JPH0451981B2 - - Google Patents

Info

Publication number
JPH0451981B2
JPH0451981B2 JP56036088A JP3608881A JPH0451981B2 JP H0451981 B2 JPH0451981 B2 JP H0451981B2 JP 56036088 A JP56036088 A JP 56036088A JP 3608881 A JP3608881 A JP 3608881A JP H0451981 B2 JPH0451981 B2 JP H0451981B2
Authority
JP
Japan
Prior art keywords
layer
type
low concentration
heat treatment
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56036088A
Other languages
Japanese (ja)
Other versions
JPS57149769A (en
Inventor
Tadashi Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56036088A priority Critical patent/JPS57149769A/en
Publication of JPS57149769A publication Critical patent/JPS57149769A/en
Publication of JPH0451981B2 publication Critical patent/JPH0451981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Description

【発明の詳細な説明】 この発明は、例えばIntegrated Injection
Logic(以下I2Lという)集積回路(以下ICとい
う)に用いられる逆方向動作npnトランジスタの
製造方法に関するものである。
[Detailed Description of the Invention] This invention provides, for example, Integrated Injection
The present invention relates to a method for manufacturing a reverse operation npn transistor used in a Logic (hereinafter referred to as I 2 L) integrated circuit (hereinafter referred to as IC).

第1図に示すI2Lは、電流源及び負荷として働
く横形pnpトランジスタ(Trという)と、スイツ
チングをおこなう逆方向動作npn Trとの複合構
成からなつている。その製造方法は、すでに周知
のバイポーラICのプロセスによつており、その
npn Trの不純物分布は第2図の様である。この
様な構造のグラフトベース形I2Lでは、エミツタ
層に低濃度エピタキシヤル(n-エピ)層が残存
し、ここにホールが蓄積され、第3図に示すよう
にI2Lゲート速度において、高電流領域で飽和特
性をもち、かつエミツタ−ベース−コレクタの不
純物分布が、逆方向動作にとつては加速電界のか
からない分布になつており、高周波化が困難であ
る。
I 2 L shown in FIG. 1 has a composite structure of a lateral pnp transistor (referred to as Tr) that functions as a current source and a load, and a reverse operation npn transistor that performs switching. The manufacturing method is based on the already well-known bipolar IC process.
The impurity distribution of npn Tr is shown in Figure 2. In the graft-based I 2 L with such a structure, a lightly doped epitaxial (n - epi) layer remains in the emitter layer, where holes are accumulated, and as shown in Fig. 3, the I 2 L gate speed increases. , has saturation characteristics in the high current region, and the emitter-base-collector impurity distribution is such that no accelerating electric field is applied for reverse direction operation, making it difficult to increase the frequency.

