曲線とは、媒体に磁
界H(Oe)を印加した際に発生する磁化M(emu/
cc)をそれぞれX、Y軸にとり、プロットしたグラフ
である(図1)。このグラフ上で、M=0即ちX軸との
交点において接線を描き、その接線の傾きをA(emu
/cc/Oe)と定義する。ここではM−H曲線には反
磁界補正を施さないものとする。
1 / 4π (emu / cc / Oe) ≦ A <2
× 1 / π (emu / cc / Oe) Here, a VSM (vibrating sample magnetometer) or the like is usually used for measuring the MH curve. The MH curve refers to a magnetization M (emu / mag) generated when a magnetic field H (Oe) is applied to a medium.
cc) are plotted on the X and Y axes, respectively (FIG. 1). On this graph, a tangent is drawn at the intersection of M = 0, that is, the X axis, and the inclination of the tangent is represented by A (emu).
/ Cc / Oe). Here, it is assumed that the MH curve is not subjected to the demagnetizing field correction.

【0014】M−Hループの傾きが、2×1/4π(e
mu/cc/Oe)より大きい場合は、該磁性多層膜に
磁気記録する際に記録磁化転移の乱れが大きくなり、転
移性ノイズの大きな媒体となってしまう。M−Hループ
の傾きが1/4πより小さい場合は、粒子間の交換結合
が小さいことに加えて保磁力の分散が大きい媒体である
ことを示しており、記録磁化の転移領域の拡大が起こり
記録再生特性が劣化する。このM−H曲線の傾きAは、
より好ましくは、1.5×1/4π(emu/cc/O
e)以下である。
The inclination of the MH loop is 2 × 1 / π (e
If it is larger than (mu / cc / Oe), disturbance of recording magnetization transition becomes large when magnetic recording is performed on the magnetic multilayer film, and the medium becomes large in transition noise. When the inclination of the MH loop is smaller than 1 / 4π, it indicates that the medium has a small exchange coupling between the particles and a large dispersion of the coercive force. Recording / reproducing characteristics deteriorate. The slope A of this MH curve is
More preferably, 1.5 × 1 / π (emu / cc / O
e) below.

【0015】本発明において、このM−Hループを所定
量傾け磁気記録に適したものとすることは、上記Coを
主成分とする合金層に、Ta、Nb、W、Ge、C、C
r、B等の添加元素を含有させることによって達成でき
る。これは、Coを主成分とする合金層中のCo磁性結
晶粒子の粒界に、これらの添加元素を偏析させ、Co磁
性結晶粒子間の交換結合が所定の強さに制御されるため
である。ここで、Coを主成分とする合金層中のCo含
有量は50原子%以上であることが好ましく、より好ま
しくは、60原子%以上である。また、Coを主成分と
する合金層中には、上記Ta、Nb、W、Ge、C、C
r、B等の添加元素以外の微量元素を数原子%程度含有
していても良い。
In the present invention, the MH loop is tilted by a predetermined amount to be suitable for magnetic recording, because Ta, Nb, W, Ge, C, C
This can be achieved by adding additional elements such as r and B. This is because these additional elements are segregated at the grain boundaries of the Co magnetic crystal grains in the alloy layer containing Co as a main component, and the exchange coupling between the Co magnetic crystal grains is controlled to a predetermined strength. . Here, the Co content in the alloy layer containing Co as a main component is preferably 50 atomic% or more, more preferably 60 atomic% or more. Further, in the alloy layer containing Co as a main component, the above Ta, Nb, W, Ge, C, C
A trace element other than the additional elements such as r and B may contain about several atomic%.

【0016】特にCr及びBの両方を同時に含有させる
場合にその効果が大きい。含有させるCr及びBの量
は、Cr10原子%以上、B1原子%以上が好ましく、
より好ましくはCr15原子%以上、B5原子%以上で
ある。CrおよびBの含有量が少なすぎる場合は、結晶
粒界へのCr、Bの偏析量が少なく、結晶粒子間の交換
結合を十分に低減できない場合がある。またCr、Bの
含有量は、Cr25原子%以下、B10原子%以下とす
るのが好ましい。Cr、Bの含有量が多すぎる場合は、
磁性多層膜膜中のCoを主成分とする合金層と、Ptあ
るいはPdを主成分とする合金層間の界面に誘起される
垂直磁気異方性が劣化する場合がある。
The effect is particularly great when both Cr and B are simultaneously contained. The amounts of Cr and B contained are preferably at least 10 atomic% of Cr and at least 1 atomic% of B,
More preferably, it is at least 15 atomic% of Cr and at least 5 atomic% of B. If the contents of Cr and B are too small, the segregation amounts of Cr and B at the crystal grain boundaries are small, and the exchange coupling between crystal grains may not be sufficiently reduced. The contents of Cr and B are preferably set to 25 atomic% or less of Cr and 10 atomic% or less of B. If the contents of Cr and B are too large,
The perpendicular magnetic anisotropy induced at the interface between the alloy layer containing Co as the main component and the alloy layer containing Pt or Pd as the main component in the magnetic multilayer film may deteriorate.

