JPS6273667A - Manufacturing semiconductor element - Google Patents

Manufacturing semiconductor element

Info

Publication number
JPS6273667A
JPS6273667A JP61147979A JP14797986A JPS6273667A JP S6273667 A JPS6273667 A JP S6273667A JP 61147979 A JP61147979 A JP 61147979A JP 14797986 A JP14797986 A JP 14797986A JP S6273667 A JPS6273667 A JP S6273667A
Authority
JP
Japan
Prior art keywords
oxide film
layer
polycrystalline silicon
thickness
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61147979A
Other languages
Japanese (ja)
Other versions
JPH0482180B2 (en
Inventor
相勲 蔡
振孝 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPS6273667A publication Critical patent/JPS6273667A/en
Publication of JPH0482180B2 publication Critical patent/JPH0482180B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/011Bipolar transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/051Etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/117Oxidation, selective
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/124Polycrystalline emitter

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体素子の製造方法に関し詳しくは超高周
波領域でも作動する高速バイポーラトランジスターの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a high-speed bipolar transistor that operates even in an ultra-high frequency region.

[従来の技術] 一般に集積回路に良好な電気的特性をイー4与するには
、これを構成する各素子の作動速度の特性と電力消費の
特性の良いことが要求される。特にコンピュータの中央
処理装置や通信用集積回路等高速を要する部分に多く使
われるバイポーラ回路は、今後システム自体が一段と複
雑になるにつれ、各素子の速度特性だけでなく素子自体
の大きさにおいても多くの改善を要する。
[Prior Art] Generally, in order to provide an integrated circuit with good electrical characteristics, it is required that each element constituting the integrated circuit has good operating speed characteristics and good power consumption characteristics. In particular, bipolar circuits, which are often used in parts that require high speeds such as computer central processing units and communication integrated circuits, are becoming more and more complex as systems themselves become more complex. Needs improvement.

第3図にP−N接合による従来のバイポーラトランジス
ターの断面を示す。バイポーラ集積回路の製造に今まで
使用されている接合面による素子隔趙の方法は、側面拡
散の影響および空乏領域の存在等を考慮すれば、第3図
に示した部分(11)の大きさをある限界以上は縮めら
れないので、素子面積の縮小には多くの制約があった。
FIG. 3 shows a cross section of a conventional bipolar transistor using a PN junction. The method of separating elements using junction surfaces, which has been used up to now in the manufacture of bipolar integrated circuits, takes into account the effects of lateral diffusion and the presence of depletion regions, and reduces the size of the portion (11) shown in Figure 3. cannot be reduced beyond a certain limit, so there are many restrictions on reducing the device area.

そのため素子自体が持っている抵抗成分と容量成分をよ
り以上縮められず、作動の速度および電力消費の面にお
いてあまりいい結果を得られなかった。
Therefore, it was not possible to further reduce the resistance and capacitance components of the element itself, and it was not possible to obtain very good results in terms of operating speed and power consumption.

上記の問題を解決するために最近バイポーラトランジス
ター製造技術が開発された。第4図に示した酸化膜(S
iOz)による素子の隔離方法と多結晶シリコン層(2
1)によるエミッタ(22)とベース(24)の自己整
合を合わせて得られたトランジスターをps^(Pol
ysilicon 5elf −ali3end) ト
ランジスターという。
Bipolar transistor manufacturing techniques have recently been developed to solve the above problems. The oxide film (S
iOz) and the polycrystalline silicon layer (2
The transistor obtained by combining the self-alignment of the emitter (22) and base (24) according to 1) is called ps^(Pol
ysilicon 5elf -ali3end) It is called a transistor.

この技術を適用して集積回路を製造すると素子の面積の
縮小が可能であり、エミッタ(22)、ベース(24)
を浅い接合で形成するので、素子内に存在する抵抗成分
と容量成分が減って、作動速度、電力消費、集積度等の
全てに良い結果をもたらす。
By applying this technology to manufacture integrated circuits, it is possible to reduce the area of the device, and the emitter (22), base (24)
Since the junction is formed with a shallow depth, the resistance and capacitance components present in the device are reduced, resulting in better results in terms of operating speed, power consumption, and degree of integration.

