JPS60257572A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60257572A
JPS60257572A JP11588384A JP11588384A JPS60257572A JP S60257572 A JPS60257572 A JP S60257572A JP 11588384 A JP11588384 A JP 11588384A JP 11588384 A JP11588384 A JP 11588384A JP S60257572 A JPS60257572 A JP S60257572A
Authority
JP
Japan
Prior art keywords
layer
region
insulating film
single crystal
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11588384A
Other languages
Japanese (ja)
Inventor
Hiromi Sakurai
桜井 弘美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11588384A priority Critical patent/JPS60257572A/en
Publication of JPS60257572A publication Critical patent/JPS60257572A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a semiconductor device having small junction capacitance by utilizing a polycrystalline layer formed onto an insulating film as an inert region in a semiconductor element and using a single crystal layer in an opening as an active region. CONSTITUTION:Boron ions, etc. are implanted to a P type silicon substrate 1, a channel cut region 7 is shaped, and an oxide film 8 is formed onto the region 7 in thickness of 1.5mum. A desired region is bored through anisotropic etching, the ions of Sb, As, etc. are implanted, and an N<+> type buried layer 3 is shaped through treatment in a non-oxidizing atmosphere at a high temperature of approximately 1,200 deg.C. Silicon is grown selectively in an epitaxial manner. When an epitaxial growth layer 4 is superposed in thickness thicker than the thickness of the oxide film 8 at that time, a polycrystalline layer 4b grows toward the lateral direction from a single crystal growth layer 4a even on the oxide film 8, and an extent increases with the thickening of thickness. Since the polycrystalline layer shaped onto the insulating film 8 is utilized as an inert region in a semiconductor element and the single crystal layer in and on the opening is used effectively as an active region, a semiconductor device having small junction capacitance and high performance is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半襟体装置の製造方法、特に超高速論理L8
工用バイポーラトランジスタの製造方法に関するもので
ある。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to a method for manufacturing a half-collar device, particularly an ultra-high-speed logic L8
The present invention relates to a method of manufacturing an industrial bipolar transistor.

〔従来技術〕[Prior art]

従来から、超高速論理LSI用バイポーラトランジスタ
としては素子間を酸化膜で分離した構造のトランジスタ
、例えばベル研究所の0XIIII構造、米フェアチャ
イルド・セミコンダクタ社のアイソプレーナ■構造、シ
ーメンス社のOX工S構造のトランジスタが知られてお
り、これらの構造のトランジスタを用いれば従来多く使
われていたPN分離形トランジスタに比べて素子面積が
約60%程度に低減でき、かつコレクタ・ベース接合面
積が40チ程度に低減できることから、超高速論即、 
L SIに適用して、その集積度、遅延向間−消9 ?
I[i力積を非常に小さくすることができる。
Traditionally, bipolar transistors for ultra-high-speed logic LSIs have a structure in which elements are separated by an oxide film, such as Bell Laboratories' 0XIII structure, Fairchild Semiconductor's isoplanar ■ structure, and Siemens' OXS. Transistors with this structure are known, and if transistors with these structures are used, the device area can be reduced to about 60% compared to the conventionally widely used PN isolated transistor, and the collector-base junction area can be reduced to 40 cm. Since it can be reduced to a certain degree, the ultrahigh speed theory immediately
Applying to LSI, its degree of integration, delay direction - 9?
I[i impulse can be made very small.

以下、上述した高速LSI用酸化膜分離形トランジスタ
f:第1図(a)〜(t)の製造工程に従って具体的に
説明する。
Hereinafter, the above-mentioned oxide film isolated transistor f for high-speed LSI will be explained in detail according to the manufacturing process shown in FIGS. 1(a) to 1(t).