【0017】PtまたはPdを主成分とする層には、T
a、Nb、W、Ge、C、Cr、B等の元素を数原子%
程度の微量含有していても良い。PtまたはPdを主成
分とする合金層には、PtあるいはPdを50原子%以
上含有していることが好ましく、よりこのましは、90
原子%以上である。本発明の特性を持つ磁性多層膜を達
成するためには、該磁性多層膜膜をスパッタ成膜すると
きの基板温度を200℃以上とすることが好ましい。基
板温度のより好ましい温度は250℃である。基板温度
を所定温度に加熱することにより、磁性多層膜中でのC
r、Bの偏析が促進され、発明の効果がより高くなるこ
とがある。基板温度は500℃以下が好ましい。基板温
度が高すぎる場合、Coを主成分とする合金層と、Pt
あるいはPdを主成分とする層が、互いに拡散しあっ
て、一部一体化し、はっきりした多層膜構造とならない
ことがある。また、膜中の結晶粒子が大きくなり、磁気
特性が悪くなることもある。磁性多層膜の成膜時のスパ
ッタガスには、通常Arが使用されるが、KrやXe等
の希ガスまたはこれらの混合物を用いてもよく、分圧と
して数%程度の不純物ガスを添加しても構わない。
The layer mainly composed of Pt or Pd has T
a, Nb, W, Ge, C, Cr, B, etc.
It may be contained in a trace amount. The alloy layer containing Pt or Pd as a main component preferably contains Pt or Pd in an amount of 50 atomic% or more.
Atomic% or more. In order to achieve a magnetic multilayer film having the characteristics of the present invention, it is preferable that the substrate temperature at which the magnetic multilayer film is formed by sputtering be 200 ° C. or higher. A more preferred substrate temperature is 250 ° C. By heating the substrate temperature to a predetermined temperature, C
The segregation of r and B is promoted, and the effect of the invention may be further enhanced. The substrate temperature is preferably 500 ° C. or less. If the substrate temperature is too high, an alloy layer containing Co as a main component and Pt
Alternatively, layers containing Pd as a main component may diffuse with each other and be partially integrated to form a clear multilayer film structure. In addition, the crystal grains in the film become large, and the magnetic characteristics may deteriorate. Ar is usually used as a sputtering gas when the magnetic multilayer film is formed, but a rare gas such as Kr or Xe or a mixture thereof may be used, and an impurity gas having a partial pressure of about several percent is added. It does not matter.

【0018】Coを主成分とする合金層の一層あたりの
膜厚は0.8nm以上、1.5nm以下であることが好
ましい。膜厚が0.8nm未満の場合は、磁性多層膜の
磁気特性、特に保磁力が悪くなることがある。また、膜
厚が1.5nmより厚い場合、磁性多層膜の垂直方向の
磁気異方性が悪くなることがある。PtあるいはPdを
主成分とする層の膜厚は0.1nm以上、2.0nm以
下が好ましく、より好ましくは0.2nm以上、0.8
nm以下である。膜厚が薄すぎる場合は、はっきりした
多層膜構造とならない場合があり、厚すぎる場合は磁性
多層膜の保磁力が低くなることがある。
The thickness of one alloy layer containing Co as a main component is preferably 0.8 nm or more and 1.5 nm or less. When the film thickness is less than 0.8 nm, the magnetic properties of the magnetic multilayer film, particularly, the coercive force may be deteriorated. If the thickness is larger than 1.5 nm, the magnetic multilayer may have poor magnetic anisotropy in the vertical direction. The thickness of the layer containing Pt or Pd as a main component is preferably from 0.1 nm to 2.0 nm, more preferably from 0.2 nm to 0.8 nm.
nm or less. When the film thickness is too thin, a clear multilayer film structure may not be obtained, and when it is too thick, the coercive force of the magnetic multilayer film may decrease.