第4図はPSA方式によって作製されたバイポーラNP
N トランジスターの断面図である。なお、多結晶シリ
コンによりエミッタとベースが自己整合されたPS^バ
イポーラNPN I−ランシスターの製造に当っては、
ベース領域に存在する直列抵抗成分を少なくするために
、P−活性ベースの領域とベースの外部導線の役をする
P″多結晶シリコン層との間に、第4図の部分(23)
のように不純物の濃度の高いP“非活性ベースの領域を
形成しておく。しかし、この面積が広ければこの部分で
生ずる少数キャリアの蓄積が大きくなり5容量酸分が増
加し−で作動の速度はかえって落ちることになる。これ
を解決するために新しい工法によって作られたトランジ
スターがイj′る。
Figure 4 shows a bipolar NP fabricated by the PSA method.
FIG. 3 is a cross-sectional view of an N transistor. In addition, when manufacturing a PS^ bipolar NPN I-run sister whose emitter and base are self-aligned using polycrystalline silicon,
In order to reduce the series resistance component present in the base region, a portion (23) in FIG.
A P"inactive base region with a high concentration of impurities is formed as shown in FIG. On the contrary, the speed will decrease.To solve this problem, transistors made using new manufacturing methods will be developed.

これは第5図で示すJ:うに、P3多結晶シリコン層(
31)の下の部分の厚さ1500人の酸化膜(32)を
ウエットエッヂングにより約4000〜6000人A%
エッチングした後、減圧気相成長法によってP゛多結晶
シリコンを埋めて熱処理し、第5図に示した幅4000
〜6000人の非活性ベース領域(33)を形成する。
This is shown in Figure 5.
31) The oxide film (32) with a thickness of 1,500 mm on the lower part is reduced to approximately 4,000 to 6,000 percent by wet etching.
After etching, P polycrystalline silicon is buried and heat treated using a low pressure vapor phase growth method, and the width is 4000 mm as shown in Fig. 5.
Form an inactive base area (33) of ~6000 people.

しかしこのようにして作られたバイポーラNPNトラン
ジスターは、PS八へ−ランシスターに比へ作動速度特
性の面では著しく改善されたが、非活性ベース領域の幅
がウェットエッチングにより決まるから工程の調節がむ
ずかしく、しかもNPN I−ランシスターにおいてエ
ミッタが形成される部分が露出した状態で工程が進行す
るので、工程中に特にドライエッチングの過程でトラン
ジスターの作動領域のシリコン表面が損傷され、素子の
電気的特性が悪くなる可能性がある。
However, although the bipolar NPN transistor made in this way has significantly improved operating speed characteristics compared to the PS8-Run sister, the width of the inactive base region is determined by wet etching, making it difficult to adjust the process. Moreover, the process proceeds with the part where the emitter will be formed in the NPN I-lan sister exposed, so the silicon surface in the active area of the transistor is damaged during the process, especially during the dry etching process, which may cause electrical damage to the device. Characteristics may deteriorate.

[発明が解決しようとする問題点] 本発明は上述した従来の欠点を解決し、素子面積が小さ
く、動作速度が速く、電気特性が良好な半導体素子を製
造する方法を提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to solve the above-mentioned conventional drawbacks and to provide a method for manufacturing a semiconductor device with a small device area, high operating speed, and good electrical characteristics. do.

