JPH01302860A - Manufacture of bipolar transistor - Google Patents

Manufacture of bipolar transistor

Info

Publication number
JPH01302860A
JPH01302860A JP13376088A JP13376088A JPH01302860A JP H01302860 A JPH01302860 A JP H01302860A JP 13376088 A JP13376088 A JP 13376088A JP 13376088 A JP13376088 A JP 13376088A JP H01302860 A JPH01302860 A JP H01302860A
Authority
JP
Japan
Prior art keywords
region
emitter region
ions
type
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13376088A
Other languages
Japanese (ja)
Other versions
JPH0713971B2 (en
Inventor
Hajime Sasaki
元 佐々木
Yukari Unno
ゆかり 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP13376088A priority Critical patent/JPH0713971B2/en
Publication of JPH01302860A publication Critical patent/JPH01302860A/en
Publication of JPH0713971B2 publication Critical patent/JPH0713971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a bipolar transistor whose performance is enhanced, such as a high-speed operation, an increase in an amplification factor and the like by a method wherein, after an emitter region has been formed, ions of an opposite conductivity type are implanted and diffused and a shallow base region is formed due to the existence of the emitter region so that a depth of a base can be formed to be shallow and uniform. CONSTITUTION:Ions of one conductivity type are implanted and diffused into a surface part of semiconductor substrates 1 to 3 to form an emitter region 8. After that, ions of an opposite conductivity type are implanted and diffused so as to be deeper than the emitter region 8; a shallow base region 7 is formed due to the existence of the emitter region 8. For example, an n<+> buried layer 2, an n-type epitaxial region 3 and an element isolation region 4 are formed on a p-type silicon substrate 1; in addition, an n<+> type diffusion layer 5 as an extraction wiring part in a collector region and an outer base region 6 as an extraction wiring part in a base region are formed. Then, an emitter region 8 is formed; in addition, an inner base region 7 is formed to be adjacent to the outer base region 6. After that, an interlayer insulating film 10 is formed. Contact holes are made in it; aluminum wiring parts 11 are formed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はバイポーラトランジスタの製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a bipolar transistor.

(従来の技術) 従来のnpn型バイポーラトランジスタの製造方法につ
いて、その工程を表わした第3図を用いて説明する。ま
ず第3図(a)に示されるように、p型シリコン基板1
に選択的にn 埋込み層2を形成し、その上部にn型エ
ピタキシャル領域3を成長させる。このn型エピタキシ
ャル領域3の“表面部分に素子分離領域4を選択的に形
成する。さらにコレクタ領域の引出し配線としてn+埋
込み層2に接続されるようにn+型型数散層5形成する
。そしてマスク材12aをマスクとしてベース電極の引
出配線用の外部ベース領域6を形成する。
(Prior Art) A conventional method for manufacturing an npn-type bipolar transistor will be described with reference to FIG. 3 showing its steps. First, as shown in FIG. 3(a), a p-type silicon substrate 1
An n-type buried layer 2 is selectively formed on the substrate, and an n-type epitaxial region 3 is grown on top of the n-type buried layer 2. An element isolation region 4 is selectively formed on the surface portion of this n-type epitaxial region 3. Furthermore, an n+-type scattered layer 5 is formed so as to be connected to the n+-buried layer 2 as an extraction wiring for the collector region. Using the mask material 12a as a mask, an external base region 6 for lead wiring of the base electrode is formed.

次に第3図(b)示されるように、外部ベース領域6に
隣接して、マスク材12bをマスクとして内部ベース領
域17を形成する。その後第3図(C)に示されるよう
に、エミッタ領域形成予定部にエミッタ領域18を形成
する。
Next, as shown in FIG. 3(b), an inner base region 17 is formed adjacent to the outer base region 6 using the mask material 12b as a mask. Thereafter, as shown in FIG. 3(C), an emitter region 18 is formed in the portion where the emitter region is to be formed.