まず、第1図(a)に示すように比較的低濃度(〜コo
 I ’I cm −3)のP形シリコン基板(1)上
に酸化膜(2)を成長させ、次に第1図(b)に示すよ
うにその酸化膜(2)の一部を写J’(、製版およびエ
ツチングで除去して開孔し、しかる後この開口部からN
″〜形埋込み層(3)となるべきsbまたはA8をイオ
ン注入し、次に第1図(c)に示すように酸化および上
記注入イオンのドライブ拡散を行なう。しかる後、第1
図(d)に示すように酸化膜(2)を除去し、比較的低
濃度(〜10”cm−3)のN形エピタキシャル層(4
)を成長させる。このとき縦方向オートドーピングが起
り N+形埋込み層(3)の−ヒ部に位置するN−形層
は他の領域のそれよりもやや実効厚さが薄くなる。次に
、第1図(e)に示すように下敷酸化膜(5)および耐
酸化性絶縁膜(6)を形成し、トランジスタ等の素子、
配線! となるべき半専体頭」戚、すなわち第1図では
r形層: 埋込み層(3)の」二部以外の部分の下敷酸化膜(5)
および耐酸化性絶縁膜(6)を除去する。しかる後、第
1図(f)に示すように下敷酸化膜(5)および耐酸化
性絶縁膜(6)をマスクとしてN形エピタキシャルR(
4) ’cエツチングし、さらにボロンをイオン注入し
てP形チャネルカッ)@*(7)を形成する。次いで、
第1図(g)に示すように選択酸化を行ない絶縁性酸化
膜(8)を形成し、耐酸化性絶縁膜(6)および下敷酸
化膜(5)を除去する。次に第1図()1)に示すよう
にベース領域以外はレジスト(9)で覆い、ボロンをイ
オン注入し、P+形活性ベース領域aOを形成する。同
様に第1図(i)に示すように、P+形非活性ベース@
域(11)をP+形活性ベース領域四より高濃度で形成
する。
First, as shown in Figure 1(a), the concentration is relatively low (~
An oxide film (2) is grown on a P-type silicon substrate (1) of I'I cm -3), and then a part of the oxide film (2) is photographed as shown in Figure 1(b). '(, a hole is removed by plate making and etching, and then N from this opening
The sb or A8 which is to become the shaped buried layer (3) is ion-implanted, and then oxidation and drive diffusion of the implanted ions are performed as shown in FIG. 1(c).
As shown in Figure (d), the oxide film (2) is removed and an N-type epitaxial layer (4) with a relatively low concentration (~10"cm-3) is removed.
) to grow. At this time, vertical auto-doping occurs, and the effective thickness of the N- type layer located in the negative part of the N+ type buried layer (3) becomes slightly thinner than that in other regions. Next, as shown in FIG. 1(e), an underlying oxide film (5) and an oxidation-resistant insulating film (6) are formed, and elements such as transistors, etc.
wiring! The semi-dedicated head layer that should become the R-shaped layer in Figure 1: The underlying oxide film (5) of the part other than the second part of the buried layer (3).
and the oxidation-resistant insulating film (6) is removed. Thereafter, as shown in FIG. 1(f), an N-type epitaxial layer R (
4) 'c etching and further boron ion implantation to form a P-type channel cut)@*(7). Then,
As shown in FIG. 1(g), selective oxidation is performed to form an insulating oxide film (8), and the oxidation-resistant insulating film (6) and underlying oxide film (5) are removed. Next, as shown in FIG. 1() 1), areas other than the base region are covered with a resist (9), and boron ions are implanted to form a P+ type active base region aO. Similarly, as shown in Figure 1(i), P+ type inactive base @
Region (11) is formed with a higher concentration than P+ type active base region 4.

しかる後、第1図(j)に示すようにしンスト(9)を
除去し、CVD法により半導体表面を酸化膜で顧い、そ
の状態でこれら?形活性ベース領域Q!および1辻形非
活性ベース領域αJ)のドライブ拡散を行う。次いで、
第1図(k)に示すように、ベース、エミッタ。
Thereafter, as shown in FIG. 1(j), the semiconductor (9) is removed, the semiconductor surface is covered with an oxide film by CVD method, and these ? Shape active base area Q! and drive diffusion of the one-legged inactive base region αJ). Then,
As shown in FIG. 1(k), a base and an emitter.