[問題点を解決するための手段] このような目的を達成するために、本発明の半導体素子
の製造方法は、ウェハーの表面に砒素イオンを注入し、
1200℃で拡散してN+埋込層を形成し、その上に燐
がドーピングされたN型エピタキシャル層を厚さ1.6
μmに形成し、マスクとして酸化膜形成部位表面の55
00人をエッチングし、その後P’型不純物を・イオン
注入し、925℃で湿式酸化法によりIOK人のJγさ
の酸化膜(1)を形成して各素子を分離する半導体素子
の製造方法において、ボロンをイオンY主入してトラン
ジスターのベース領域(2)を形成し、ウェハー全面に
減圧気相成長法により、厚さ3000人の多結晶シリコ
ン層を形成し、多結晶シリコン層に不純物(砒素)をイ
オンlま人してN゛型にする工程と、N゛型馬上に減圧
気相成長法により厚さ2000人の1次酸化膜層(4)
と1次窒化膜層(6)を形成する工程と、写真食刻によ
りエミッタ(15)およびコレクタ(16)になる多結
晶シリコンの部位をまず決定して余分の部分をドライエ
・・ノチングで除去し、N9多結晶シリコン層(3)を
酸化膜の下で過多エッチングしてエミッタ幅(5)を2
μmより小さく形成する工程と、厚さ2500人の2次
酸化膜を減圧気相成長し、側面の酸化膜(8)だけを残
して反応性イオンエッチングで多結晶シリコン上面の酸
化膜(8′)を全てエッチングする工程と、その上に厚
さ2000〜3000人の2次窒化膜(9)を形成し、
プラズマエッチングで上部の2次窒化膜層(9′)を除
去する工程と、ドライエッチングにより多結晶シリコン
層の周囲のシリコン表面を約1500Åエッチングする
工程と、エッチングされた多結晶シリコン層に500人
の酸化膜を成長させ、さらにその上に厚さ700人の3
次窒化膜層(11)を減圧気相成長で堆積させる工程と
、プラズマエッチングにより3次窒化膜層の上部窒化1
1i (11’ )を除去する工程と、厚さ2500人
の酸化膜(12)を成長させる工程と、ウェットエッチ
ングにより1次、2次および3次窒化膜(6,9および
11)を除去した開放部に多結晶シリコンを減圧気相成
長によって3000人堆積し、熱拡散によりボロンをド
ーピングしてP1型に形成する工程と、写真食刻および
ドライエッチングによりP”%結晶シリコン層(13)
を形成し、熱拡散してP3非活性ベース領域(14)を
形成する工程とを含んでなることを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the method for manufacturing a semiconductor device of the present invention includes implanting arsenic ions into the surface of a wafer,
An N+ buried layer is formed by diffusion at 1200°C, and an N type epitaxial layer doped with phosphorus is formed on top of the N+ buried layer to a thickness of 1.6 cm.
55 μm on the surface of the oxide film formation site as a mask.
In a method of manufacturing a semiconductor device, the method involves etching a 00-layer film, then ion-implanting a P'-type impurity, and forming an oxide film (1) with a Jγ size of IOK using a wet oxidation method at 925° C. to separate each device. , boron ions Y are mainly introduced to form the base region (2) of the transistor, a polycrystalline silicon layer with a thickness of 3000 nm is formed on the entire surface of the wafer by low pressure vapor phase epitaxy, and impurities ( The process of converting arsenic (arsenic) into N-type ions and forming a 2000-layer primary oxide film layer (4) on the N-type using a low pressure vapor phase growth method.
Steps of forming a primary nitride film layer (6) and photolithography are used to determine the parts of the polycrystalline silicon that will become the emitter (15) and collector (16), and the excess parts are removed by dry etching. Then, the N9 polycrystalline silicon layer (3) is excessively etched under the oxide film to increase the emitter width (5) by 2.
A secondary oxide film with a thickness of 2,500 μm is grown in a vacuum vapor phase, and the oxide film (8' ), and forming a secondary nitride film (9) with a thickness of 2,000 to 3,000 people on it,
A step of removing the upper secondary nitride film layer (9') by plasma etching, a step of etching the silicon surface around the polycrystalline silicon layer by about 1500 Å by dry etching, and a step of etching the etched polycrystalline silicon layer by 500 people. An oxide film with a thickness of 700 mm is grown on top of it.
The process of depositing the next nitride film layer (11) by low pressure vapor phase epitaxy and the upper nitride layer 1 of the tertiary nitride film layer by plasma etching.
1i (11'), growing an oxide film (12) with a thickness of 2500 nm, and removing the primary, secondary, and tertiary nitride films (6, 9, and 11) by wet etching. A process of depositing 3,000 polycrystalline silicon in the open area by low pressure vapor phase growth, doping with boron by thermal diffusion to form a P1 type, and photolithography and dry etching to form a P''% crystalline silicon layer (13).
and thermally diffusing to form a P3 non-active base region (14).

[作 用] 本発明により製作されたバイポーラNPN I−ランシ
スターは、P″′非活性ベース領域の幅が必要に応じて
2000〜3000人の範囲内で正確に製造されるので
、他のトランジスターに比へてこの面積は最大限に狭く
することができる。
[Function] The bipolar NPN I-run sister fabricated according to the present invention can be fabricated with the width of the P'' non-active base region precisely within the range of 2000-3000 mm as required, so that other transistors Compared to this, the area of the lever can be made as narrow as possible.

本発明により製造されたNPN トランジスターはNゝ
多結晶シリコンによるエミッタが工程の初期に形成され
、全工程を通じてトランシタの作動領域が多結晶シリコ
ン層により保護され表面が損われないので、各素子が良
好な電気的特性をもつ個別素子を得るばかりか、ウェハ
ー全体においても収率がよい。
In the NPN transistor manufactured according to the present invention, the emitter made of polycrystalline silicon is formed at the beginning of the process, and the active area of the transistor is protected by the polycrystalline silicon layer throughout the process so that the surface is not damaged, so that each element is in good condition. Not only can individual devices with good electrical characteristics be obtained, but also the yield of whole wafers is good.

[実施例] 本発明の実施例を第1図(八)ないしくF)を参照して
詳細に説明する。
[Example] An example of the present invention will be described in detail with reference to FIGS. 1(8) to F).