(発明が解決しようとする課題) しかし上述のような製造方法では、内部ベース領域17
を形成するためにイオン注入を行う際、ボロン等のp型
イオンのチャネリングが起こるためベースの深さを浅く
制御することが困難である。
(Problem to be Solved by the Invention) However, in the above manufacturing method, the internal base region 17
When performing ion implantation to form a base, channeling of p-type ions such as boron occurs, making it difficult to control the depth of the base to be shallow.

この結果ベースの深さが深くなりすぎて、動作の高速化
が妨げられる、など、トランジスタとしての性能の低下
を招くという問題があった。
As a result, the depth of the base becomes too deep, resulting in problems such as impeding high-speed operation and deteriorating the performance of the transistor.

またp型イオンがシリコンウェーハ面内に注入される際
の入射角は、場所によって異なる。このためチャネリン
グの起き方も場所によって異なり、ベースの深さが不均
一になって電流増幅率の制御が困難になり、増幅率が低
下するという問題があった。
Furthermore, the angle of incidence when p-type ions are implanted into the silicon wafer surface varies depending on the location. For this reason, the way channeling occurs varies depending on the location, and the depth of the base becomes uneven, making it difficult to control the current amplification factor, resulting in a problem that the amplification factor decreases.

本発明は上記事情に鑑み、内部ベース領域を形成する際
のチャネリングを防止し、ベースの深さを浅くかつ均一
に形成することによって、動作の高速化、増幅率の増大
等性能が向上したバイポーラトランジスタを製造する方
法を提供することを目的とする。
In view of the above circumstances, the present invention prevents channeling when forming the internal base region and forms the base depth shallowly and uniformly, thereby improving performance such as faster operation and increased amplification factor. An object of the present invention is to provide a method for manufacturing a transistor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的は、半導体基板の表面部分に一導電型イオンを
注入拡散してエミッタ領域を形成し、その後前記エミッ
タ領域よりも深くなるように逆導電型イオンを注入拡散
することにより、前記エミッタ領域の存在によって深さ
の浅いベース領域を形成することを特徴とするバイポー
ラトランジスタの製造方法によって達成される。
(Means for Solving the Problem) The above purpose is to form an emitter region by implanting and diffusing ions of one conductivity type into the surface portion of a semiconductor substrate, and then implanting ions of the opposite conductivity type to a depth deeper than the emitter region. This is achieved by a method of manufacturing a bipolar transistor characterized in that a shallow base region is formed by diffusion due to the presence of the emitter region.

(作 用) 半導体基板の表面部分に先に一導電型イオンを注入して
エミッタ領域を形成することによって、そのエミッタ領
域の下部に注入される逆導電型イオンのチャネリングが
防止される。これにより形成されたベース領域のベース
は深さが浅<、シかも均一なものとなる。
(Function) By first implanting ions of one conductivity type into the surface portion of the semiconductor substrate to form an emitter region, channeling of ions of the opposite conductivity type implanted below the emitter region is prevented. The base region thus formed has a shallow and uniform base depth.

(実施例) 本発明の一実施例によるバイポーラトランジスタの製造
方法について、第1図を参照して説明する。まず第1図
(a)に示されるように、従来の場合と同様にp型シリ
コン基板1に選択的にn+埋込み層2を形成し、その上
部にn型エピタキシャル領域3を成長させる。このn型
エピタキシャル領域3の表面部分に素子分離領域4を選
択的に形成する。さらにコレクタ領域の引出し配線とし
てn+埋込み層領域2に接続されるようにn+型型数散
層5形成するとともに、レジストパターン等をマスク材
9aとしてベース電極の引出配線として外部ベース領域
6を形成する。
(Example) A method of manufacturing a bipolar transistor according to an example of the present invention will be described with reference to FIG. First, as shown in FIG. 1(a), as in the conventional case, an n+ buried layer 2 is selectively formed in a p-type silicon substrate 1, and an n-type epitaxial region 3 is grown on top of the n+ buried layer 2. An element isolation region 4 is selectively formed in the surface portion of this n-type epitaxial region 3. Further, an n+ type scattered layer 5 is formed to be connected to the n+ buried layer region 2 as a lead wire for the collector region, and an external base region 6 is formed as a lead wire for the base electrode using a resist pattern or the like as a mask material 9a. .