【0019】本発明の磁性多層膜は、膜面に垂直方向に
磁気異方性を持つ場合が多いため、垂直磁気記録方式で
記録再生される垂直磁気記録媒体として使用した場合、
特に優れた効果を発揮する。磁性多層膜の積層回数に特
に制限はないが、10〜20回程度が好ましい。積層回
数が10回未満の場合、磁性多層膜の磁化が十分でない
ことあり、記録再生時の信号出力が小さくなることがあ
る。また、積層回数が20回を超える場合、磁性多層膜
全体の膜厚が厚くなりすぎ、かえって記録再生特性が悪
くなることがある。
Since the magnetic multilayer film of the present invention often has magnetic anisotropy in the direction perpendicular to the film surface, when it is used as a perpendicular magnetic recording medium for recording and reproduction by the perpendicular magnetic recording method,
Particularly effective. The number of laminations of the magnetic multilayer film is not particularly limited, but is preferably about 10 to 20 times. If the number of laminations is less than 10, the magnetization of the magnetic multilayer film may not be sufficient, and the signal output during recording / reproducing may be small. On the other hand, if the number of laminations exceeds 20, the thickness of the entire magnetic multilayer film may be too large, and the recording / reproducing characteristics may worsen.

【0020】本発明において、非磁性基板としては、通
常、無電解めっき法により形成したNi−P層を設けた
アルミニウム合金板またはガラス基板が用いられるが、
その他、セラミック基板、炭素基板、Si基板、更には
各種樹脂基板等、任意の非磁性基板を用いることができ
る。また、基板にはテキスチャを施してあっても良い
が、特に今後多くの媒体において採用されると考えられ
るRaが1nm以下のガラス基板に適用するのが好まし
い。
In the present invention, as the non-magnetic substrate, an aluminum alloy plate or a glass substrate provided with a Ni—P layer formed by electroless plating is usually used.
In addition, any non-magnetic substrate such as a ceramic substrate, a carbon substrate, a Si substrate, and various resin substrates can be used. The substrate may be textured, but is preferably applied to a glass substrate having an Ra of 1 nm or less, which is considered to be used in many media in the future.

【0021】非磁性基板と上記磁性多層膜の間に、必要
に応じて、結晶配向等の制御のための下地層や、垂直磁
気記録において磁気ヘッドの一部として動作する軟磁性
層を設けても構わない。下地層としては通常Ti、Ta
等が好適に用いられるが、この他にRu、Ge等の金属
あるいはこれらの合金、またはITO(インジウム・錫
酸化物)やSiO2等の酸化物を用いても良い。下地層
の膜厚は10nm以下が好ましい。
An underlayer for controlling crystal orientation and the like and a soft magnetic layer operating as a part of a magnetic head in perpendicular magnetic recording may be provided between the nonmagnetic substrate and the magnetic multilayer film as necessary. No problem. Normally, Ti, Ta
Etc. are preferably used. In addition, metals such as Ru and Ge or alloys thereof, or oxides such as ITO (indium tin oxide) and SiO 2 may be used. The thickness of the underlayer is preferably 10 nm or less.

【0022】また、この下地層の上に、更にPtあるい
はPdを主成分とする層を数nm〜数10nm程度の膜
厚に第2の下地層として形成することもできる。この第
2の下地層としてのPtあるいはPdを主成分とする層
は、磁性多層膜中のPtあるいはPdを主成分とする層
に比較して、膜厚を厚く形成し、この上に形成される磁
性多層膜の結晶配向を向上する役割を持つ。
Further, a layer containing Pt or Pd as a main component may be further formed on the underlayer to a thickness of about several nm to several tens nm as a second underlayer. The layer mainly composed of Pt or Pd as the second underlayer is formed to be thicker than the layer mainly composed of Pt or Pd in the magnetic multilayer film, and is formed thereon. Has the role of improving the crystal orientation of the magnetic multilayer film.

【0023】軟磁性層としてはNiFe、FeSiA
l、FeSi、FeTa、CoZrNb等の飽和磁束密
度(Bs)が10kGauss以上を有する材料が好ま
しい。軟磁性層の膜厚は50nm以上、300nm以下
が好ましく、より好ましくは100nm以上、200n
m以下である。磁気記録層として、2種類以上の磁性多
層膜を組み合わせたり、磁性多層膜に他の通常の単層の
磁性膜を組み合わせることもできる。
As the soft magnetic layer, NiFe, FeSiA
1, a material having a saturation magnetic flux density (Bs) of 10 kGauss or more such as FeSi, FeTa, and CoZrNb is preferable. The thickness of the soft magnetic layer is preferably from 50 nm to 300 nm, more preferably from 100 nm to 200 n.
m or less. As the magnetic recording layer, two or more kinds of magnetic multilayer films can be combined, or another ordinary single-layer magnetic film can be combined with the magnetic multilayer film.