これらの欠点を改善する目的で、第4図に示す
埋込ベースI2Lのプロセスが提案された。例え
ば、J.Agraz−Guerena他「High Performance
“Upward”Bipolar Technolgyfor VLSI」;
1978IDEM9−2(Washington、1978)Techincal
Digest of IEDM(1978)P.209がある。このプロ
セスは、まず第1にp-形シリコン板1にアンチ
モンSbを選択的に拡散してn+層2を形成した後、
ボロン(B+)をイオン注入し、その上にn-エピ
層4を成長させ、同時にB+注入層からの浮き上
りにより、埋込ベース層となるp層3を形成する
(第4図A)。次いで、窒化層5で選択酸化して形
成した分離酸化膜6により素子間を分離する(第
4図B)。このとき、埋込ベース層3が浮き上ら
ない様に、低温(700℃)の高圧酸化法を用いて
いる、その後、ベース電極取り出し層7及びイン
ジエクタとなるpnp Trのエミツタ層8をp+層で
形成し、コレクタ電極取出し層9,10をn+
を形成してから、表面酸化膜にコンタクト窓開け
をおこない、低抵抗金属(例えばA1)配線1
1,12,13,14、をおこなう(第4図C)。
この様にして得られたI2Lのnpn Trの不純物分
布を第5図に示す。このI2Lのnpn Trのエミツ
タ接合は高濃度埋込n+層2との間で形成される
ので、ホール蓄積はほとんどなくなり、さらにベ
ース不純物分布は、逆動作Trに対し加速電界の
かかる分布となつており、高周波化が可能であ
る。第3図に示す様に、グラフトベース形I2Lに
比べて高速化されているが、高電流領域での飽和
特性が大きく表われる。これは、第5図に示す様
にコレクタ層にn-エピ層4が残存し、今度はこ
ちらでの蓄積効果が顕著になつたからである。
In order to improve these drawbacks, the embedded base I 2 L process shown in FIG. 4 has been proposed. For example, see J. Agraz-Guerena et al. “High Performance
“Upward” Bipolar Technology for VLSI”;
1978 IDEM9-2 (Washington, 1978) Techincal
There is Digest of IEDM (1978) P.209. In this process, first, antimony Sb is selectively diffused into a p - type silicon plate 1 to form an n + layer 2.
Boron (B + ) is ion-implanted, an n - epitaxial layer 4 is grown on it, and at the same time, a p layer 3 that becomes a buried base layer is formed by lifting up from the B + implanted layer (Fig. 4A). ). Next, the elements are separated by an isolation oxide film 6 formed by selectively oxidizing the nitride layer 5 (FIG. 4B). At this time, a high-pressure oxidation method at a low temperature (700°C) is used to prevent the buried base layer 3 from floating up. After that, the base electrode extraction layer 7 and the emitter layer 8 of the pnp transistor, which will become the injector , are After forming the collector electrode extraction layers 9 and 10 as an n + layer, a contact window is opened in the surface oxide film, and a low resistance metal (for example A1) wiring 1
Perform steps 1, 12, 13, and 14 (Figure 4C).
The impurity distribution of the I 2 L npn Tr obtained in this manner is shown in FIG. Since the emitter junction of this I 2 L npn Tr is formed between it and the heavily doped buried n + layer 2, there is almost no hole accumulation, and the base impurity distribution is similar to the distribution where an accelerating electric field is applied to the reverse operation transistor. This makes it possible to increase the frequency. As shown in FIG. 3, although the speed is higher than that of the graft-based type I 2 L, saturation characteristics are significantly apparent in the high current region. This is because, as shown in FIG. 5, the n - epilayer 4 remains in the collector layer, and the accumulation effect here becomes significant.

しかるに、わざわざ第4図Bの分離工程を低温
化し、埋込ベース層3の浮き上りを抑えてコレク
タ層にエピ層4を残存させたのは、npn Trの逆
方向電流利得βuを一定にするためである。これ
は、例えば、埋込エミツタ層2形成に砒素(As)
を用いて、エピ成長後、高温アニールして埋込ベ
ース層3を浮き上らせた場合(第6図の実線の場
合)には、ベース幅は、埋込エミツタn+層とウ
エハ表面からn+拡散によるコレクタ層との間隔
で決まり、このことは、エピ層4の膜厚がばらつ
けばそれだけベース幅がばらつくことになるが、
一方、コレクタ層にエピ層が残存すれば、ベース
幅はエピ層の膜厚のばらつきの影響を受けず、
βuの制御性を高めることができるからである。
これは、第8図に示す様に、Asエミツタでのβu
の基準偏差が±16.7%であるのに対し、Sbエミツ
タでは±11.5%となることからも分かる。しか
し、Asエミツタでは、コレクタ接合表面からの
n+層とで形成され、n-エピ層が残存せず、蓄積
効果がないので、第3図の様に飽和特性は小さ
く、高速化が計られる。
However, the purpose of lowering the temperature of the separation process in FIG. 4B, suppressing the floating of the buried base layer 3, and leaving the epi layer 4 in the collector layer is to keep the reverse current gain βu of the npn Tr constant. It's for a reason. For example, arsenic (As) is used to form the buried emitter layer 2.
When the buried base layer 3 is raised by high-temperature annealing after epitaxial growth (in the case of the solid line in Fig. 6), the base width is the same as that between the buried emitter n + layer and the wafer surface. It is determined by the distance from the collector layer due to n + diffusion, and this means that if the thickness of the epitaxial layer 4 varies, the base width will vary accordingly.
On the other hand, if the epitaxial layer remains in the collector layer, the base width will not be affected by variations in the thickness of the epitaxial layer.
This is because the controllability of βu can be improved.
As shown in Figure 8, this is βu at the As emitter.
This can be seen from the fact that the standard deviation for Sb emitters is ±11.5%, while it is ±16.7%. However, with the As emitter, the
Since the n - epi layer does not remain and there is no accumulation effect, the saturation characteristics are small as shown in FIG . 3, and high speed is achieved.