コレクタのコンタクトを取る部分の酸化膜を除去し、ベ
ースコンタクトとなる@域のみレジスト(9)で覆い、
他の酸化膜除去領域よりA8をイオン注入してN+iエ
ミッタ領域0乃およびN+fコレクタ領域領域間時に形
成する。次に、上記レジストを除去して、イオン注入後
のAsのアニールを行い、しかる後第1図(看に示すよ
うにベース、エミッタ。
Remove the oxide film on the collector contact area, cover only the @ region that will become the base contact with resist (9),
A8 is ion-implanted from other oxide film removed regions to form N+i emitter regions 0 to N+f collector regions. Next, the above-mentioned resist is removed, and after ion implantation, As is annealed, and then the base and emitter are removed as shown in FIG.

コレクタの開孔部にそれぞれベース電極0→、エミッタ
電源0υ、コレクタ電極θQを形成して)(イボーラト
ランジスタを形成する。
A base electrode 0→, an emitter power supply 0υ, and a collector electrode θQ are respectively formed in the opening of the collector) (an Ibora transistor is formed).

」−記のような従来の絶縁膜分離構造の)くイポーラト
ランジスタは、1形埋込み層(3)とP形チャネルカッ
ト領域(7)ならびに絶縁膜分離(8)によってトラン
ジスタ同寸たは他の素子間が分離される力1ら、P−N
分11i[fにくらべると、ベースコレクタ接合容量(
CTo)およびコレクター基板接合容量(CT8)75
:それぞれ〜]/2.〜5/6程鹿に低減すること力;
できる○ しかしながら、超高速ノくイボーラ構造の改善に関する
限り周波数特性をさらに改善することカニ重数である。
A polar transistor with a conventional insulating film isolation structure (as shown in the figure above) has a type 1 buried layer (3), a P type channel cut region (7), and an insulating film isolation structure (8), making it possible to maintain transistors with the same size or other characteristics. The force that separates the elements of 1 et al., P−N
11i [f], the base-collector junction capacitance (
CTo) and collector substrate junction capacitance (CT8) 75
:Each~]/2. ~5/6 power can be reduced to deer;
Possible ○ However, as far as improving the Ibora structure for ultra-high speeds is concerned, it is important to further improve the frequency characteristics.

そのためにはベース抵抗(rbb’)の(ffi減、エ
ミッターベース接合容量(C,、)およびCTCI C
T8の低減ならびに狭いベース幅および低いコレクタ抵
抗となる構造が再現性よく実状できなければならない。
For this purpose, (ffi reduction of base resistance (rbb'), emitter-base junction capacitance (C, ) and CTCI C
Structures that result in reduced T8, narrow base width, and low collector resistance must be realized with good reproducibility.

トランジスタの微細化によるメ1ノットは上述(D C
,、、CT、 、 CT11の低減ならびにrhb’の
イ氏減によるトランジスタ性能の改善効果を期待するも
のであり、例えば3×3μm2の微細エミツク構造のト
ランジスタにおいては、cT8= o、05pF 、 
C,、C= o、04−TJF r CT8= 0.1
6pFと各部容量が小さくなり、呈;交断固波& (f
r) f−2GH2程度とすることができ、このトラン
ジスタLSIに用いれば、その伝播遅延速度を0.50
n sec/Gateとすることができる○しかしなが
ら、従来のトランジスタ構造では、N+形埋込み層(3
)がトランジスタのアクテイフ゛イ頁」y曳つまりエミ
ッタ直下部分のみならず、ベースやコレクタ引出用コン
タクト部まで広がらなければ、素子間分離が実現できず
、従ってコレクター基板接合容量(CT8)が前述の例
でもわかるように1妾合容量の64%を占め、充分小さ
くすることはできなかった。したがって、ノ<イ、Iイ
ーラ1.sIの高速HISを図る上においては、従来構
造でけ/こと對、微#lI+ (ヒが進んだとしても、
コレクター稈、板接合容N′r(CT、)を充分小さく
できないため、高速化を図る上で限界があった。
The number of knots due to the miniaturization of transistors is as described above (D C
, , , CT, , It is expected that the transistor performance will be improved by reducing CT11 and rhb'. For example, in a transistor with a fine emitter structure of 3 x 3 μm2, cT8 = o, 05 pF,
C,, C= o, 04-TJFr CT8= 0.1
The capacitance of each part is reduced to 6pF, and the appearance;
r) It can be set to about f-2GH2, and if used in this transistor LSI, the propagation delay speed can be reduced to 0.50.
However, in the conventional transistor structure, the N+ type buried layer (3
) does not extend to the transistor's active page, that is, not only to the area directly below the emitter, but also to the base and collector lead-out contact area, otherwise isolation between elements cannot be achieved. Therefore, even in the above example, collector substrate junction capacitance (CT8) As can be seen, it occupied 64% of the capacity of one concubine, and could not be made sufficiently small. Therefore, no<i, Iira1. In aiming for high-speed HIS of sI, the conventional structure cannot be used;
Since the collector culm and plate joint volume N'r (CT) cannot be made sufficiently small, there is a limit to how high the speed can be achieved.

しかも現状の写真製版技術では精度上3μmが最も微細
で安定なレベルであり、この設計基準で従来構造のもの
を作れば、ベース、エミッタの形状が3μmルールで決
まり、CTE + 07゜も何らかの新らだな構造でな
いかぎり前述のレベルしか達成できなかった。
Furthermore, with the current photolithography technology, 3 μm is the finest and most stable level of accuracy, so if a conventional structure is made using this design standard, the shape of the base and emitter will be determined by the 3 μm rule, and the CTE + 07° will also be determined by some new technology. Unless it had a radial structure, only the above level could be achieved.

〔発明の概要〕[Summary of the invention]

この発明は以上のような点に鑑みてなされたもので、半
導体基板上に形成した絶縁膜に開口を形成17、この開
口部に半導体を絶縁膜の厚さ以上の厚さにエピタキシャ
ル成長させ、このときに絶縁膜上に広がって形成される
多結晶層を半導体素子の非活性領域に利用し、上記開口
内の単結晶層は活性領域に有効利用するようにすること
によって、接合容量の小きい半導体装置を得る方法を提
供す′、F るものである。
This invention has been made in view of the above points, and includes forming an opening 17 in an insulating film formed on a semiconductor substrate, epitaxially growing a semiconductor in this opening to a thickness equal to or greater than the thickness of the insulating film, and forming an opening 17 in an insulating film formed on a semiconductor substrate. By using the polycrystalline layer that is sometimes formed spread over an insulating film as the non-active region of the semiconductor element, and effectively using the single crystal layer inside the opening as the active region, the junction capacitance can be reduced. The present invention provides a method for obtaining a semiconductor device.

1: 〔発明の実施例J 第2図(a)〜(f)はこの発明の一実施例方法の主要
段階における状態を示す断面図で、まず、第2図(a)
に示すようにP形シリコン基板(1)にボロンなどのイ
オン注入をしてチャネルカッli域(7)k形成しその
上に酸化膜(8)を1.5μmの厚さに形成する。
1: [Embodiment J of the Invention Figures 2(a) to (f) are cross-sectional views showing the main stages of a method according to an embodiment of the present invention. First, Figure 2(a)
As shown in the figure, a channel cut region (7) is formed by implanting ions such as boron into a P-type silicon substrate (1), and an oxide film (8) is formed thereon to a thickness of 1.5 μm.

その後に所望領域を異方性エツチングによって開口し、
Sb 、Asなどをイオン注入し、約1200″Cの高
温の非酸化性雰囲気中で処理してIJ+形埋込み層(3
)を形成する。Ir形埋込み層(3)は開口エツジに等
方的に広がるので、従来方法におけるようなマスク合わ
せ操作による「ずれ」の発生のおそれはない。次に、第
2図(b)に示すように、シリコンの選択エピタキシャ
ル成長を行う。エピタキシャル成長層(4)は従来と同
様N形である。このときシリコンの上にはエピタキシャ
ル層が成長し絶縁膜の上には伺も成長し、ないのである
が、エピタキシャル成長層(4)を酸化膜(8)の厚さ
よりも犀く槓むと、酸化膜(8)の上にも単結晶成址層
(4a)から横方向に向って多結晶層(4b)が成長す
る。この横方向に成長する長さは酸化膜(8)上に安定
点をめて移動するシリコンが単結晶シリコンとdXI会
ったとさ、ぞこで留り、シリコン成長するものであり、
エピタキシャル成長層(4)のJlを厚くするほど広が
りが増加する。次に、第2図(c)に示すように、全上
面を酸化性雰囲気中で高温にすることによって酸化膜で
覆う。この酸化膜はCVD 、スパッタリングなどでデ
ポジションしてもよく、また、酸化膜に代えて窒化シリ
コン膜のような他の絶縁膜であってもよい。次に、第2
図(d)に示すように、研磨機によって多結晶P(4b
)部分が3000八程度の厚さに残るように研磨してJ
x 1fiiを平坦化する。研磨は0.5μ、n 8.
+、7度の粒径で行っても十分平坦な面が得られる。そ
の後に層(4a)、(4b)の上面からボロンを注入し
て、これをドライブしてP+形ベース饋領域nを形成し
、全上面を酸化膜で覆って第21’J(e)の構造を得
る。次に、第2図(f)に示すように、ベースおよびエ
ミッタのコンタクトを取る部分の酸化膜を除去し、後者
の除去部分からのみAsなどをイオン注入して14+形
エミツタ領壊04を形成する。以下図示しなかったがそ
れぞれ従来と同様電極を形成する。この構造では非活性
ベース領域θ1)を絶縁膜の上へ追い出すことによって
P−N接合面積は極めて小さくできる。トランジスタの
活性ベース面積、埋込みコレクタ面積も小さくできるの
でC1゜ICT8が従来構造の2/3〜1/2にすると
とがてき、ベース抵抗も開口全周から電(仮を取出せる
ので低くなり、高性能トランジスタが実現できる。
After that, the desired area is opened by anisotropic etching,
Sb, As, etc. are ion-implanted and treated in a non-oxidizing atmosphere at a high temperature of about 1200"C to form an IJ+ type buried layer (3
) to form. Since the Ir-type buried layer (3) spreads isotropically to the edge of the opening, there is no risk of "misalignment" occurring due to mask alignment operations as in conventional methods. Next, as shown in FIG. 2(b), selective epitaxial growth of silicon is performed. The epitaxial growth layer (4) is of N type as in the conventional case. At this time, an epitaxial layer grows on the silicon, and no cracks grow on the insulating film, but when the epitaxial growth layer (4) is rolled to a thickness smaller than that of the oxide film (8), the oxide film is formed. Also on (8), a polycrystalline layer (4b) grows laterally from the single crystal growth layer (4a). The length of this lateral growth is such that when silicon moves to a stable point on the oxide film (8) and meets single crystal silicon, it stops there and grows.
The thicker the Jl of the epitaxial growth layer (4), the more the spread increases. Next, as shown in FIG. 2(c), the entire upper surface is covered with an oxide film by heating it to a high temperature in an oxidizing atmosphere. This oxide film may be deposited by CVD, sputtering, etc. Alternatively, the oxide film may be replaced by another insulating film such as a silicon nitride film. Next, the second
As shown in Figure (d), polycrystalline P (4b
) part remains with a thickness of about 30008 J
Flatten x 1fii. Polishing is 0.5μ, n8.
A sufficiently flat surface can be obtained even if the grain size is + or 7 degrees. After that, boron is implanted from the upper surface of the layers (4a) and (4b), and this is driven to form a P+ type base feeding region n, and the entire upper surface is covered with an oxide film to form the 21'J(e). Get structure. Next, as shown in FIG. 2(f), the oxide film at the part where the base and emitter are to be contacted is removed, and ions such as As are implanted only from the latter removed part to form a 14+ type emitter region 04. do. Although not shown in the drawings, electrodes are formed in the same manner as in the prior art. In this structure, the PN junction area can be made extremely small by pushing the inactive base region θ1) onto the insulating film. Since the active base area and the buried collector area of the transistor can be reduced, C1°ICT8 can be reduced to 2/3 to 1/2 of the conventional structure, and the base resistance can be lowered because the current (temporary) can be extracted from the entire circumference of the opening. High-performance transistors can be realized.

なお、上記説明では結晶欠陥については触れなかったが
、選択エピタキシャル成長を行うと酸化膜のエツジから
1〜1.5μm程度のシリコン内に欠陥が発生する。そ
こで、第2図(b)の工程の後に高温アニーリングなど
によって欠陥を除去した上で研磨する方法を採用するこ
とが望捷しい。この処理を行うことによって、接合リー
クを防ぐことができる。
Although crystal defects were not mentioned in the above description, when selective epitaxial growth is performed, defects occur within silicon at a distance of about 1 to 1.5 μm from the edge of the oxide film. Therefore, it is desirable to adopt a method of removing defects by high-temperature annealing or the like after the step shown in FIG. 2(b) and then polishing. By performing this treatment, junction leakage can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の方法でニ1:、半導体
基板上に形成した絶縁膜に開口を形成し、この開口部に
半導体を当該絶縁膜の厚さ以上の厚さにエピタキシャル
成長させ、このとき絶縁股上に広がって形成される多結
晶層を半導体素子の非活外領域に利用し、開口内および
その上の単結晶層は活性領域に有効利用する」:うにし
たので、接合界″!6−の小さい、高性能の半導体装置
が得られ、活性領域と非活性領域とを区画するだめのマ
スク合わせ操作も不用であるので、マスクずれなどの心
配もない。
As explained above, in the method of the present invention, (1): an opening is formed in an insulating film formed on a semiconductor substrate, a semiconductor is epitaxially grown in this opening to a thickness equal to or greater than the thickness of the insulating film; At the time, the polycrystalline layer that is formed over the insulating crotch is used as the non-active region of the semiconductor element, and the single crystal layer inside the opening and above it is effectively used as the active region. A small, high-performance semiconductor device of 6.0 is obtained, and since there is no need for a mask alignment operation for partitioning active regions and non-active regions, there is no need to worry about mask misalignment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(力は従来構造の半導体装置の製造方法
における主要段階での状態を示す断面図、第2図(1)
〜(f)はこの発明の一実施例方法の主要段階における
状態を示す断面図である。 図において、(1)は半導体基板、(4)はエピタキシ
ャル成長層、(4a)は単結晶層、(4b)ld多結晶
層、(8)は絶縁膜、σQは活性ベース領域、(11)
は非活性ペース@域である。 なお、図中同一符号は同一゛または相当部分を示す。 代理人 大 岩、増 雄 第1図 第1.し1 第1図 第2図 3 第2図
Figures 1(a) to 2(1) are cross-sectional views showing the main stages of the manufacturing method for a semiconductor device with a conventional structure; Figure 2(1)
-(f) are sectional views showing the main stages of a method according to an embodiment of the present invention. In the figure, (1) is a semiconductor substrate, (4) is an epitaxial growth layer, (4a) is a single crystal layer, (4b) is an LD polycrystalline layer, (8) is an insulating film, σQ is an active base region, (11)
is the inactive pace @ area. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agents: Oiwa, Masuo, Figure 1, Figure 1. 1 Figure 1 Figure 2 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の一生面上に絶縁膜を形成する第1の
工程、上記絶縁膜の所望部分に開口を形成しその底面に
上記半導体基板を露出させる第2の工程、上記絶縁膜の
上から半導体を上記絶縁膜の厚さ以上の厚さにエピタキ
シャル成長させて上記開口内および半の上には単結晶層
を、その近傍の絶縁膜の上には多結晶層を得る第3の工
程、及び所要の処理を施す第4の工程を備え、上記単結
晶層を活性領域として有効に利用し、−上記多結晶層を
非活性領域とすることを特徴とする半導体装置の製造方
法。 (21g4の工程として単結晶層の欠陥を除去する加熱
処理と、エピタキシャル成長層上面を平坦にし多結晶層
を薄く残す研磨処理と、上面からの所要の不純物導入処
理とを施し上記単結晶層内に活性ベース領域を上記多結
晶層に非活性ベース領域を形成することを特徴とする特
許請求の範囲第1項記載の半導体装置の製造方法。
(1) A first step of forming an insulating film on the whole surface of the semiconductor substrate, a second step of forming an opening in a desired part of the insulating film and exposing the semiconductor substrate on the bottom surface of the opening, and a second step of forming an insulating film on the entire surface of the insulating film. a third step of epitaxially growing a semiconductor to a thickness greater than or equal to the thickness of the insulating film to obtain a single crystal layer in the opening and on the half, and a polycrystalline layer on the insulating film in the vicinity thereof; and a fourth step of performing necessary processing, wherein the single crystal layer is effectively used as an active region, and the polycrystalline layer is used as an inactive region. (As the process of 21g4, heat treatment to remove defects in the single crystal layer, polishing treatment to flatten the top surface of the epitaxial growth layer and leave a thin polycrystalline layer, and treatment to introduce necessary impurities from the top surface into the single crystal layer) 2. The method of manufacturing a semiconductor device according to claim 1, wherein the active base region is formed in the polycrystalline layer and the inactive base region is formed in the polycrystalline layer.
JP11588384A 1984-06-04 1984-06-04 Manufacture of semiconductor device Pending JPS60257572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11588384A JPS60257572A (en) 1984-06-04 1984-06-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11588384A JPS60257572A (en) 1984-06-04 1984-06-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60257572A true JPS60257572A (en) 1985-12-19