【0024】磁気記録層の上に、保護膜、更にその上に
潤滑層を設けてもよい。保護膜としては、蒸着、スパッ
タ、プラズマCVD、イオンプレーティング、湿式法な
どの方法により、炭素膜、水素化カーボン膜、窒素化カ
ーボン膜、TiC、SiC等の炭化物膜、SiN、Ti
N等の窒化膜、SiO2、Al23、ZrO2等の酸化物
膜等が挙げられる。保護膜の膜厚は5nm以上、30n
m以下が好ましい。潤滑剤としては、フッ素系潤滑剤、
炭化水素系潤滑剤およびこれらの混合物を用いることが
できる。好ましい膜厚は、通常1〜4nmである。
A protective film may be provided on the magnetic recording layer, and a lubricating layer may be further provided thereon. Examples of the protective film include a carbon film, a hydrogenated carbon film, a nitrogenated carbon film, a carbide film such as TiC and SiC, SiN, Ti by a method such as vapor deposition, sputtering, plasma CVD, ion plating, or a wet method.
Nitride films such as N, and oxide films such as SiO 2 , Al 2 O 3 , and ZrO 2 may be used. The thickness of the protective film is 5 nm or more and 30 n
m or less is preferable. Lubricants include fluorine-based lubricants,
Hydrocarbon-based lubricants and mixtures thereof can be used. The preferred film thickness is usually 1 to 4 nm.

【0025】本発明の磁気記録媒体の各層を形成する成
膜方法は任意であるが、例えば直流(マグネトロン)ス
パッタリング法、高周波(マグネトロン)スパッタリン
グ法、ECRスパッタリング法、真空蒸着法などの物理
蒸着法が挙げられる。また、成膜時の条件としても特に
制限はなく、到達真空度、基板加熱の方式と基板温度、
スパッタリングガス圧、バイアス電圧等は、成膜装置に
より適宜決定すればよい。例えば、スパッタリング成膜
では、通常の場合、到達真空度は5×10-4Pa以下、
基板温度は室温〜400℃、スパッタガスはAr、K
r、Xe等を用いることができ、スパッタリングガス圧
は1×10-1〜2.5Pa、バイアス電圧は一般的には
0〜−500Vである。また、スパッタ雰囲気中に
2、N2を微量含有していても良い。
The film forming method for forming each layer of the magnetic recording medium of the present invention is arbitrary. For example, a physical vapor deposition method such as a direct current (magnetron) sputtering method, a high frequency (magnetron) sputtering method, an ECR sputtering method, and a vacuum vapor deposition method. Is mentioned. Also, there is no particular limitation on the conditions at the time of film formation, ultimate vacuum degree, substrate heating method and substrate temperature,
The sputtering gas pressure, the bias voltage, and the like may be determined as appropriate depending on the film forming apparatus. For example, in the case of sputtering film formation, the ultimate vacuum degree is usually 5 × 10 −4 Pa or less,
Substrate temperature is from room temperature to 400 ° C, sputtering gas is Ar, K
r, Xe or the like can be used, the sputtering gas pressure is 1 × 10 −1 to 2.5 Pa, and the bias voltage is generally 0 to −500 V. Further, trace amounts of O 2 and N 2 may be contained in the sputtering atmosphere.

【0026】本発明の磁気記録装置は、少なくともこの
ような本発明の磁気記録媒体と、これを記録方向に駆動
する駆動部と、記録部及び再生部を備える磁気ヘッド
と、磁気ヘッドを磁気記録媒体に対して相対運動させる
手段と、磁気ヘッドへの信号入力と磁気ヘッドから出力
信号再生を行うための記録再生信号処理手段をとを有す
る磁気記録装置である。
The magnetic recording apparatus of the present invention comprises at least such a magnetic recording medium of the present invention, a drive unit for driving the magnetic recording medium in the recording direction, a magnetic head having a recording unit and a reproducing unit, and a magnetic recording medium. This is a magnetic recording apparatus having means for making relative movement with respect to a medium, and recording and reproduction signal processing means for inputting a signal to a magnetic head and reproducing an output signal from the magnetic head.

【0027】ここで、磁気ヘッドの再生部をMRヘッド
で構成することにより、高記録密度においても十分な信
号強度を得ることができ、高記録密度を持った磁気記録
装置を実現することができる。最尤復号法による信号処
理回路を組み合わせるとさらに記録密度を向上でき、例
えば、トラック密度10kTPI以上、線記録密度20
0kFCI以上、1平方インチ当たり2Gビット以上の
記録密度で記録・再生する場合にも十分なS/Nが得ら
れる。
Here, when the reproducing section of the magnetic head is constituted by the MR head, a sufficient signal intensity can be obtained even at a high recording density, and a magnetic recording apparatus having a high recording density can be realized. . The recording density can be further improved by combining a signal processing circuit based on the maximum likelihood decoding method.
Even when recording / reproducing at a recording density of 0 kFCI or more and 2 Gbits per square inch or more, a sufficient S / N can be obtained.