次に第1図(b)に示されるように、マスク材9bをマ
スクとしてエミッタ領域形成予定部に、例えばヒ素等の
高ドーズ量のn+イオンを注入してエミッタ領域8を形
成する。
Next, as shown in FIG. 1B, the emitter region 8 is formed by implanting a high dose of n+ ions, such as arsenic, into the portion where the emitter region is to be formed, using the mask material 9b as a mask.

さらに第1図(C)に示されるように、マスク材9Cを
マスクとして、外部ベース領域6に隣接して例えばボロ
ン等のp型不純物をイオン注入し、内部ベース領域7を
形成する。
Further, as shown in FIG. 1C, using the mask material 9C as a mask, p-type impurities such as boron are ion-implanted adjacent to the external base region 6 to form the internal base region 7.

その後第1図(d)のように、層間絶縁膜10を形成し
、これにコンタクトホールを形成してさらにアルミニウ
ム配線11を形成する。
Thereafter, as shown in FIG. 1(d), an interlayer insulating film 10 is formed, a contact hole is formed therein, and an aluminum wiring 11 is further formed.

このようにして先に形成されたエミッタ領域8のシリコ
ンは、高ドーズ量のn+イオンが注入されたことにより
非結晶化している。この状態のエミッタ領域8の下方に
p型イオンを注入することにより、チャネリングを防ぐ
ことができる。これにより、第1図(C)に示されるよ
うに、内部ベース領域7のベースの深さを浅くかつ均一
にすることができる。従って動作が高速化され、さらに
電流増幅率の制御が容易であるバイポーラトランジスタ
を得ることができる。
The silicon of the emitter region 8 previously formed in this manner has become amorphous due to the implantation of a high dose of n+ ions. Channeling can be prevented by implanting p-type ions below emitter region 8 in this state. Thereby, as shown in FIG. 1(C), the depth of the base of the internal base region 7 can be made shallow and uniform. Therefore, it is possible to obtain a bipolar transistor that operates at high speed and whose current amplification factor can be easily controlled.

尚、本実施例は一例であって本発明を限定するものでは
ない。また本発明はイオン注入エミッタ型bi−CMO
Sに対しても、NチャネルMOSトランジスタのソース
ドレインのN+イオン注入とバイポーラトランジスタの
エミッタ領域用N+イオン注入を兼ねることにより起用
することができる。
It should be noted that this example is an example and does not limit the present invention. Further, the present invention is an ion implantation emitter type bi-CMO.
S can also be used by implanting N+ ions into the source and drain of an N-channel MOS transistor and implanting N+ ions into the emitter region of a bipolar transistor.

次に、本発明のバイポーラトランジスタの製造方法を用
いて実験を行った結果について説明する。
Next, the results of experiments conducted using the bipolar transistor manufacturing method of the present invention will be described.

n+イオンとしてヒ素を使用し、ドーズ量を5×101
5/cシ、加速電圧を40KcVとしてエミッタ領域を
形成した。その後シート抵抗を下げるために、このエミ
ッタ領域内にB F 2を打込み瓜をlXl013/c
d、加速電圧を30 KeVとして浅く注入した。そし
てエミッタ領域の下部にBを打込み量を5. 6 X 
1013/cl、加速電圧を25 KeVとして深く注
入して、内部ベース領域7を形成した。
Arsenic is used as n+ ion, and the dose is 5×101
The emitter region was formed with an acceleration voltage of 40 KcV. After that, in order to lower the sheet resistance, B F 2 was implanted into this emitter region.
d. Shallow implantation was performed at an accelerating voltage of 30 KeV. Then, implant B into the lower part of the emitter region with an amount of 5. 6 X
The internal base region 7 was formed by deep implantation at 1013/cl and an accelerating voltage of 25 KeV.