この発明はこのような点に鑑みてなされたもの
で、コレクタ層にn-エピ層が残存せず、高速化
が可能で、かつβuの制御特性を向上させること
ができる埋込エース形逆方向動作npnトランジス
タの構造方法を提供するものである。
This invention was made in view of these points, and it is a buried ace type reverse direction that does not have an n - epi layer remaining in the collector layer, enables higher speeds, and improves the control characteristics of βu. A method of constructing an operational npn transistor is provided.

この発明方法による一実施例は、第6図の本発
明による不純物分布を得るために第9図の製造工
程に従つて、低濃度p形シリコン基板へAsを不
純物とする高濃度n形拡散層2aを選択的に形成
し、その一部領域にボロン(B+)をイオン注入
して,Bを不純物とする低濃度p形拡散層3aを
形成した後、その上に減圧下でのジクロール・シ
ランのH2還元反応によるエピタキシヤル成長法
で低濃度n形層4aを形成〔第9図A〕。次いで、
上記低濃度p形拡散層が上記低濃度n形層の表面
まで再拡散するように、素子間分離工程での熱処
理によつてアニールを行つて〔第9図B〕、npn
トランジスタの活性ベース層3bを形成する〔第
9図C〕プロセスからでなる。
One embodiment of the method of the present invention is to form a high concentration n-type diffusion layer with As as an impurity on a low concentration p-type silicon substrate according to the manufacturing process shown in FIG. 9 in order to obtain the impurity distribution according to the present invention shown in FIG. 2a is selectively formed, and boron (B + ) is ion-implanted into a partial region to form a low concentration p-type diffusion layer 3a containing B as an impurity. The low concentration n-type layer 4a is formed by an epitaxial growth method using the H 2 reduction reaction of silane [FIG. 9A]. Then,
Annealing is performed by heat treatment in the element isolation process so that the low concentration p-type diffusion layer is re-diffused to the surface of the low concentration n-type layer [FIG. 9B], npn
The process consists of forming the active base layer 3b of the transistor [FIG. 9C].

この実施例による製造方法では、減圧エピ成長
時の高温H2雰囲気中でのプリ・アニールによつ
て、B+イオン注入層表面からB+イオンが飛び出
し、かつジクロール・シランの分解で発生する
CIイオンによつて、B+イオン注入層を含むシリ
コン表面がエツチングされ、B+イオン注入層の
表面濃度が低下し、浮き上りベース濃度が小さく
なる(第6図の一点鎖線で矢印で示す様に不純物
濃度が低い)。しかも、エピ成長後の工程、例え
ば分離工程で、熱処理を高温、長時間(1050℃、
7時間)行つて、埋込みベース層を浮き上がら
せ、第7図の破線の様にウエハ表面まで達せさせ
れば(素子断面は第9図Bとなる)、ベース層は
最適不純物分布をとり、かつ蓄積効果をもたらす
n-エピ層がコレクタ層にも残存しない。さらに、
減圧エピ成長によるエピ膜の制御性の向上ととも
に、ベース層の濃度が低下することで、ベース幅
を広くすることができ、エピ膜の変動によるベー
ス幅の変動のβuへの影響も小さくなり、βuのバ
ラツキは小さく、第8図に示すように、標準偏差
で8.9%と非常に制御性がよくなつている。
In the manufacturing method according to this example, B + ions are ejected from the surface of the B + ion-implanted layer by pre-annealing in a high-temperature H 2 atmosphere during low-pressure epitaxial growth, and are generated by decomposition of dichlorosilane.
The silicon surface including the B + ion-implanted layer is etched by the CI ions, the surface concentration of the B + ion-implanted layer decreases, and the floating base concentration decreases (as indicated by the dashed line in Figure 6). (low impurity concentration). Moreover, heat treatment is performed at high temperatures and for long periods of time (1050℃,
7 hours), the buried base layer is lifted up and reaches the wafer surface as shown by the broken line in Figure 7 (the cross section of the device is shown in Figure 9B), and the base layer has an optimal impurity distribution. have a cumulative effect
The n -epi layer does not remain in the collector layer either. moreover,
In addition to improving the controllability of the epitaxial film through low-pressure epitaxial growth, the concentration of the base layer is lowered, making it possible to widen the base width, and the effect of variations in the base width due to variations in the epitaxial film on βu is also reduced. The variation in βu is small, and as shown in Figure 8, the standard deviation is 8.9%, indicating very good controllability.

このように本実施例では、エピタキシヤル成長
を減圧下の還元性雰囲気中で行うようにしたの
で、エピタキシヤル成長時に埋込ベース層の表面
濃度が低下するとともに、エピ膜の膜厚制御性が
向上することになり、これらが相俟つてベース幅
の変動による特性のばらつきを小さく抑えること
ができる。また上記エピタキシヤル成長後、熱処
理を行つて埋込ベース層の不純物をウエハ表面ま
で再拡散するようにしたため、活性ベース層がウ
エハ表面まで広がつて該活性ベース層上にはホー
ル蓄積効果をもたらすエピタキシヤル層が残存し
なくなり、高速化を図ることができる。このよう
に本実施例の方法では特性の制御性の向上と動作
の高速化を両立することができる。
In this example, epitaxial growth was performed in a reducing atmosphere under reduced pressure, so the surface concentration of the buried base layer was reduced during epitaxial growth, and the film thickness controllability of the epitaxial film was improved. Together, these can suppress variations in characteristics due to variations in base width. Furthermore, after the epitaxial growth described above, heat treatment is performed to re-diffuse the impurities in the buried base layer to the wafer surface, so that the active base layer spreads to the wafer surface and creates a hole accumulation effect on the active base layer. No epitaxial layer remains, and higher speeds can be achieved. In this manner, the method of this embodiment can both improve the controllability of characteristics and increase the speed of operation.

なお、以上の説明では酸化膜による素子間分離
の例を述べたが、勿論、I2Lの分離なしの場合、
さらに通常のバイポーラICプロセスで同一チツ
プに作る時のp+−n接合分離についても適用で
きる。
In the above explanation, an example of isolation between elements using an oxide film was described, but of course, if there is no isolation of I 2 L,
Furthermore, it can also be applied to p + -n junction separation when fabricated on the same chip using a normal bipolar IC process.