Family

ID=14673537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11588384A Pending JPS60257572A (en) 1984-06-04 1984-06-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60257572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726469A (en) * 1994-07-20 1998-03-10 University Of Elec. Sci. & Tech. Of China Surface voltage sustaining structure for semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726469A (en) * 1994-07-20 1998-03-10 University Of Elec. Sci. & Tech. Of China Surface voltage sustaining structure for semiconductor devices

Similar Documents

Publication Publication Date Title
JPS6347963A (en) Integrated circuit and manufacture of the same
JPS6252963A (en) Manufacture of bipolar transistor
JPH0193159A (en) Manufacture of bicmos element
JPS6273667A (en) Manufacturing semiconductor element
JPS60257572A (en) Manufacture of semiconductor device
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPS6021568A (en) Manufacture of semiconductor device
JPS6097670A (en) Semiconductor device
JPH01108772A (en) Manufacture of bipolar transistor
JPS60136372A (en) Manufacture of semiconductor device
JPS6350062A (en) Semiconductor device
JPS6020570A (en) Manufacture of semiconductor device
JPS60211867A (en) Semiconductor device and manufacture thereof
JPH0499329A (en) Manufacture of semiconductor device
JPH01268169A (en) Bipolar transistor
JPS59191380A (en) Semiconductor device and manufacture thereof
JPH03203333A (en) Semiconductor device and manufacture thereof
JPS59200464A (en) Manufacture of bipolar semiconductor device
JPS59231833A (en) Semiconductor device and manufacture thereof
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH05335329A (en) Semiconductor device and its manufacture
JPS633420A (en) Semiconductor device
JPS641933B2 (en)
JPS6395664A (en) Semiconductor device and manufacture thereof
JPS60211978A (en) Semiconductor device