上述のようなイオン注入条件により本発明の製造方法を
用いて製造されたバイポーラトランジスタの電流増幅率
hPEと、内部ベース領域の形成を先に行う従来の製造
方法により製造されたバイポーラトランジスタの電流増
幅率h p−を比較した結果を第2図に示す。これより
コレクタ電流の変化に対する電流増幅率hFEの最大値
は、従来の製造方法によるトランジスタが約40である
のに対し、本発明の製造方法によるトランジスタは約7
0と増大していることがわかる。即ち、本発明のバイポ
ーラトランジスタの製造方法には、チャネリングを防ぐ
ことによってベースの深さを薄くかつ均一化させて、ト
ランジスタの性能を向上させる結果があることがわかる
Current amplification factor hPE of a bipolar transistor manufactured using the manufacturing method of the present invention under the above-mentioned ion implantation conditions and current amplification of a bipolar transistor manufactured by a conventional manufacturing method in which the internal base region is formed first. The results of comparing the ratio h p- are shown in FIG. From this, the maximum value of the current amplification factor hFE with respect to a change in collector current is approximately 40 for the transistor manufactured using the conventional manufacturing method, whereas the maximum value of the current amplification factor hFE with respect to the change in collector current is approximately 7 for the transistor manufactured using the manufacturing method of the present invention.
It can be seen that it is increasing to 0. That is, it can be seen that the method for manufacturing a bipolar transistor of the present invention has the effect of making the base depth thinner and more uniform by preventing channeling, thereby improving the performance of the transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のバイポーラトランジスタの
製造方法は、半導体基板の表面部分に先に一導電型イオ
ンを注入してエミッタ領域を形成した後、そのエミッタ
領域の下部に逆導電型イオンを注入してチャネリングの
発生を防ILするため、これにより形成されたベース領
域のベースの深さは浅くしかも均一なものとなり、動作
の高速化、電流増幅率の増大等、トランジスタの性能を
向上させることができる。
As explained above, in the method of manufacturing a bipolar transistor of the present invention, ions of one conductivity type are first implanted into the surface portion of a semiconductor substrate to form an emitter region, and then ions of the opposite conductivity type are implanted below the emitter region. In order to prevent the occurrence of channeling, the base depth of the formed base region is shallow and uniform, which improves the performance of the transistor such as faster operation and increased current amplification factor. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるバイポーラトランジス
タの製造方法の工程別素子断面図、第2図は同製造方法
により製造されたバイポーラトランジスタの電流増幅率
と従来の製造方法により製造されたバイポーラトランジ
スタの電流増幅率とを示す図、第3図は従来のバイポー
ラトランジスタの製造方法の工程別素子断面図である。 1・・・p型シリコン基板、2・・・n+埋込み層、3
・・・n型エピタキシャル領域、4・・・素子分離領域
、5・・・n+型型数散層6・・・外部ベース領域、7
゜17・・・内部ベース領域、8,18・・・エミッタ
領域、9a、9b、9c、12a、12b、12cm・
・マスク材、10・・・層間絶縁膜、11・・・アルミ
ニウム配線。 出願人代理人  佐  藤  −雄 n+       92 p            ど−−1 一、2 p              ど−一1処3図
FIG. 1 is a cross-sectional view of each step of a bipolar transistor manufacturing method according to an embodiment of the present invention, and FIG. 2 shows a current amplification factor of a bipolar transistor manufactured by the same manufacturing method and a bipolar transistor manufactured by a conventional manufacturing method. FIG. 3 is a diagram showing the current amplification factor of a transistor, and is a cross-sectional view of each step of a conventional bipolar transistor manufacturing method. 1...p-type silicon substrate, 2...n+ buried layer, 3
... n-type epitaxial region, 4 ... element isolation region, 5 ... n+ type scattering layer 6 ... external base region, 7
゜17... Internal base region, 8, 18... Emitter region, 9a, 9b, 9c, 12a, 12b, 12cm.
・Mask material, 10... Interlayer insulating film, 11... Aluminum wiring. Applicant's agent Sato -o n+ 92 p Do-1 1, 2 p Do-1 1 Place 3 Figure