【0028】さらに磁気ヘッドの再生部を、互いの磁化
方向が外部磁界によって相対的に変化することによって
大きな抵抗変化を生じる複数の導電性磁性層と、その導
電性磁性層の間に配置されて導電性非磁性層からなるG
MRヘッド、或いはスピン・バルブ効果を利用したGM
Rヘッドとすることにより、信号強度をより一層高める
ことができ、1平方インチ当たり3ギガビット以上、2
40kFCI以上の線記録密度を持った信頼性の高い磁
気記録装置の実現が可能となる。
Further, a reproducing section of the magnetic head is provided between a plurality of conductive magnetic layers which generate a large resistance change due to a relative change in their magnetization directions due to an external magnetic field, and the conductive magnetic layers. G consisting of a conductive non-magnetic layer
MR head or GM using spin valve effect
By using the R head, the signal strength can be further enhanced, and 3 gigabits or more per square inch can be achieved.
A highly reliable magnetic recording device having a linear recording density of 40 kFCI or more can be realized.

【0029】[0029]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨の範囲を超え
ない限り、以下の実施例により何ら限定されるものでは
ない。内径25mm、外径95mmのガラスディスクの
基板表面を研磨してRa(中心線平均粗さ)約1nmに
仕上げた。この非磁性基板を枚葉式直流マグネトロンス
パッタリング装置に装着し、1×10-5Paまで真空排
気した後成膜を行った。基板加熱、各層の成膜はそれぞ
れ専用チャンバーに基板を導入した後に行った。ただ
し、Coを主成分とする合金層と、PtあるいはPdを
主成分とする層は、同一のチャンバー内で交互に成膜し
た。
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it exceeds the gist of the invention. The substrate surface of a glass disk having an inner diameter of 25 mm and an outer diameter of 95 mm was polished to a finish of Ra (center line average roughness) of about 1 nm. The non-magnetic substrate was mounted on a single-wafer DC magnetron sputtering apparatus, evacuated to 1 × 10 −5 Pa, and then formed into a film. The heating of the substrate and the deposition of each layer were performed after introducing the substrate into the dedicated chamber. However, the alloy layer mainly containing Co and the layer mainly containing Pt or Pd were alternately formed in the same chamber.

【0030】(実施例1)ヒーターチャンバーに基板を
導入し、基板を350℃に加熱し、Arガス圧0.5P
aで、Ni45原子%Fe55原子%の組成のターゲッ
トを用いて軟磁性層を200nm成膜した。続いて、基
板温度310℃、Arガス圧Paで、Taターゲットを
用いて、第一の下地層としてTa層を5nm成膜した。
更に、基板温度280℃、Arガス圧1.5Paで、P
tターゲットを用いて、第2の下地層としてPt層を5
nm成膜した。この上に、Co76原子%Cr15原子
%B9原子%の組成のターゲットとPtターゲットを用
いて、基板温度270℃、Arガス圧1.5Paで、C
oCrB合金層とPt層を交互に積層し、磁性多層膜を
形成した。CoCrB合金層の膜厚は1.2nm、Pt
層の膜厚は0.4nmとした。積層回数は20回(Co
CrB合金層、Pt層がそれぞれ20層ずつ)とした。
更に、基板温度200℃、Arガス圧0.7Paで、グ
ラファイトカーボンターゲットを用いてカーボン保護膜
を5nm成膜した。その上にフッ素系液体潤滑剤(Fo
nblin Z−Dol 2000:アウジモント社
製)を1nmを塗布し、磁気記録媒体を作製した。
Example 1 A substrate was introduced into a heater chamber, the substrate was heated to 350 ° C., and an Ar gas pressure of 0.5 P
In a, a soft magnetic layer was formed to a thickness of 200 nm using a target having a composition of 45 atomic% of Ni and 55 atomic% of Fe. Subsequently, a Ta layer was formed to a thickness of 5 nm as a first underlayer at a substrate temperature of 310 ° C. and an Ar gas pressure of Pa using a Ta target.
Further, at a substrate temperature of 280 ° C. and an Ar gas pressure of 1.5 Pa, P
Using a t target, forming a Pt layer as a second underlayer by 5
nm. Using a target having a composition of 76 atomic% of Co, 15 atomic% of B, and 9 atomic% of Pt and a Pt target, a substrate temperature of 270 ° C. and an Ar gas pressure of 1.5 Pa
An oCrB alloy layer and a Pt layer were alternately laminated to form a magnetic multilayer film. The thickness of the CoCrB alloy layer is 1.2 nm, Pt
The thickness of the layer was 0.4 nm. The number of laminations is 20 (Co
20 CrB alloy layers and 20 Pt layers).
Further, a carbon protective film having a thickness of 5 nm was formed at a substrate temperature of 200 ° C. and an Ar gas pressure of 0.7 Pa using a graphite carbon target. On top of that, a fluorinated liquid lubricant (Fo)
nblin Z-Dol 2000: manufactured by Ausimont) was applied to a thickness of 1 nm to prepare a magnetic recording medium.