第1図(^)は酸化膜(1)による素子の分離までの実
施例を示す断面図である。これをμ、体内に説明すると
P−型シリコンウェハーの表面に、厚さ工0に人の酸化
膜をマスクとして砒素をイオン注入した後、1200℃
で拡散を行ってN゛埋込層を形成し、酸化膜を完全に除
いてから、燐をドーピングした0、2Ωcmの比抵抗を
有する厚さ16μmのN型エピタキシャル層を成長させ
た。
FIG. 1(^) is a cross-sectional view showing an embodiment up to element isolation by an oxide film (1). To explain this in μ, inside the body, arsenic was ion-implanted into the surface of a P-type silicon wafer with a thickness of 0 using a human oxide film as a mask, and then heated to 1200°C.
After the oxide film was completely removed, a 16 μm thick N-type epitaxial layer doped with phosphorus and having a resistivity of 0.2 Ωcm was grown.

次は素子を分難する酸化膜を形成する段階であり、厚さ
500人の酸化膜と厚さ2000人の窒化膜(Si3N
4)をマスク物質として、分離酸化膜(1)が形成され
る部分のシリコンの表面を約5500Åエッチングして
、P″″分離層を形成するためにイオン注入を行い、9
25℃で湿式酸化法により厚さ10M人の酸化M(1)
を成長させた。次にボロンをイオン注入してベース(2
) を形成し、ウェハー全面に厚さ3000人の多結晶
シリコン膜を減圧気相成長法によりりい、砒素イオン注
入をしてN゛型となした。その上に厚さ2000人の1
次酸化膜層(4)と厚さ2000人の1次窒化膜(6)
を減圧気相成長法で奮う。ここで写真食刻法でエミッタ
とコレクターが形成される。多結晶シリコン部分(3)
を定めドライエッチングで不必要な部分を除去する。こ
の工程において、最終の多結晶シリコン層はドライエッ
チングの際約500 人残してウェットエッチングする
ことにより、シリコンの表面を保護し、N0多結晶シリ
コン層の除去された部分(7)の如く酸化I膜下部分は
過多腐食され、形成されたエミッタ幅(5)はあうかし
め定まった幅2μmよりずっと狭く形成された。
The next step is to form an oxide film that separates the device, including an oxide film with a thickness of 500 and a nitride film (Si3N) with a thickness of 2000.
Using 4) as a mask material, the surface of the silicon where the isolation oxide film (1) is to be formed is etched to about 5500 Å, and ions are implanted to form a P'''' isolation layer.
Oxidized M(1) with a thickness of 10M by wet oxidation method at 25℃
grew. Next, boron ions are implanted into the base (2
), a polycrystalline silicon film with a thickness of 3,000 wafers was deposited on the entire surface of the wafer by low pressure vapor phase epitaxy, and arsenic ions were implanted to form an N-type film. 1 of 2000 people thick on it
Secondary oxide layer (4) and primary nitride layer (6) with a thickness of 2000 mm
is achieved using the low pressure vapor phase growth method. Here, the emitter and collector are formed using photoetching. Polycrystalline silicon part (3)
Determine the area and remove unnecessary parts using dry etching. In this process, the final polycrystalline silicon layer is wet-etched by leaving about 500 layers during dry etching to protect the silicon surface, and the oxidized I The lower part of the film was corroded excessively, and the emitter width (5) formed was much narrower than the predetermined width of 2 μm.

第1図(B)はエミッタおよび外部導線を構成するN3
多結晶シリコンの両側の壁面に電気的な絶縁の酸化膜を
形成する工程である。2次酸化膜を2500人の厚さで
減圧気相成長させ、この膜を一種のドライエッチングで
ある反応性イオンエッチングすると、多結晶シリコンの
上面の酸化膜(8′)は全て腐食し、側面の酸化膜(8
)はそのまま残って両側面の酸化膜が形成される。
Figure 1 (B) shows N3 which constitutes the emitter and external conductor.
This is a process of forming electrically insulating oxide films on both side walls of polycrystalline silicon. When a secondary oxide film is grown in a vacuum vapor phase to a thickness of 2,500 mm and this film is subjected to reactive ion etching, which is a type of dry etching, the oxide film (8') on the top surface of polycrystalline silicon is completely corroded, and the side surfaces of the polycrystalline silicon are completely corroded. oxide film (8
) remains as is, and oxide films are formed on both sides.

この方法はドライエッチングの特徴を適用した典型的な
例であり、酸化膜や窒化膜をドライエッチングで腐食さ
せる時に垂直面は腐食せず、水平面にだけ腐食するのを
利用したのである。ここで1次酸化膜(4)は1次窒化
膜(6)により保護されるから損われない。
This method is a typical example of applying the characteristics of dry etching, and takes advantage of the fact that when dry etching an oxide film or nitride film, vertical surfaces are not corroded, but only horizontal surfaces are corroded. Here, the primary oxide film (4) is protected by the primary nitride film (6), so it is not damaged.

