JPH03147333A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03147333A
JPH03147333A JP28621589A JP28621589A JPH03147333A JP H03147333 A JPH03147333 A JP H03147333A JP 28621589 A JP28621589 A JP 28621589A JP 28621589 A JP28621589 A JP 28621589A JP H03147333 A JPH03147333 A JP H03147333A
Authority
JP
Japan
Prior art keywords
layer
silicon layer
type
polycrystalline silicon
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28621589A
Other languages
Japanese (ja)
Inventor
Tsutomu Akashi
勉 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28621589A priority Critical patent/JPH03147333A/en
Publication of JPH03147333A publication Critical patent/JPH03147333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable diffusion of impurities into a base region which is formed within a single-crystal silicon layer to be performed uniformly and a uniform emitter region to be formed by forming a silicon oxide film at the initial stage of growth of a polycrystal silicon layer for forming emitter and by controlling so that the grain diameter of the polycrystal silicon layer which is in contact with the single crystal may not be large. CONSTITUTION:An N-type buried layer 2 is provided on a P-type silicon substrate 1, an N-type layer 3 and a P-type base region 4 are formed, and then a part for forming an emitter region is opened. Then, a lower-layer polycrystal silicon layer 6 is deposited. Then, by enabling oxygen gas to flow within the CVD device, a silicon oxide film 7 is formed by 10nm or less in thickness and an upper-layer polycrystal silicon layer 8 is deposited on it. Then, the impregnating an arsenic ion As<+> into the upper-layer polycrystal silicon layer 8 and then the performing heat treatment, the arsenic is introduced into a base region 4 and an N-type emitter region 9 is formed. In this case, since a silicon oxide film 7 exists, arsenic within the upper-layer polycrystal silicon layer 8 is uniformly diffused into the base region 4 and the uniform N-type emitter region 9 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、特にバイポーラ型半導体
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a bipolar semiconductor device.

〔従来の技術〕[Conventional technology]

第2図は従来のNPN)ランジスタの一例の断面図であ
る。
FIG. 2 is a sectional view of an example of a conventional NPN transistor.

P型シリコン基板1にN型埋込層2を設け、エピタキシ
ャル法でN型層3を形成する。このN型層3はコレクタ
領域となる。N型層3にP型ベース領域4を形成し、表
面を酸化膜5で覆う。エミッタ領域を形成する部分を開
口する。CVD法を用いて多結晶シリコン層10を堆積
する。砒素イオン等を注入した後熱処理して砒素をベー
ス領域中に拡散せしめてN型エミッタ領域9を形成する
An N-type buried layer 2 is provided on a P-type silicon substrate 1, and an N-type layer 3 is formed by an epitaxial method. This N-type layer 3 becomes a collector region. A P type base region 4 is formed in the N type layer 3, and the surface is covered with an oxide film 5. A portion that will form an emitter region is opened. A polycrystalline silicon layer 10 is deposited using the CVD method. After implanting arsenic ions and the like, heat treatment is performed to diffuse the arsenic into the base region to form an N-type emitter region 9.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のバイポーラトランジスタの形成において
は、多結晶シリコン層10中の砒素が多結晶シリコン層
10の結晶粒界】1に沿って拡散するため、エミッタの
拡散が不均一に行われる。
In the formation of the conventional bipolar transistor described above, arsenic in the polycrystalline silicon layer 10 diffuses along the grain boundaries 1 of the polycrystalline silicon layer 10, resulting in non-uniform emitter diffusion.

このため、トランジスタの集積度が上がるに従って、確
率的にエミッタ9とベース4の空乏層とベース4とコレ
クタ3の空乏層がぶつかってエミッタ・コレクタ間が短
絡するパンチスルー現象や、エミッタ拡散層が完全にコ
レクタとつながる突き抜は現象が発生し、高集積回路の
実現が歩留的に困難となるという問題がある。
For this reason, as the degree of integration of transistors increases, the depletion layer of the emitter 9 and base 4 and the depletion layer of the base 4 and collector 3 collide with each other, resulting in a punch-through phenomenon in which the emitter and collector become short-circuited, and the emitter diffusion layer A punch-through that is completely connected to the collector causes a phenomenon, and there is a problem in that it becomes difficult to realize a highly integrated circuit in terms of yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、−導電型コレクタ領域内に形成された逆導電
型ベース領域と、該ベース領域内に形成された一導電型
エミッタ領域と、該エミッタ領域上に形成された一導電
型多結晶シリコン層のエミッタ電極とから成るバイポー
ラトランジスタを有する半導体装置において、前記多結
晶シリコン層が、相対的に薄い下層多結晶シリコン層と
該下層多結晶シリコン層上に形成された厚さ1〜10n
mの酸化膜または高酸素含有率の多結晶シリコン層と該
酸化膜または高酸素含有率の多結晶シリコン層の上に形
成された相対的に厚い上層多結晶シリコン層とから成る
ことを特徴とする。
The present invention includes - a base region of opposite conductivity type formed in a collector region of conductivity type, an emitter region of one conductivity type formed in the base region, and a polycrystalline silicon of one conductivity type formed on the emitter region. In a semiconductor device having a bipolar transistor comprising a layer of an emitter electrode, the polycrystalline silicon layer has a relatively thin lower polycrystalline silicon layer and a layer having a thickness of 1 to 10 nm formed on the lower polycrystalline silicon layer.
m oxide film or a polycrystalline silicon layer with a high oxygen content, and a relatively thick upper polycrystalline silicon layer formed on the oxide film or the polycrystalline silicon layer with a high oxygen content. do.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)、(b)は本発明の一実施例の製造方法を
説明するための工程順に示した断面図である。
FIGS. 1(a) and 1(b) are sectional views showing the order of steps for explaining a manufacturing method according to an embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板1
にN型埋込層2を設け、エピタキシャル法でN型層3を
形成する。このN型層3はコレクタ領域となる。N型層
3にP型ベース領域4を形成し、表面を酸化膜5で覆う
、エミッタ領域を形成する部分を開口する。CVD法を
用いて下層多結晶シリコン層6を約20nm程度の厚さ
に堆積する。このように薄く堆積すると結晶粒径が大き
くならないという利点がある。
First, as shown in FIG. 1(a), a P-type silicon substrate 1
An N-type buried layer 2 is provided on the substrate, and an N-type layer 3 is formed by an epitaxial method. This N-type layer 3 becomes a collector region. A P-type base region 4 is formed in the N-type layer 3, the surface of which is covered with an oxide film 5, and a portion where an emitter region will be formed is opened. A lower polycrystalline silicon layer 6 is deposited to a thickness of about 20 nm using the CVD method. This thin deposition has the advantage that the crystal grain size does not become large.

次に、CVD装置内で酸素ガスを流すことによりシリコ
ン酸化pA7を10 n m未満の厚さに形成する8次
に、酸素ガスを遮断し、再びCVD法により上層多結晶
シリコン層8を20Or+m程度の厚さに堆積する。ホ
トリソグラフィ技術を用いて選択エツチングして図示す
る形状にする。
Next, silicon oxide pA 7 is formed to a thickness of less than 10 nm by flowing oxygen gas in the CVD apparatus.Next, the oxygen gas is cut off, and the upper polycrystalline silicon layer 8 is formed by CVD again to a thickness of about 20 Or+m. Deposited to a thickness of . Selective etching is performed using photolithography techniques into the shape shown.

次に、第1図(b)に示すように、砒素イオンA s、
 ”を上層多結晶シリコンM8に注入する。
Next, as shown in FIG. 1(b), arsenic ion A s,
” is implanted into the upper layer polycrystalline silicon M8.

次に、900°C程度で熱処理することにより、砒素を
ベース領域4内へ導入し、N型エミッタ領域9を形成す
るのであるが、本発明においては膜厚10nm未溝のシ
リコン酸化膜7が存在するため、上層多結晶シリコン酸
化内の砒素は結晶粒界11に沿って拡散するものの、上
層多結晶シリコンN8の下方に存在するシリコン酸化膜
7により砒素の拡散が阻止され、シリコン酸化膜7の上
部で砒素が蓄積される6その後、シリコン酸化膜7の中
を砒素がメルトスルーにより通過する。このため、砒素
の拡散が場所的に均一となる。その上、シリコン酸化膜
7の下の下層多結晶シリコン6の粒径が小さいため、ベ
ース領域4中へは砒素が均一・に拡散され、均一なN型
エミッタ領域9が形成される。
Next, arsenic is introduced into the base region 4 by heat treatment at about 900°C to form an N-type emitter region 9. In the present invention, the ungrooved silicon oxide film 7 with a thickness of 10 nm is Therefore, arsenic in the upper polycrystalline silicon oxide diffuses along the grain boundaries 11, but the diffusion of arsenic is prevented by the silicon oxide film 7 existing below the upper polycrystalline silicon oxide, and the silicon oxide film 7 After that, arsenic is accumulated in the upper part of the silicon oxide film 7 and passes through the silicon oxide film 7 by melt-through. Therefore, the diffusion of arsenic becomes uniform in location. Furthermore, since the grain size of the lower polycrystalline silicon 6 under the silicon oxide film 7 is small, arsenic is uniformly diffused into the base region 4, and a uniform N-type emitter region 9 is formed.

上記実施例では、シリコン酸化WA7を形成したが、酸
化物になるに至らない高酸素含有率の多結晶シリコン層
であっても酸化物に近い効果が得られる。
In the above embodiment, silicon oxide WA7 was formed, but even with a polycrystalline silicon layer with a high oxygen content that does not reach the level of oxide, effects similar to those of oxide can be obtained.

また、本実施例ではNPN)ランジスタの場合を説明し
たが、極性を逆にすればPNP トランジスタにも本発
明を適用できる。
Furthermore, although the case of an NPN transistor has been described in this embodiment, the present invention can also be applied to a PNP transistor by reversing the polarity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、エミッタ形成用の多結
晶シリコン層の成長初期にシリコン酸化膜または酸素含
有率の高い層を形成し、単結晶と接する多結晶シリコン
層の粒径が大きくならないように抑制することにより、
単結晶シリコン層中に形成されたベース領域への不純物
の拡散を均一に行なわせて、均一なエミッタ領域を形成
することができるという効果がある。均一なエミッタは
、エミッタ・コレクタ間の短絡が発生しないため、高歩
留の集積度の高いバイポーラ集積回路を実現することが
可能となる。
As explained above, the present invention forms a silicon oxide film or a layer with a high oxygen content at the early stage of growth of a polycrystalline silicon layer for forming an emitter, thereby preventing the grain size of the polycrystalline silicon layer in contact with the single crystal from increasing. By suppressing the
This has the effect of uniformly diffusing impurities into the base region formed in the single crystal silicon layer, thereby forming a uniform emitter region. Uniform emitters do not cause short circuits between the emitter and collector, making it possible to realize bipolar integrated circuits with high yield and high integration density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の一実施例の製遣方法を
説明するだめの工程順に示した断面図、第2「4は従来
のNPNトランジスタの一例の断面図である。 1・・・P型シリコン基板、2・・・N型埋込層、3・
・・N型層、4・・・P型ベース領域、5・・・酸化膜
、6・・・1’−層多結晶シリコン層、7・・・シリコ
ン酸化膜、8・・・−4−層多結晶シリコン層、9・・
・N型エミッタ領域、10・・・N型多結晶シリコン層
、11・・結晶粒界、】2・・・バンチスル一部。
FIGS. 1(a) and 1(b) are cross-sectional views showing the manufacturing method of an embodiment of the present invention in the order of steps, and FIG. 2(4) is a cross-sectional view of an example of a conventional NPN transistor. 1... P type silicon substrate, 2... N type buried layer, 3...
... N type layer, 4... P type base region, 5... oxide film, 6... 1'-layer polycrystalline silicon layer, 7... silicon oxide film, 8...-4- Layer polycrystalline silicon layer, 9...
- N-type emitter region, 10... N-type polycrystalline silicon layer, 11... Grain boundary, ]2... Part of bunchesle.

Claims (1)

【特許請求の範囲】[Claims]  一導電型コレクタ領域内に形成された逆導電型ベース
領域と、該ベース領域内に形成された一導電型エミッタ
領域と、該エミッタ領域上に形成された一導電型多結晶
シリコン層のエミッタ電極とから成るバイポーラトラン
ジスタを有する半導体装置において、前記多結晶シリコ
ン層が、相対的に薄い下層多結晶シリコン層と該下層多
結晶シリコン層上に形成された厚さ1〜10nmの酸化
膜または高酸素含有率の多結晶シリコン層と該酸化膜ま
たは高酸素含有率の多結晶シリコン層の上に形成された
相対的に厚い上層多結晶シリコン層とから成ることを特
徴とする半導体装置。
A base region of opposite conductivity type formed within a collector region of one conductivity type, an emitter region of one conductivity type formed within the base region, and an emitter electrode of a polycrystalline silicon layer of one conductivity type formed on the emitter region. In a semiconductor device having a bipolar transistor, the polycrystalline silicon layer includes a relatively thin lower polycrystalline silicon layer and a 1 to 10 nm thick oxide film or high oxygen film formed on the lower polycrystalline silicon layer. 1. A semiconductor device comprising a polycrystalline silicon layer having a high oxygen content and a relatively thick upper polycrystalline silicon layer formed on the oxide film or the polycrystalline silicon layer having a high oxygen content.
JP28621589A 1989-11-02 1989-11-02 Semiconductor device Pending JPH03147333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28621589A JPH03147333A (en) 1989-11-02 1989-11-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28621589A JPH03147333A (en) 1989-11-02 1989-11-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03147333A true JPH03147333A (en) 1991-06-24

Family

ID=17701465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28621589A Pending JPH03147333A (en) 1989-11-02 1989-11-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03147333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232147A (en) * 1992-08-19 1994-08-19 Nec Corp Semiconductor device and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191961A (en) * 1984-10-12 1986-05-10 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191961A (en) * 1984-10-12 1986-05-10 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232147A (en) * 1992-08-19 1994-08-19 Nec Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
JP2623635B2 (en) Bipolar transistor and method of manufacturing the same
US3667115A (en) Fabrication of semiconductor devices with cup-shaped regions
JPH03147333A (en) Semiconductor device
JP2890509B2 (en) Method for manufacturing semiconductor device
JPS60136372A (en) Manufacture of semiconductor device
JPH05335329A (en) Semiconductor device and its manufacture
JPH06224213A (en) Manufacture of semiconductor device
JPH01302860A (en) Manufacture of bipolar transistor
KR100264210B1 (en) Method for separating active region of semiconductor device
JPS60257572A (en) Manufacture of semiconductor device
JPS6020570A (en) Manufacture of semiconductor device
JPH02140920A (en) Manufacture of semiconductor device
JPH0319237A (en) Manufacture of semiconductor device
JPH0451526A (en) Semiconductor device and its manufacture
JPS59138369A (en) Semiconductor device and manufacture thereof
JPH04273130A (en) Manufacture of semiconductor device
JP2004103715A (en) Semiconductor device
JPS59113619A (en) Manufacture of semiconductor device
JPH0479334A (en) Production of semiconductor device
JPH04186724A (en) Manufacture of semiconductor device
JPS59147458A (en) Manufacture of bipolar type semiconductor device with external base
JPH02234453A (en) Manufacture of semiconductor device
JPH01145808A (en) Manufacture of semiconductor integrated circuit device
JPS6376374A (en) Manufacture of semiconductor device