【0031】磁気記録媒体の磁気特性は、Kerr効果
を利用したMHループトレーサーを用いて最大磁化20
kOeを印加して測定した。記録再生特性の評価は、G
uzik社製の測定器Guzik1601を用いてGM
Rヘッドにより行った。S/N比については、429k
FCIの信号を信号を書き込んだ際のノイズ成分を積分
し、80.4kFCIの信号を記録した際の再生出力か
ら下記の式を用いて算出した。 S/N=20log(出力/ノイズ) (比較例1)1)基板加熱を行わずにすべての膜を成膜
したこと、2)Fe63.8原子%Si16.5原子%
Al19.7原子% の組成のターゲットを用いて、軟
磁性層を200nm形成したこと、3)Coターゲット
とPtターゲットを用いて、Co層とPt層をこの順に
交互に、各Co層の膜厚を0.4nm、各Pt層の膜厚
を1.2nmとして、積層回数20回(Co層、Pt層
がそれぞれ20層ずつ)、Arガス圧を6Paとして磁
性多層膜を作製したこと、以外は、実施例1と同じ条件
で磁気記録媒体を作製し、評価した。 (比較例2)1)Fe63.8原子% Si16.5原
子% Al19.7原子% の組成のターゲットを用い
て、軟磁性層を200nm形成したこと、2)基板温度
を160℃に加熱して、Co85原子%Cr15原子%
の組成のターゲットとPdターゲットを用いて、CoC
r合金層とPd層をこの順に交互に積層して、各CoC
r合金層の膜厚を0.2nm、各Pd層の膜厚を1.2
nmとして、積層回数20回(CoCr合金層、Pd層
がそれぞれ20層ずつ)、Arガス圧を1.5Paとし
て磁性多層膜を作製したこと以外は、実施例1と同じ条
件で磁気記録媒体を作製し、評価した。
The magnetic characteristics of the magnetic recording medium are determined by using an MH loop tracer utilizing the Kerr effect to obtain a maximum magnetization of 20%.
The measurement was performed by applying kOe. The evaluation of recording / reproducing characteristics is G
GM using a measuring instrument Guzik1601 manufactured by Uzik
Performed with an R head. For S / N ratio, 429k
The noise component at the time of writing the FCI signal was integrated, and calculated from the reproduction output at the time of recording the 80.4 kFCI signal using the following equation. S / N = 20 log (output / noise) (Comparative Example 1) 1) All films were formed without heating the substrate. 2) 63.8 atomic% of Fe and 16.5 atomic% of Si.
A soft magnetic layer having a thickness of 200 nm was formed using a target having a composition of 19.7 atomic% of Al. 3) Using a Co target and a Pt target, a Co layer and a Pt layer were alternately formed in this order. Is 0.4 nm, the thickness of each Pt layer is 1.2 nm, the number of lamination times is 20 (Co layer and Pt layer are 20 layers each), and the Ar gas pressure is 6 Pa to produce a magnetic multilayer film. A magnetic recording medium was manufactured under the same conditions as in Example 1 and evaluated. (Comparative Example 2) 1) A soft magnetic layer having a thickness of 200 nm was formed using a target having a composition of 63.8 atomic% Fe, 16.5 atomic% Si, and 19.7 atomic% Al. 2) The substrate was heated to 160 ° C. , Co 85 atomic% Cr 15 atomic%
Using a target with a composition of
r alloy layer and Pd layer are alternately laminated in this order, and each CoC
The thickness of the r alloy layer is 0.2 nm, and the thickness of each Pd layer is 1.2
The magnetic recording medium was manufactured under the same conditions as in Example 1 except that a magnetic multilayer film was prepared by setting the number of laminations to 20 times (20 layers each for a CoCr alloy layer and a Pd layer) and setting the Ar gas pressure to 1.5 Pa. Fabricated and evaluated.