第1図(C)はP゛非活性ベース領域(14)を形成す
べく、2次窒化膜(9) を形成する工程である。
FIG. 1C shows a step of forming a secondary nitride film (9) to form a P'inactive base region (14).

まず、減圧気相成長によりウェハー全体に2次窒化膜を
形成する。この2次窒化膜の厚さは非活性ベース領域の
幅を決める重要な要素であり、この厚さを適宜に調節す
ることによって、本発明の目的である至って狭い幅のP
゛非活性ベース領域を容易に形成することがきでる。本
発明では必要に応じて2次窒化膜の厚さを2000〜3
000人の間で調節し、その膜をドライエッチングの一
種であるブ″ラズマエッチングで除去して、2次酸化膜
と同じく両壁面にだけ窒化膜(9)を形成するのである
First, a secondary nitride film is formed over the entire wafer by low pressure vapor phase epitaxy. The thickness of this secondary nitride film is an important factor that determines the width of the non-active base region, and by appropriately adjusting this thickness, it is possible to achieve the very narrow width of the P layer, which is the object of the present invention.
``A non-active base region can be easily formed. In the present invention, the thickness of the secondary nitride film is adjusted to 2000 to 300 nm as necessary.
The film is then removed by plasma etching, which is a type of dry etching, to form a nitride film (9) on both walls, similar to the secondary oxide film.

第1図(D)は、第1図(El に図示した分離酸化膜
(12)の成長時に生ずる嘴(bird’s beak
l型の酸化膜かP゛非活性ベースか形成される部分まで
成長するのを防ぐための、3次窒化nu(11)を形成
する工程である。
FIG. 1(D) shows the bird's beak generated during the growth of the isolation oxide film (12) shown in FIG. 1(El).
This is a step of forming tertiary nitride nu (11) to prevent the l-type oxide film from growing to the part where the P inactive base is to be formed.

まず分離酸化膜(12)を形成するための予備工程とし
て、ドライエッチングにより多結晶シリコン層の周囲の
シリコンの表面を約1500Åエッチングする。それか
ら500人の緩衝酸化膜を成長させ、この膜の上に約7
00人の3次窒化膜(,11)を低圧化学蒸着により堆
積させる。これをプラズマ方式でエッチングし、前の工
程第1図(DJ の(lO)に示す如く、約1500Å
エッチングしたシリコンの側壁にだけ窒化膜(11)を
残して、次の工程で分離酸化膜を成長させる時嘴型が生
ずるのを防ぐことかできた。
First, as a preliminary step for forming the isolation oxide film (12), the surface of the silicon around the polycrystalline silicon layer is etched by about 1500 Å by dry etching. Then grow a 500-layer buffer oxide film and on top of this film about 7
A 3000 tertiary nitride film (,11) is deposited by low pressure chemical vapor deposition. This is etched using a plasma method, and as shown in Figure 1 (DJ) of the previous process, approximately 1500 Å is etched.
By leaving the nitride film (11) only on the sidewalls of the etched silicon, it was possible to prevent the formation of a beak shape when an isolation oxide film is grown in the next step.

第1図(E)は分離酸化膜を成長させる工程であり、9
29℃の条件の下で湿式酸化を施して約1500Åエッ
チングしたシリコン層に2500人の酸化膜(12)を
成長させた。
FIG. 1(E) shows the step of growing an isolation oxide film, 9
A 2,500 oxide film (12) was grown on the silicon layer, which was etched to about 1,500 Å by wet oxidation at 29°C.

ここで、P“非活性ベース領域の形成される部分は、2
次窒化膜により酸化膜か形成されることから保護される
Here, the portion where the P"inactive base region is formed is 2
The next nitride film protects the oxide film from being formed.

第1図(F) はP“多結晶シリコン層(13)により
P′″非活性ベース領域(14)の形成される工程であ
る。まずウェットエッチングの方法により、1次、2次
、3次の窒化膜を除去し、Pゝ非活性ペース領域の形成
される部分が開放されるようにした。
FIG. 1F shows a step in which a P''' inactive base region (14) is formed by a P' polycrystalline silicon layer (13). First, wet etching was used to remove the primary, secondary, and tertiary nitride films so that the portion where the P non-active paste region was to be formed was opened.

本発明により非常に幅の狭いP°非活性領域が厚さ20
00〜3000人の2次窒化膜の下方に形成され、その
幅は2次膜の厚さとほとんど同様である。
The present invention provides a very narrow P° non-active region with a thickness of 20 mm.
It is formed under the secondary nitride film of 0.00 to 3000, and its width is almost the same as the thickness of the secondary film.