以上のように本発明によれば、IIL回路を構成
する逆方向動作npnトランジスタの活性ベース層
を形成する工程を、砒素を不純物とする高濃度埋
込層に、n形拡散層を選択的に形成するステツプ
と、その一部領域にボロンを注入し低濃度p形拡
散層を選択的形成するステツプと、全面に低濃度
n形エピタキシヤル層を減圧下の還元積雰囲気中
で成長するエピタキシヤル成長させるステツプ
と、熱処理により上記低濃度p形拡散層の不純物
を上記低濃度n形層の表面まで再拡散させる熱処
理ステツプとから構成したので、IIL回路の動作
の高速化を達成できるとともに、その特性の制御
性を向上できるという効果がある。
As described above, according to the present invention, the step of forming the active base layer of the reverse operation npn transistor constituting the IIL circuit is performed by selectively replacing the n-type diffusion layer with a highly concentrated buried layer doped with arsenic. a step of selectively forming a low concentration p-type epitaxial layer by implanting boron into a part of the region, and an epitaxial step of growing a low concentration n-type epitaxial layer over the entire surface in a reducing product atmosphere under reduced pressure. The structure consists of a growth step and a heat treatment step in which the impurities in the low concentration p-type diffusion layer are re-diffused to the surface of the low concentration n-type layer by heat treatment, so it is possible to achieve high-speed operation of the IIL circuit, and also to increase the speed of the IIL circuit. This has the effect of improving controllability of characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,BはI2Lの基本構造図と等価回路
図、第2図は一般的バイポーラICプロセスによ
るI2Lのnpnトランジスタの不純物分布図、第3
図はI2Lゲートの速度・電力特性図、第4図は埋
込ベース形I2Lの製造工程を示す断面図、第5図
は従来の埋込ベース形I2Lのnpnトランジスタの
不純物分布図、第6図は埋込ベース形I2Lの各プ
ロセスによる不純物分布図、第7図は埋込ベース
形I2Lでのエピ成長後の熱処理による不純物分布
図、第8図は従来法及び本発明による埋込ベース
I2Lの製造条件及び特性を示す図、第9図は本発
明による埋込ベース形I2Lの製造工程を示す断面
図である。 図において、1はP-形シリコン基板、2,2
aはn+形拡散層、3,3a,3bはp形拡散層、
4,4aはn-形エピタキシヤル層、6は分離酸
化膜、7,8はP+形拡散層、9,10はn+形拡
散層、11〜14は配線である。
Figures 1A and B are the basic structure diagram and equivalent circuit diagram of I 2 L, Figure 2 is an impurity distribution diagram of an I 2 L npn transistor produced by a general bipolar IC process, and Figure 3
The figure shows the speed/power characteristic diagram of the I 2 L gate, Figure 4 is a cross-sectional view showing the manufacturing process of the buried base type I 2 L, and Figure 5 shows the impurity of the conventional buried base type I 2 L npn transistor. Figure 6 is an impurity distribution diagram for each process for buried base type I 2 L, Figure 7 is an impurity distribution diagram for heat treatment after epitaxial growth for buried base type I 2 L, and Figure 8 is for conventional Embedded base according to the method and the present invention
A diagram showing the manufacturing conditions and characteristics of I 2 L, and FIG. 9 are cross-sectional views showing the manufacturing process of the embedded base type I 2 L according to the present invention. In the figure, 1 is a P - type silicon substrate, 2, 2
a is an n + type diffusion layer, 3, 3a, 3b are p type diffusion layers,
4 and 4a are n - type epitaxial layers, 6 is an isolation oxide film, 7 and 8 are P + type diffusion layers, 9 and 10 are n + type diffusion layers, and 11 to 14 are wirings.

Claims (1)

【特許請求の範囲】 1 IIL回路を構成する逆方向動作npnトランジ
スタを製造する方法において、 該トランジスタのベース層を形成する工程を、 砒素を不純物とする高濃度埋込n形拡散層を選
択的に形成するステツプとその一部領域にボロン
を注入して低濃度p形拡散層を選択的に形成する
ステツプと、 全面に低濃度n形エピタキシヤル層を減圧下の
還元性雰囲気中で成長するエピタキシヤル成長ス
テツプと、 熱処理により上記低濃度p形拡散層の不純物を
上記低濃度n形層の表面まで再拡散させる熱処理
するステツプとから構成したことを特徴とする逆
方向動作npnトランジスタの製造方法。 2 上記熱処理は、素子間分離工程での熱処理を
用いておこなうことを特徴とする特許請求の範囲
第1項記載の逆方向動作npnトランジスタの製造
方法。
[Claims] 1. In a method for manufacturing a reverse-operating npn transistor constituting an IIL circuit, the step of forming the base layer of the transistor is selectively performed using a highly concentrated buried n-type diffusion layer doped with arsenic. A step in which a low concentration p-type epitaxial layer is grown on the entire surface in a reducing atmosphere under reduced pressure. A method for manufacturing a reverse-operation npn transistor, comprising: an epitaxial growth step; and a heat treatment step for redifusing impurities in the low concentration p-type diffusion layer to the surface of the low concentration n-type layer. . 2. The method for manufacturing a reverse-operation npn transistor according to claim 1, wherein the heat treatment is performed using heat treatment in an element isolation step.
JP56036088A 1981-03-11 1981-03-11 Manufacture of reverse direction operation npn transistor Granted JPS57149769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56036088A JPS57149769A (en) 1981-03-11 1981-03-11 Manufacture of reverse direction operation npn transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56036088A JPS57149769A (en) 1981-03-11 1981-03-11 Manufacture of reverse direction operation npn transistor

Publications (2)

Publication Number Publication Date
JPS57149769A JPS57149769A (en) 1982-09-16
JPH0451981B2 true JPH0451981B2 (en) 1992-08-20

Family

ID=12459990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56036088A Granted JPS57149769A (en) 1981-03-11 1981-03-11 Manufacture of reverse direction operation npn transistor

Country Status (1)

Country Link
JP (1) JPS57149769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127791B1 (en) * 2022-04-11 2022-08-30 株式会社美鷹 Channel system for backwater countermeasures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226165A (en) * 1984-04-25 1985-11-11 Sanyo Electric Co Ltd Semiconductor injection integrated logic circuit device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147675A (en) * 1974-05-15 1975-11-26
JPS50147635A (en) * 1974-04-24 1975-11-26
JPS5477587A (en) * 1977-12-02 1979-06-21 Mitsubishi Electric Corp Production of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147635A (en) * 1974-04-24 1975-11-26
JPS50147675A (en) * 1974-05-15 1975-11-26
JPS5477587A (en) * 1977-12-02 1979-06-21 Mitsubishi Electric Corp Production of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127791B1 (en) * 2022-04-11 2022-08-30 株式会社美鷹 Channel system for backwater countermeasures

Also Published As

Publication number Publication date
JPS57149769A (en) 1982-09-16

Similar Documents

Publication Publication Date Title
US4357622A (en) Complementary transistor structure
US4485552A (en) Complementary transistor structure and method for manufacture
US6767797B2 (en) Method of fabricating complementary self-aligned bipolar transistors
JPH10326793A (en) Manufacture of semiconductor device
US4669179A (en) Integrated circuit fabrication process for forming a bipolar transistor having extrinsic base regions
EP0166923A2 (en) High performance bipolar transistor having a lightly doped guard ring disposed between the emitter and the extrinsic base region
JPH07202166A (en) Semiconductor device
JPS6273667A (en) Manufacturing semiconductor element
JPH0451981B2 (en)
JPH0465528B2 (en)
EP1296361A1 (en) A process of forming an interface free layer of silicon on a substrate of monocrystalline silicon
US5506156A (en) Method of fabricating bipolar transistor having high speed and MOS transistor having small size
JPS5878457A (en) Manufacture of semiconductor device
JP3145694B2 (en) Semiconductor device
KR100275537B1 (en) Method for fabricating bipolar transistor using over-growth of collector epitaxial layer
JP3663238B2 (en) Bipolar transistor manufacturing method
JPS5837990B2 (en) Manufacturing method of semiconductor device
JP2812052B2 (en) Semiconductor device
JPS5854502B2 (en) Manufacturing method of semiconductor device
JP2532384B2 (en) Bipolar transistor and its manufacturing method
KR100188093B1 (en) High speed bicmos transistor and manufactruing method thereof
KR100216510B1 (en) Fabrication method of the collector for a bipolar transistor using a trench
EP0276571A2 (en) Method of manufacturing a semiconductive device comprising a buried region
KR920005127B1 (en) Method of manufacturing self-aligned bipolar transistor using seletive epitaxy
JPH01108772A (en) Manufacture of bipolar transistor