【0032】表1に上記実施例、比較例の磁気記録媒体
の作製条件をまとめて示した。これらの磁気記録媒体の
膜面に対する垂直方向の保磁力、垂直方向のM−Hルー
プの傾き、およびS/N比の値を表2に示した。比較例
1、2は垂直方向のM−Hループの傾きAが大きく、S
/N比が悪くなっている。これらに比較して、実施例1
は垂直方向のM−Hループの傾きAが1.4×1/4π
と、比較例に比較して小さく、S/N比も良好な値を示
している。
Table 1 summarizes the manufacturing conditions of the magnetic recording media of the above-mentioned examples and comparative examples. Table 2 shows the values of the coercive force in the perpendicular direction to the film surface of these magnetic recording media, the inclination of the MH loop in the perpendicular direction, and the S / N ratio. In Comparative Examples 1 and 2, the inclination A of the MH loop in the vertical direction was large, and S
/ N ratio is poor. In comparison with these, Example 1
Is that the gradient A of the MH loop in the vertical direction is 1.4 × 1 / π
And smaller than the comparative example, and the S / N ratio also shows a good value.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】以上詳述した通り、本発明によれば、従
来の構成の磁気記録媒体に比べて高い保磁力とS/N比
に優れた磁気記録媒体と、この磁気記録媒体を用いた高
密度で低ノイズの磁気記録装置が提供される。
As described above in detail, according to the present invention, a magnetic recording medium having a higher coercive force and an excellent S / N ratio than a magnetic recording medium having a conventional structure, and a magnetic recording medium using this magnetic recording medium. A high-density, low-noise magnetic recording device is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は磁性多層膜の膜面に垂直方向のM−H曲
線の一例を示す図である。
FIG. 1 is a diagram showing an example of an MH curve in a direction perpendicular to a film surface of a magnetic multilayer film.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に、磁気記録層として、C
oを主成分とする合金層と、PtあるいはPdを主成分
とする層を、交互に積層した磁性多層膜を有する磁気記
録媒体であって、該磁性多層膜の膜面に垂直方向の磁気
特性を示すM−H曲線のM=0の点での傾きAが、下記
の式を満足することを特徴とする磁気記録媒体。 1/4π(emu/cc/Oe)≦A<2×1/4π
(emu/cc/Oe)
A magnetic recording layer formed on a non-magnetic substrate;
A magnetic recording medium having a magnetic multilayer film in which an alloy layer containing o as a main component and a layer containing Pt or Pd as a main component are alternately laminated, and has a magnetic characteristic perpendicular to the film surface of the magnetic multilayer film. A magnetic recording medium characterized in that the slope A at the point of M = 0 of the MH curve that satisfies the following expression. 4π (emu / cc / Oe) ≦ A <2 × 1 / π
(Emu / cc / Oe)
【請求項2】 Coを主成分とする合金層がCr及びB
を含有する請求項1に記載の磁気記録媒体。
2. An alloy layer containing Co as a main component is composed of Cr and B.
The magnetic recording medium according to claim 1, comprising:
【請求項3】 Coを主成分とする合金層のCr含有量
が10原子%以上、B含有量が1原子%以上である請求
項1又は2に記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein a Cr content of the alloy layer containing Co as a main component is 10 atomic% or more, and a B content is 1 atomic% or more.
【請求項4】 Coを主成分とする合金層のCr含有量
が15原子%以上、B含有量が5原子%以上である請求
項1乃至3に記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein a Cr content of the alloy layer containing Co as a main component is 15 atomic% or more, and a B content is 5 atomic% or more.
【請求項5】 磁性多層膜の成膜時の基板温度が200
℃以上で成膜された請求項1乃至4に記載の磁気記録媒
体。
5. The method according to claim 1, wherein the substrate temperature at the time of forming the magnetic multilayer film is 200.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is formed at a temperature equal to or higher than ° C. 6.
【請求項6】 Coを主成分とする合金層の各層の膜厚
が0.8nm以上である請求項1乃至5に記載の磁気記
録媒体。
6. The magnetic recording medium according to claim 1, wherein the thickness of each of the alloy layers containing Co as a main component is 0.8 nm or more.
【請求項7】 磁気記録媒体が垂直磁気記録媒体である
請求項1乃至6に記載の磁気記録媒体。
7. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is a perpendicular magnetic recording medium.
【請求項8】 磁気記録媒体と、該磁気記録媒体を記録
方向に駆動する駆動部と、記録部及び再生部を備える磁
気ヘッドと、該磁気ヘッドを前記磁気記録媒体に対して
相対運動させる手段と、該磁気ヘッドの記録信号入力と
磁気ヘッドからの再生信号出力を行うための記録再生信
号処理手段とを有する磁気記録装置において、該磁気記
録媒体が請求項1乃至7のいずれかに記載の磁気記録媒
体であることを特徴とする磁気記録装置。
8. A magnetic recording medium, a driving unit for driving the magnetic recording medium in a recording direction, a magnetic head including a recording unit and a reproducing unit, and means for moving the magnetic head relative to the magnetic recording medium. 8. A magnetic recording apparatus comprising: a recording signal input means for inputting a recording signal to the magnetic head and a reproduction signal output from the magnetic head; wherein the magnetic recording medium is defined by any one of claims 1 to 7. A magnetic recording device, which is a magnetic recording medium.
JP2000378224A 2000-12-13 2000-12-13 Magnetic recording medium and magnetic recording apparatus Expired - Fee Related JP4389381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378224A JP4389381B2 (en) 2000-12-13 2000-12-13 Magnetic recording medium and magnetic recording apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378224A JP4389381B2 (en) 2000-12-13 2000-12-13 Magnetic recording medium and magnetic recording apparatus