次の段階も、多結晶シリコンを減圧気相成長により30
00人堆積してから、熱拡散により硼素をドーピングし
てP+型に形成した後、写真食刻およびドライエッチン
グによりP′″多結晶シリコン層(13)を定めてから
、再び熱拡散させるとP“非活性ベース領域が形成され
るようにした。その後の金属層蒸着工程は一般のトラン
ジスター製造工程と同しである。
The next step was to grow polycrystalline silicon by low pressure vapor phase growth.
After depositing 00000 people, doping with boron by thermal diffusion to form a P+ type, defining a P'' polycrystalline silicon layer (13) by photolithography and dry etching, and then thermally diffusing it again to form a P+ type. “A non-active base region is formed. The subsequent metal layer deposition process is the same as a general transistor manufacturing process.

金属層はアルミニウムを約8000入庫に真空蒸着した
。前記の工程を経て製造されたバイポーラNI’N I
−ランシスターが第2図に示されている。
The metal layer was vacuum deposited with approximately 8000 aluminum. Bipolar NI'N I manufactured through the above process
- The run sister is shown in FIG.

本発明による製造方法は、工程の特性上第1図の(C)
 、 (D) 、 (E)段階を省いて工程を進めると
既存のPS^トランジスターと同じく形成される。それ
でこの方法は工程の部属な一般のPSA トランジスタ
ーと、P3非活性ベース領域の面積をできる限り縮小し
た高速のトランジスターを必要によって選り分けて製造
することかできる。
Due to the characteristics of the process, the manufacturing method according to the present invention is shown in FIG. 1 (C).
, (D), (E) If the process is continued without steps, it will be formed in the same way as the existing PS^ transistor. Accordingly, this method can selectively manufacture a general PSA transistor that is a process-dependent transistor and a high-speed transistor in which the area of the P3 non-active base region is reduced as much as possible.

[発明の効果] 以上説明したように、本発明により製作されたバイポー
ラN[’N I−ランシスターは、P3非活性へ一ス領
域の幅が必要に応じて2000〜3000人の範囲内で
正確に製造されるので、他のトランジスターに比へてこ
の面積は最大限に狭くすることかできる。
[Effects of the Invention] As explained above, the bipolar N['N I-run sister manufactured according to the present invention has a width of the P3 inactive region within the range of 2,000 to 3,000 as necessary. Because it is precisely manufactured, the area of the lever can be minimized compared to other transistors.

本発明により製造されたNPN l−ランシスターはN
0多結晶シリコンによるエミッタが工程の初期に形成さ
れ、全工程を通じてトランシタの作動領域が多結晶シリ
コン層により保護され表面が損われないので、各素子が
良好な電気的特性をもつ個別素子を得るばかりか、ウェ
ハー全体においても収率がよいという利点がある。
The NPN l-ran sister produced according to the present invention is N
Since the emitter of 0 polycrystalline silicon is formed at the beginning of the process and the active area of the transistor is protected by the polycrystalline silicon layer throughout the process and the surface is not damaged, each device obtains an individual device with good electrical properties. Moreover, there is an advantage that the yield of the whole wafer is good.

また、本発明によれば工程の簡明な一般のPSAトラン
ジスターと、P′″非活性ベース領域の面積をできる限
り縮小した高速のトランジスターを必要によって選り分
けて製造することができる。
Further, according to the present invention, it is possible to selectively manufacture a general PSA transistor with a simple process and a high-speed transistor with a P''' inactive base region reduced in area as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)ないしくF)は本発明によるバイポーラN
PN l−ランシスターの製造工程を説明する断面図、 第2図は本発明方法によって製造したバイポーラNPN
 l−ランシスターの断面図、第3図は従来のP−N接
合によるバイポーラNPNトランジスターの断面図、 第4図は従来の多結晶シリコンの自己整合によるバイポ
ーラNPN トランジスターの断面図、第5図は従来の
超自己整合によるバイポーラNPN I−ランシスター
の断面図である。 l・・・酸化膜、 2・・・ベース、 3・・・多結晶シリコン層、 4・・・1次酸化膜、 5・・・エミッタ幅、 6・・・1次窒化膜、 8・・・側面酸化膜、 8′・・・上面酸化膜、 9・・・2次側面窒化膜、 9′・・・2次上面窒化膜、 11・・・3次窒化膜、 12・・・分離酸化膜、 13・・・P“多結晶シリコン層、 14・・・P3非活性ベース領域。
FIG. 1(A) to F) shows a bipolar N according to the present invention.
A cross-sectional view illustrating the manufacturing process of PN l-run sister. Figure 2 is a bipolar NPN manufactured by the method of the present invention.
Figure 3 is a cross-sectional view of a bipolar NPN transistor using a conventional P-N junction, Figure 4 is a cross-sectional view of a conventional bipolar NPN transistor using self-aligned polycrystalline silicon, and Figure 5 is a cross-sectional view of an l-run sister. 1 is a cross-sectional view of a conventional super-self-aligned bipolar NPN I-run sister; FIG. l... Oxide film, 2... Base, 3... Polycrystalline silicon layer, 4... Primary oxide film, 5... Emitter width, 6... Primary nitride film, 8...・Side surface oxide film, 8'...Top oxide film, 9...Secondary side surface nitride film, 9'...Secondary top surface nitride film, 11...Tertiary nitride film, 12...Isolation oxidation film, 13...P" polycrystalline silicon layer, 14...P3 inactive base region;

Claims (1)

【特許請求の範囲】 ウェハーの表面に砒素イオンを注入し、1200℃で拡
散してN^+埋込層を形成し、その上に燐がドーピング
されたN型エピタキシャル層を厚さ1.6μmに形成し
、マスクとして酸化膜形成部位表面の5500Åをエッ
チングし、その後P^+型不純物をイオン注入し、92
5℃で湿式酸化法により10KÅの厚さの酸化膜(1)
を形成して各素子を分離する半導体素子の製造方法にお
いて、 ボロンをイオン注入してトランジスターのベース領域(
2)を形成し、ウェハー全面に減圧気相成長法により、
厚さ3000Åの多結晶シリコン層を形成し、該多結晶
シリコン層に不純物(砒素)をイオン注入してN^+型
にする工程と、 該N^+型層上に減圧気相成長法により厚さ2000Å
の1次酸化膜層(4)と、厚さ2000Åの1次窒化膜
層(6)を形成する工程と、 写真食刻によりエミッタ(15)およびコレクタ(16
)になる前記多結晶シリコンの部位をまず決定して余分
の部分をドライエッチングで除去し、前記N^+多結晶
シリコン層(3)を酸化膜の下で過多エッチングしてエ
ミッタ幅(5)を2μmより小さく形成する工程と、 厚さ2500Åの2次酸化膜を減圧気相成長し、側面の
酸化膜(8)だけを残して反応性イオンエッチングで前
記多結晶シリコン上面の酸化膜(8′)を全てエッチン
グする工程と、 その上に厚さ2000〜3000Åの2次窒化膜(9)
を形成し、プラズマエッチングで上部の2次窒化膜層(
9′)を除去する工程と、 ドライエッチングにより前記多結晶シリコン層の周囲の
シリコン表面を約1500Åエッチングする工程と、 該エッチングされた多結晶シリコン層上に 500Åの
酸化膜を成長させ、さらにその上に厚さ700Åの3次
窒化膜層(11)を減圧気相成長で堆積させる工程と、 プラズマエッチングにより該3次窒化膜層の上部窒化膜
(11′)を除去する工程と、 厚さ2500Åの酸化膜(12)を成長させる工程と、 ウェットエッチングにより前記1次、2次および3次窒
化膜(6、9および11)を除去した開放部に多結晶シ
リコンを減圧気相成長によつて3000Å堆積し、熱拡
散によりボロンをドーピングしてP^+型に形成する工
程と、 写真食刻およびドライエッチングによりP^+多結晶シ
リコン層(13)を形成し、熱拡散してP^+非活性ベ
ース領域(14)を形成する工程とを含んでなることを
特徴とする半導体素子の製造方法。
[Claims] Arsenic ions are implanted into the surface of the wafer and diffused at 1200°C to form an N^+ buried layer, and a 1.6 μm thick N-type epitaxial layer doped with phosphorus is formed thereon. 5500 Å on the surface of the oxide film formation site was etched as a mask, and then P^+ type impurities were ion-implanted, and 92
Oxide film (1) with a thickness of 10KÅ by wet oxidation method at 5℃
In a semiconductor device manufacturing method that separates each element by forming a
2) is formed on the entire surface of the wafer by low pressure vapor phase epitaxy.
A process of forming a polycrystalline silicon layer with a thickness of 3000 Å, ion-implanting impurity (arsenic) into the polycrystalline silicon layer to make it N^+ type, and depositing on the N^+ type layer by low pressure vapor phase epitaxy. Thickness 2000Å
A process of forming a primary oxide film layer (4) and a primary nitride film layer (6) with a thickness of 2000 Å, and photolithography to form an emitter (15) and a collector (16).
), the excess portion is removed by dry etching, and the N^+ polycrystalline silicon layer (3) is excessively etched under the oxide film to form the emitter width (5). A secondary oxide film with a thickness of 2500 Å is grown in a vacuum vapor phase, and the oxide film (8) on the top surface of the polycrystalline silicon is removed by reactive ion etching, leaving only the oxide film (8) on the side surfaces. ') and then a secondary nitride film (9) with a thickness of 2000 to 3000 Å on top of it.
is formed, and the upper secondary nitride film layer (
9'); etching the silicon surface around the polycrystalline silicon layer by about 1500 Å by dry etching; growing an oxide film of 500 Å on the etched polycrystalline silicon layer; a step of depositing a tertiary nitride film layer (11) with a thickness of 700 Å on the tertiary nitride film layer (11) by low pressure vapor phase epitaxy; a step of removing the upper nitride film (11') of the tertiary nitride film layer by plasma etching; A process of growing an oxide film (12) with a thickness of 2500 Å, and polycrystalline silicon was grown by low pressure vapor phase growth in the open areas where the primary, secondary, and tertiary nitride films (6, 9, and 11) were removed by wet etching. A process of doping boron to form a P^+ type by thermal diffusion and forming a P^+ polycrystalline silicon layer (13) by photolithography and dry etching, followed by thermal diffusion to form a P^+ polycrystalline silicon layer (13). + a step of forming an inactive base region (14).
JP61147979A 1985-08-05 1986-06-24 Manufacturing semiconductor element Granted JPS6273667A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR5633/85 1985-08-05
KR1019850005633A KR880000483B1 (en) 1985-08-05 1985-08-05 Fabricating semiconductor device with polysilicon protection layer during processing

Publications (2)

Publication Number Publication Date
JPS6273667A true JPS6273667A (en) 1987-04-04
JPH0482180B2 JPH0482180B2 (en) 1992-12-25

Family

ID=19242148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61147979A Granted JPS6273667A (en) 1985-08-05 1986-06-24 Manufacturing semiconductor element

Country Status (3)

Country Link
US (1) US4686762A (en)
JP (1) JPS6273667A (en)
KR (1) KR880000483B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812417A (en) * 1986-07-30 1989-03-14 Mitsubishi Denki Kabushiki Kaisha Method of making self aligned external and active base regions in I.C. processing
US5114867A (en) * 1987-07-15 1992-05-19 Rockwell International Corporation Sub-micron bipolar devices with method for forming sub-micron contacts
KR890003827B1 (en) * 1987-07-25 1989-10-05 재단법인 한국전자통신연구소 Process adapted to the manufacture of bicmos
JP3469251B2 (en) * 1990-02-14 2003-11-25 株式会社東芝 Method for manufacturing semiconductor device
US5039625A (en) * 1990-04-27 1991-08-13 Mcnc Maximum areal density recessed oxide isolation (MADROX) process
KR920007124A (en) * 1990-09-04 1992-04-28 김광호 Manufacturing Method of Poly-Emitter Bipolar Transistor
KR100327329B1 (en) * 1998-12-11 2002-07-04 윤종용 Silicon oxide and oxynitride forming method under low pressure

Also Published As

Publication number Publication date
JPH0482180B2 (en) 1992-12-25
US4686762A (en) 1987-08-18
KR870002663A (en) 1987-04-06
KR880000483B1 (en) 1988-04-07

Similar Documents

Publication Publication Date Title
KR0180325B1 (en) Current across thin base region and process of fabrication thereof
JP2629644B2 (en) Method for manufacturing semiconductor device
JPH0252422B2 (en)
JPS6252963A (en) Manufacture of bipolar transistor
KR100321889B1 (en) A semiconductor device and a method of manufacturing the same
JPS6273667A (en) Manufacturing semiconductor element
JPH0193159A (en) Manufacture of bicmos element
JPH0465528B2 (en)
JP2842042B2 (en) Semiconductor device
KR100216510B1 (en) Fabrication method of the collector for a bipolar transistor using a trench
KR100275537B1 (en) Method for fabricating bipolar transistor using over-growth of collector epitaxial layer
JP2763105B2 (en) Method for manufacturing semiconductor device
JP2723539B2 (en) Master slice type semiconductor device
KR0161200B1 (en) Method for fabricating bipolar transistor
JP2532384B2 (en) Bipolar transistor and its manufacturing method
JP2729870B2 (en) Variable capacitance diode and manufacturing method thereof
JPH0433343A (en) Bipolar type semiconductor device and manufacture thereof
KR900000827B1 (en) Semiconductor device manufacturing method
JP3131986B2 (en) Bipolar transistor
JP2892436B2 (en) Method for manufacturing semiconductor device
JP2001068478A (en) Semiconductor device and its manufacture
JPH0451981B2 (en)
JPH0327530A (en) Manufacture of bipolar transistor
JPS62298170A (en) Manufacture of semiconductor device
JPS60257572A (en) Manufacture of semiconductor device