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の表面部分に一導電型イオンを注入拡散し
てエミッタ領域を形成し、その後前記エミッタ領域より
も深くなるように逆導電型イオンを注入拡散することに
より、前記エミッタ領域の存在によって深さの浅いベー
ス領域を形成することを特徴とするバイポーラトランジ
スタの製造方法。
By implanting and diffusing ions of one conductivity type into the surface of the semiconductor substrate to form an emitter region, and then implanting and diffusing ions of the opposite conductivity type to a depth deeper than the emitter region, the depth is increased due to the presence of the emitter region. A method of manufacturing a bipolar transistor, comprising forming a shallow base region.
JP13376088A 1988-05-31 1988-05-31 Bipolar transistor manufacturing method Expired - Lifetime JPH0713971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13376088A JPH0713971B2 (en) 1988-05-31 1988-05-31 Bipolar transistor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13376088A JPH0713971B2 (en) 1988-05-31 1988-05-31 Bipolar transistor manufacturing method

Publications (2)

Publication Number Publication Date
JPH01302860A true JPH01302860A (en) 1989-12-06
JPH0713971B2 JPH0713971B2 (en) 1995-02-15

Family

ID=15112308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13376088A Expired - Lifetime JPH0713971B2 (en) 1988-05-31 1988-05-31 Bipolar transistor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0713971B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606819B2 (en) 2001-10-15 2009-10-20 Maya-Systems Inc. Multi-dimensional locating system and method
US8607155B2 (en) 2008-09-12 2013-12-10 9224-5489 Quebec Inc. Method of managing groups of arrays of documents
US9122374B2 (en) 2011-02-01 2015-09-01 9224-5489 Quebec Inc. Expandable and collapsible arrays of documents

Also Published As

Publication number Publication date
JPH0713971B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US5897363A (en) Shallow junction formation using multiple implant sources
JPH06112493A (en) Method for manufacture of power mos transistor by longitudinal current and transistor manufactured by said method
US4535529A (en) Method of making semiconductor devices by forming an impurity adjusted epitaxial layer over out diffused buried layers having different lateral conductivity types
JPH04239760A (en) Manufacture of semiconductor device
US5116770A (en) Method for fabricating bipolar semiconductor devices
JPH08195399A (en) Insulated vertical pnp transistor dispensing with embedded layer
JP2562688B2 (en) Method for manufacturing semiconductor device
JP2797798B2 (en) Semiconductor device having buried contact for preventing penetration and method of manufacturing the same
JPH0541385A (en) Semiconductor device and manufacture thereof
JPH01302860A (en) Manufacture of bipolar transistor
JP2000058665A (en) Semiconductor device and its manufacture
EP0718891B1 (en) High performance, high voltage non-epi bipolar transistor
JP2569171B2 (en) Semiconductor device
KR920020749A (en) BICMOS Manufacturing Method for Counter-doped Collectors
JP2604727B2 (en) Method for manufacturing semiconductor device
JPH10256407A (en) Semiconductor device and manufacture thereof
JP4065135B2 (en) Manufacturing method of semiconductor device
JP2881833B2 (en) Method for manufacturing semiconductor device
KR0143171B1 (en) Bipolar Transistor Manufacturing Method
JPS6251248A (en) Manufacture of semiconductor device
JP2506129B2 (en) Method for manufacturing semiconductor device
JP3122103B2 (en) Semiconductor device manufacturing method
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
JPS60251664A (en) Manufacture of semiconductor device
JPH0353562A (en) Manufacture of semiconductor integrated circuit device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14