Publications (2)

Publication Number Publication Date
JP2002183928A true JP2002183928A (en) 2002-06-28
JP4389381B2 JP4389381B2 (en) 2009-12-24

Family

ID=18846833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378224A Expired - Fee Related JP4389381B2 (en) 2000-12-13 2000-12-13 Magnetic recording medium and magnetic recording apparatus

Country Status (1)

Country Link
JP (1) JP4389381B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063065A (en) * 2002-07-27 2004-02-26 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
JP2008135676A (en) * 2006-11-28 2008-06-12 Korea Univ Foundation Cobalt-iron-silicon-boron/platinum multilayer thin film exhibiting perpendicular magnetic anisotropy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063065A (en) * 2002-07-27 2004-02-26 Samsung Electronics Co Ltd Perpendicular magnetic recording medium
JP4643896B2 (en) * 2002-07-27 2011-03-02 三星電子株式会社 Perpendicular magnetic recording medium
JP2008135676A (en) * 2006-11-28 2008-06-12 Korea Univ Foundation Cobalt-iron-silicon-boron/platinum multilayer thin film exhibiting perpendicular magnetic anisotropy
JP4586040B2 (en) * 2006-11-28 2010-11-24 コリア・ユニヴァーシティ・ファウンデーション Cobalt-iron-silicon-boron / platinum multilayer thin film with perpendicular magnetic anisotropy
US8431256B2 (en) 2006-11-28 2013-04-30 Korea University Foundation CoFeSiB/Pt multilayers exhibiting perpendicular magnetic anisotropy
US8852761B2 (en) 2006-11-28 2014-10-07 Korea University Foundation CoFeSiB/Pt multilayers exhibiting perpendicular magnetic anisotropy

Also Published As

Publication number Publication date
JP4389381B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP3884932B2 (en) Magnetic recording medium and magnetic storage device
US7056604B2 (en) Magnetic recording media and magnetic recording system using the same
JPWO2006003922A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
WO2006101072A1 (en) Perpendicular magnetic recording disk and process for producing the same
JP3429972B2 (en) Magnetic recording medium and magnetic storage device using the same
JPH0573880A (en) Magnetic recording medium and manufacture thereof
JP4102221B2 (en) Method for manufacturing magnetic recording medium
JP3665221B2 (en) In-plane magnetic recording medium and magnetic storage device
EP0809238B1 (en) Magnetic recording media and magnetic recording system using the same
JP2001134927A (en) Magnetic recording medium
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JP4389381B2 (en) Magnetic recording medium and magnetic recording apparatus
JP2007102833A (en) Perpendicular magnetic recording medium
JP2002197635A (en) Magnetic recording medium, method of manufacturing for the same and magnetic recording and reproducing device
JP5620071B2 (en) Perpendicular magnetic recording medium
JP2005174531A (en) Magnetic body for non-reactive treatment for use in granular perpendicular recording
JPH1074314A (en) Magnetic recording medium and magnetic recording device
JPWO2003100773A1 (en) Information recording medium and information storage device
JP2001283427A (en) Magnetic recording medium, its manufacture method, sputtering target and magnetic recording and reproducing device
JP3869550B2 (en) Magnetic recording medium and magnetic storage device
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP2000339657A (en) Magnetic recording medium
JP4238455B2 (en) Magnetic recording medium manufacturing method and magnetic recording / reproducing apparatus
JP2002063712A (en) Magnetic recording medium and magnetic recording apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151016

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees