JPS59138369A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59138369A
JPS59138369A JP58013299A JP1329983A JPS59138369A JP S59138369 A JPS59138369 A JP S59138369A JP 58013299 A JP58013299 A JP 58013299A JP 1329983 A JP1329983 A JP 1329983A JP S59138369 A JPS59138369 A JP S59138369A
Authority
JP
Japan
Prior art keywords
region
layer
type
collector
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58013299A
Other languages
Japanese (ja)
Inventor
Kimimaro Yoshikawa
公麿 吉川
Hidetaro Watanabe
渡辺 秀太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58013299A priority Critical patent/JPS59138369A/en
Publication of JPS59138369A publication Critical patent/JPS59138369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an I<2>L without the generation of the failure of collector-base withstand voltage by a method wherein a semiconductor layer containing an imurity of conductivity type different from that of a base region is placed on said region, and a collector region is formed by making the thickness of an insulation layer covering said layer larger in the side surface than in the upper surface, when the collector region is formed in the base region. CONSTITUTION:An N<+> buried region 2 is diffusion-formed in the surface layer part of a P type Si substrate 1, an N type epitaxial layer 3 is epitaxially grown over the entire surface including said region, and an N<+> type emitter region 4 reaching the region 2 is formed thereat. Next, thick field oxide films 5 are formed on both sides of the surface of the region 4 and on the other end of the layer 3, a P type injector region 6 and a P type common base region 7 are diffusion-formed in the layer 3 other than the region 4, and the clearance therebetween is covered with an oxide film 14. Thereafter, an As doped polycrystalline Si layer 8 is provided on the region 7 and surrounded by an insulation film. The impurity in the layer 8 is diffused by heat treatment, thus forming an N<+> type collector region 10 in the region 7; while, the layer 8 is not only surrounded by an oxide film 11 but provided with a nitride film, etc. by superposition further on the side surface.

Description

【発明の詳細な説明】 本発明は半導体装@VC関するものであり、%に自己整
合させたベース接続部を有するl2L(Intelra
ted Injection Logic)及びその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device @VC having a base connection that is self-aligned to
ted Injection Logic) and its manufacturing method.

I2Lμ通常のプレーナ型バイポーラトランジスタのエ
ミッタとコレクタを逆にしたいわゆる逆構造バーチカル
トランジスタからなるインバータ用トランジスタと、こ
のトランジスタのベースをコレクタとするこれと相補形
のインジェクタ用トランジスタ峠合構造を有している。
I2Lμ has an inverter transistor consisting of a so-called reverse structure vertical transistor in which the emitter and collector of a normal planar bipolar transistor are reversed, and a complementary injector transistor with the base of this transistor as the collector. There is.

また、  I21.は論理振幅が小さく、高速かつ低消
費電力の動作が可能であり、素子分離を要しないため高
集積化が可能で、従来のバイポーラ集積回路と同一チッ
プ上に共存できるという特徴を有している。
Also, I21. It has a small logic amplitude, enables high-speed and low-power operation, and does not require element isolation, allowing for high integration, and is characterized by the ability to coexist on the same chip with conventional bipolar integrated circuits. .

l2L’i高速化するための方法として文献IIEI)
M Tech、 Dig 1979 J Ic J−8
ub−nanosecond 8etf−atigne
d 12L/MTL C1rcuitsJ と題して、
l2Lのコレクタ領域に高濃度n型ドープト多結晶シリ
コ7層t[い、ベースコンタクトホールとコレク夕領域
をシリコン酸化膜の厚みの相違による自己整合で形成す
ることを可能にし、さらに表面に露出するベース領域は
金属で被うことでベース抵抗を下げ、かつ素子の微細化
を可能にし、エミッタ・ベースとコレクタ・ベースの接
合面積比’t−11C近づける構造を可能にしたILが
示されている。
As a method for speeding up l2L'i, refer to document IIII)
M Tech, Dig 1979 J Ic J-8
ub-nanosecond 8etf-atigne
d 12L/MTL C1rcuitsJ,
7 layers of heavily n-type doped polycrystalline silicon are formed in the collector region of L2L, making it possible to form a base contact hole and a collector region by self-alignment due to the difference in the thickness of the silicon oxide film, and further exposing the surface to the surface. An IL is shown in which the base region is covered with metal to lower the base resistance, enable miniaturization of the element, and enable a structure in which the emitter-base and collector-base junction area ratio approaches 't-11C. .

しかしながら、このI2Lには多くの問題がある。However, this I2L has many problems.

以下、これを第1図′に示した従来の製造方法について
説明する。
The conventional manufacturing method shown in FIG. 1' will be explained below.

まず、p形シリコン基板lvC高湿度n形埋込層2ft
形成した後%n形エピタキシャル層3全形成し、その表
面から高濃度n+形拡散領域4t−形成し。
First, p-type silicon substrate lvC high humidity n-type buried layer 2ft
After forming the n-type epitaxial layer 3, a high concentration n+ type diffusion region 4t is formed from its surface.

エミッタとする(a)0次に、シリコン窒化膜1fr:
1OOOA堆積させ、一部間孔して約1μのシリコン酸
化膜5を選択的に形成する(b)。インジェクタ領域6
とベース領域7t−形成後、全面砒素添加多結晶シリコ
ン層8に5000A堆積させ、CVDシリコン酸化膜’
!r5000A堆積させる。このCVI) 5iU2を
エツチングし、さらIc HF : HN(J3:CH
3CO0H=1:3:8の混合液で砒素添加多結晶シリ
コン層8全選択的エツチングする(C)。次に、砒素添
加多結晶シリコン8からコレクタ領域lO全拡散形成し
ながら低温(700〜900℃)でシリコン酸化膜11
を形成する、このとき、ベース7およびインジェクタ6
上にμ数10OAのシリコン酸化膜12が形成され、砒
素添加多結晶シリコン8の側面には1000〜200O
Aのシリコン酸化膜11が形成される(d)・これ1高
濃度n1形半導体層8の酸化膜成長速度は低温で酸化す
ることにより、低allp形半導体層6.7と比べて1
招福度大きい酸化膜成長速度を有するためである。−仄
にインジェクタ6及びベース7上の薄い酸化膜12を自
己整合的にエツチングし、すべてのコンタクト穴を開口
し。
Emitter (a) 0th order silicon nitride film 1fr:
1OOOA is deposited, and a silicon oxide film 5 of approximately 1 μm is selectively formed with a hole in a portion (b). Injector area 6
After forming the base region 7t, a CVD silicon oxide film of 5000A is deposited on the entire surface of the arsenic-doped polycrystalline silicon layer 8.
! Deposit r5000A. This CVI) 5iU2 is etched and further Ic HF:HN(J3:CH
The entire arsenic-doped polycrystalline silicon layer 8 is selectively etched using a mixed solution of 3CO0H=1:3:8 (C). Next, a silicon oxide film 11 is formed at a low temperature (700 to 900°C) while forming a collector region 1O by full diffusion from arsenic-doped polycrystalline silicon 8.
At this time, the base 7 and the injector 6
A silicon oxide film 12 with a thickness of several tens of μA is formed on the top, and a silicon oxide film 12 with a thickness of 1000 to 200 μA is formed on the side surfaces of the arsenic-doped polycrystalline silicon 8.
The silicon oxide film 11 of A is formed (d) - This 1 The oxide film growth rate of the high concentration n1 type semiconductor layer 8 is 1 compared to the low allp type semiconductor layer 6.7 due to oxidation at a low temperature.
This is because it has a high oxide film growth rate. - The thin oxide film 12 on the injector 6 and base 7 is etched in a self-aligned manner to open all contact holes.

金属電極13全形成する(eJ。All metal electrodes 13 are formed (eJ.

しかしながらこの方法には以下の欠点がある。However, this method has the following drawbacks.

すなわち、低温酸化によるシリコン酸化膜の成長速度の
差、つまり、高#度♂珍半導体層8を低温酸化すること
によって成長される酸化膜11げ温度が低いほど低濃度
p−形半専体層6,7に形成されるシリコン酸化膜12
より敬倍厚く形成される。
In other words, the difference in the growth rate of silicon oxide films due to low-temperature oxidation, that is, the lower the temperature of the oxide film 11 grown by low-temperature oxidation of the high #degree rare semiconductor layer 8, the lower the concentration of the p-type semi-exclusive layer. Silicon oxide film 12 formed on 6 and 7
It is formed more thickly.

しかし1反面膜質のち密さでげおとpフッ酸系のエツチ
ング液によるエツチング速度も早く絶l/#注も悪くて
使用できないことが知られている。これがベースとコレ
クタをショートさせる原因である。
However, on the other hand, it is known that it cannot be used because the film quality is too dense and the etching speed with a p-hydrofluoric acid-based etching solution is too fast and the etchability is poor. This causes a short circuit between the base and collector.

本発明の目的はコレクタベース耐圧不良のない。An object of the present invention is to eliminate collector base breakdown voltage defects.

高信頼度の半導体装fItを提供することにある。An object of the present invention is to provide a highly reliable semiconductor device fIt.

本発明は、多結晶半祷体上全絶縁膜でおおって異方性エ
ツチングを行なうものであり、こねによって、多結晶半
導体の側面の絶縁膜が上面のそれよりも厚くなる。
In the present invention, anisotropic etching is performed by covering the entire polycrystalline semiconductor with an insulating film, and by kneading, the insulating film on the side surfaces of the polycrystalline semiconductor becomes thicker than that on the top surface.

以下1図面により本発明の実施例を詳述する。Embodiments of the present invention will be described in detail below with reference to one drawing.

まず、p形半導体基板lに高濃度n1形埋込領域2を設
け、その上にn形エピタキシャル層3を形成し、エビ層
表面から、高fA度V形拡散額域4を形成してエミッタ
領域とする(第2図(a))。次に基板表面にシリコン
窒化膜を1000〜1500A形成し、一部を開口して
選択重化して酸化膜5を形成するC窒化膜を一旦除去し
た後、CVI)酸化膜14’t−成長し、インジェクタ
ーラテラルJ’NPのペース領域を残して除去し、イオ
ン注入によってインジェクタ6とインバータのベース領
域7を形成する(第2図(b))。エビ層3表面にヒ素
添加多結晶シリコン層8 ’k 3000〜500(I
A堆積し、コレクタとなる領域を残して選択的に除去し
く第2図(C) ) 、全面を低温(700〜900℃
)で酸化する。
First, a high concentration n1 type buried region 2 is provided in a p type semiconductor substrate l, an n type epitaxial layer 3 is formed thereon, and a high fA degree V type diffusion region 4 is formed from the surface of the shrimp layer to form an emitter. area (Fig. 2(a)). Next, a silicon nitride film with a thickness of 1000 to 1500 A is formed on the substrate surface, and a portion of the silicon nitride film is opened and selectively overlapped to form the oxide film 5. After removing the C nitride film, a CVI) oxide film 14't- is grown. , the injector lateral J'NP is removed leaving behind a space region, and the injector 6 and the inverter base region 7 are formed by ion implantation (FIG. 2(b)). Arsenic-doped polycrystalline silicon layer 8'k 3000-500 (I
A is deposited and selectively removed leaving the area that will become the collector (Figure 2 (C)), and the entire surface is heated to a low temperature (700 to 900°C).
) to oxidize.

この時、インジェクタ6、ベース7表面には約312.
11がそれぞれ成長する。
At this time, the surfaces of the injector 6 and base 7 are approximately 312 mm.
11 grow each.

次に、全110にち密なCをD 8102またはプラズ
マ窒化膜15を5000〜10000 A @長させ(
第2図(e) ) 、反応性イオンエッチ等の異方性エ
ツチング装置によって垂直にエツチングする。これによ
って、ポリシリコン層8の上部VCは2000〜250
0Aの酸化膜を残したままインジェクタ6およびベース
7表面の酸化膜12?エツチングで@、−万。
Next, D 8102 or plasma nitride film 15 is coated with D 8102 or plasma nitride film 15 for a length of 5000 to 10000 A @.
2(e)), vertical etching is performed using an anisotropic etching device such as reactive ion etching. As a result, the upper VC of the polysilicon layer 8 is 2000 to 250.
Oxide film 12 on the surfaces of injector 6 and base 7 while leaving 0A oxide film? Etching @, -10,000.

ポリシリコン8の側面1ctxcVl) 8tu2また
はプラズマ窒化膜がその厚さ分だけ5000〜100O
OA残る(第2図(f) ) 。
The side surface of polysilicon 8 (1ctxcVl) 8tu2 or plasma nitride film is 5000~100O for its thickness.
OA remains (Fig. 2(f)).

この後、必要ならば全面vcp形不純物を拡散し。After this, if necessary, diffuse vcp type impurities over the entire surface.

電極を形成する(第2図(g) ) 。Form an electrode (Fig. 2(g)).

以上説明したように、ポリシリコン側面vcは0.5〜
1.0μの酸化膜を残したままベース表面の酸化膜を除
去でき、従来製法の大きな問題であったベース・コレク
タのショートを防ぐことができる0また、コレクターベ
ース間は自己整合的に形成しているので極めて小さい寸
法にでき、高集積化に及ぼす効果に著しい。
As explained above, the polysilicon side surface vc is 0.5~
The oxide film on the base surface can be removed while leaving a 1.0μ oxide film, which prevents base-collector short circuits, which was a major problem in conventional manufacturing methods.In addition, the collector base is formed in a self-aligned manner. Because of this, it can be made extremely small in size, and has a remarkable effect on high integration.

尚1本発明は多結晶半導体層を有する他の装置。Note that the present invention relates to another device having a polycrystalline semiconductor layer.

例えばシリコンゲー?MO8)ランジスタにも同様に適
用できる0すなわち、シリコンゲートMOSトランジス
タは、基板からゲート絶縁膜を介して絶縁されたゲート
となる多結晶シリコン層を有し、この多結晶シリコン層
をマスクとしてソース。
For example, silicon games? MO8) Can be similarly applied to transistors 0 In other words, a silicon gate MOS transistor has a polycrystalline silicon layer serving as a gate insulated from a substrate via a gate insulating film, and uses this polycrystalline silicon layer as a mask to connect the source.

ドレイン領域のためヂの開孔を形成してこれらの領域を
つくり、そしてソースおよびドレイン電極配線を形成す
るものであるが、このと@に1本発明にしたがってゲー
ト多結晶シリコン層を含む基板上rc酸化膜等を形成し
、イオンエツチングの異方性エツチングによる垂直なエ
ツチングにより。
Apertures are formed for the drain regions to form these regions, and source and drain electrode interconnections are formed. Form an rc oxide film, etc., and perform vertical etching using anisotropic ion etching.

多結晶シリコン層の側面vcハ絶縁膜を残し、ソースお
よびドレイン領域の一部上の絶縁膜を除去するようにす
れば、ソースおよびドレイン電極と多結晶シリコンゲー
トとの短絡を防止できる。
By leaving the insulating film on the side surface vc of the polycrystalline silicon layer and removing the insulating film on part of the source and drain regions, short circuits between the source and drain electrodes and the polycrystalline silicon gate can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(e)U従来の装造方法を示す工程断面
図、第2図(a)〜(g)’rX本発明の一実施例を示
す工程断面図である。1はp形基板、2げ口1形埋込層
。 3Un形工ピタキシヤル層、4Un工(ツタ領域。 5μフィールド酸化膜、6ip形インジェクタ領域、7
1’;[p形共通ベース領域、8にヒ素添加多結晶シリ
コン、9μCVI)酸化膜klOHnlOHnコレクタ
領域長11μ多結盾 hp形ペース上の酸化膜、13μ電極、14μ酸化膜、
15は酸化膜またはプラズマ窒化膜を示す。 第1図 第 l 図 第 Z 図
Fig. 1 (al to e) U is a process sectional view showing a conventional mounting method, and Fig. 2 (a) to (g)'rX is a process sectional view showing an embodiment of the present invention. 1 is a p type substrate, 2-shaped injector area, 1-type buried layer. 3-type pit axial layer, 4-type (vine area), 5μ field oxide film, 6-type injector area, 7-type injector area.
1'; [p-type common base region, 8 arsenic-doped polycrystalline silicon, 9μ CVI) oxide film klOHnlOHn collector region length 11μ oxide film on polycrystalline hp-type paste, 13μ electrode, 14μ oxide film,
15 indicates an oxide film or a plasma nitride film. Figure 1 Figure l Figure Z

Claims (1)

【特許請求の範囲】 1、半導体基体上に選択的に形成された多結晶半導体層
を傑う絶縁膜のうち前記多結晶半導体層の上面上の厚さ
よりも側面上の厚さの万が厚いことを特徴とする半導体
装置。 2、半導体基板上に@手または絶縁膜を介して多結晶半
導体層を選択的に形成する工程と、該多結晶半導体Ri
iを機う絶縁膜を前記半導体基板上に形■する工程と、
イオンエツチングによる異方性エツチングを利用して前
記多結晶半導体層の側面上の絶縁膜な残し前記半導体基
板の一部分上の絶縁膜は除去されるように前記絶縁膜を
エツチングする工程とを有することを特徴とする半導体
装1wの大造方法。
[Claims] 1. Among the insulating films selectively formed on the semiconductor substrate, which are superior to the polycrystalline semiconductor layer, the thickness on the side surface of the polycrystalline semiconductor layer is thicker than the thickness on the top surface of the polycrystalline semiconductor layer. A semiconductor device characterized by: 2. A step of selectively forming a polycrystalline semiconductor layer on a semiconductor substrate or via an insulating film, and
forming an insulating film on the semiconductor substrate;
etching the insulating film using anisotropic etching using ion etching so as to leave the insulating film on the side surfaces of the polycrystalline semiconductor layer and remove the insulating film on a portion of the semiconductor substrate; A large manufacturing method for a semiconductor device 1W characterized by the following.
JP58013299A 1983-01-28 1983-01-28 Semiconductor device and manufacture thereof Pending JPS59138369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58013299A JPS59138369A (en) 1983-01-28 1983-01-28 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58013299A JPS59138369A (en) 1983-01-28 1983-01-28 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59138369A true JPS59138369A (en) 1984-08-08

Family

ID=11829303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58013299A Pending JPS59138369A (en) 1983-01-28 1983-01-28 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59138369A (en)

Similar Documents

Publication Publication Date Title
US4160991A (en) High performance bipolar device and method for making same
US3955269A (en) Fabricating high performance integrated bipolar and complementary field effect transistors
US4236294A (en) High performance bipolar device and method for making same
US4710241A (en) Method of making a bipolar semiconductor device
JPH05347383A (en) Manufacture of integrated circuit
US4016596A (en) High performance integrated bipolar and complementary field effect transistors
US5019523A (en) Process for making polysilicon contacts to IC mesas
JPH0254934A (en) Bipolar transistor
JPH0193159A (en) Manufacture of bicmos element
JPS5978555A (en) Semiconductor device
JPH0226032A (en) Manufacture of semiconductor device
US3776786A (en) Method of producing high speed transistors and resistors simultaneously
JPS59138369A (en) Semiconductor device and manufacture thereof
JPS59138367A (en) Semiconductor device
KR930000295B1 (en) Manufacturing method of bipolar transistor using lateral self alignment
JPS6021568A (en) Manufacture of semiconductor device
JPH0271526A (en) Semiconductor integrated circuit and manufacture thereof
JPS60257572A (en) Manufacture of semiconductor device
KR0151122B1 (en) A method for making a bipolar device
JPH0567623A (en) Manufacture of semiconductor device
JPH0499329A (en) Manufacture of semiconductor device
JPH02152240A (en) Manufacture of semiconductor device
JPH0629304A (en) Semiconductor device and manufacture thereof
JPS6020570A (en) Manufacture of semiconductor device
JPS6129171A (en) Manufacture of semiconductor device