JPH0282628A - Manufacture of vertical mosfet - Google Patents

Manufacture of vertical mosfet

Info

Publication number
JPH0282628A
JPH0282628A JP63235827A JP23582788A JPH0282628A JP H0282628 A JPH0282628 A JP H0282628A JP 63235827 A JP63235827 A JP 63235827A JP 23582788 A JP23582788 A JP 23582788A JP H0282628 A JPH0282628 A JP H0282628A
Authority
JP
Japan
Prior art keywords
film
insulating film
conductivity type
diffusion layer
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63235827A
Other languages
Japanese (ja)
Other versions
JPH07101741B2 (en
Inventor
Tadashi Natsume
夏目 正
Hidetaka Sawame
沢目 秀孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63235827A priority Critical patent/JPH07101741B2/en
Publication of JPH0282628A publication Critical patent/JPH0282628A/en
Publication of JPH07101741B2 publication Critical patent/JPH07101741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Abstract

PURPOSE:To obtain a vertical MOSFET adapted for its miniaturization by allowing a remaining film to retain on the surface of an N-type diffused layer of a gate electrode material, and forming an N<+> type contact diffused layer in a self-alignment manner by utilizing the remaining film. CONSTITUTION:A gate oxide film 16 is newly formed on a part to become a gate by thermally oxidizing. In this case, an initial thick oxide film 14 remains on the field of the periphery of an FET as it is. Thereafter, a polysilicon layer is deposited on the whole face, the layer is selectively removed by etching by photoresist processing to form a gate electrode 17 on the film 16 and a remaining film 18 on the film 16 on an N-type diffused layer 15. With the step of an oxide film 22 after the film 18 is removed as a mask an impurity such as phosphorus P or the like is ion-implanted. Thus, an N<+> type contact diffused layer 25 is formed at the center of a source region 21. The ion implantation is conducted through the film 26 on the surface of an N-type diffused layer 20, and formed in a complete self-alignment manner in the region 21.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は縦型のMOSFETに関し、主としてPチャン
ネルMO5FETを対象とする。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a vertical MOSFET, and mainly targets a P-channel MO5FET.

(ロ)従来の技術 NチャンネルFETにコンプリメンタリ−(相補的)に
組合せ、又は単独の素子として大電流のスイッチング動
作を行わせる目的で、しばしばPチャンネル型の重力用
FETが必要とされている。かかる用途や目的のために
重力用の大電流・高耐圧のFETを得るには、その特性
上、ドレイン電極が基板となる縦型のFETが適合して
いる。すなわち第2図に示す如く、裏面にP1型層(1
)を有するP型半導体基体(2)の主表面に形成したN
型拡散層(3)の一部にP“型ソース領域(4)とその
電極(5)及びゲート電極(6)を設け、基体(2)の
裏面からドレイン電極(7)を取り出すことにより、単
位面積当りのFET動作する活性面積が大きくとれ、そ
の結果ドレインソース間のオン抵抗の低減、相互フンダ
クタンスの増大、したがって電流容量の増大といった目
的が達せられる。
(b) Prior Art P-channel gravity FETs are often required for the purpose of performing large current switching operations in complementary combination with N-channel FETs or as a single element. In order to obtain a large-current, high-voltage FET for gravity use for such uses and purposes, a vertical FET in which the drain electrode serves as a substrate is suitable due to its characteristics. That is, as shown in FIG. 2, a P1 type layer (1
) formed on the main surface of the P-type semiconductor substrate (2)
By providing a P" type source region (4), its electrode (5) and gate electrode (6) in a part of the type diffusion layer (3), and taking out the drain electrode (7) from the back surface of the base body (2), The active area for FET operation per unit area can be increased, and as a result, the objectives of reducing the on-resistance between the drain and source, increasing the mutual conductance, and therefore increasing the current capacity can be achieved.

ところで、ソース電極(5)としては取扱いの容易さか
ら一般にアルミニウム(Affi)又はアルミニウム・
シリコン(Al−Si)が用いられているが、アルミニ
ウムはシリコン(Si)に対してP型不純物としての特
性を有する為、N型拡散層(3)とでPN接合によるバ
リア(障壁)を形成し、これが素子の特性を劣化きせる
By the way, the source electrode (5) is generally made of aluminum (Affi) or aluminum for ease of handling.
Silicon (Al-Si) is used, but since aluminum has characteristics as a P-type impurity with respect to silicon (Si), it forms a barrier with a PN junction with the N-type diffusion layer (3). However, this deteriorates the characteristics of the element.

この様な欠点に対し、同じく第2図に示すようにN型拡
散層(3)表面にN1型の高濃度コンタクト領域(8)
を形成することによりソース電極(5)とN型拡散層(
3)とのオーミック性を改善する技術が特開昭58−1
6569号公報(HOIL  29/78)に記載され
ている。
To deal with these defects, as shown in Figure 2, an N1-type high concentration contact region (8) is formed on the surface of the N-type diffusion layer (3).
By forming a source electrode (5) and an N-type diffusion layer (
3) The technology to improve the ohmic property with JP-A-58-1
It is described in Publication No. 6569 (HOIL 29/78).

(ハ)発明が解決しようとする課題 しかしながら、P”型ソース領域(4)とソース電極(
5)とは電流容量を確保する為ある程度のコンタクト面
積を必要とすることから、ホトレジスト処理によりN+
型コンタクト拡散層(8)を選択的に形成することは素
子の微細化を押し進める上で弊害となる欠点を有してい
る。
(c) Problems to be solved by the invention However, the P'' type source region (4) and the source electrode (
5) requires a certain amount of contact area to ensure current capacity, so photoresist processing is used to
Selective formation of the type contact diffusion layer (8) has the drawback of being detrimental to the progress of device miniaturization.

(ニ)課題を解決するための手段 本発明は斯上した欠点に鑑み成されたもので、ゲート電
極(17)材料によってN型拡散Ji(20)表面に残
存膜(18)を残し、この残存膜(18)を利用してセ
ルファライン的にN+型コンタクト拡散ff(25)を
形成することにより、微細化に適した縦型MOSFET
の製造方法を提供するものである。
(d) Means for Solving the Problems The present invention has been made in view of the above-mentioned drawbacks, and it leaves a residual film (18) on the surface of the N-type diffused Ji (20) using the gate electrode (17) material. A vertical MOSFET suitable for miniaturization is created by forming an N+ type contact diffusion ff (25) in a self-line manner using the remaining film (18).
The present invention provides a method for manufacturing.

くホ)作用 本発明によれば、残存膜(25)によってP+型ソース
領域(21)とN1型コンタクトJG(25)との双方
がセルファラインにより形成できるので、マスク合せ精
度が不要となり微細化が可能になる。
According to the present invention, both the P+ type source region (21) and the N1 type contact JG (25) can be formed by self-alignment using the remaining film (25), so mask alignment accuracy is not required and miniaturization is possible. becomes possible.

(へ)実施例 以下、本発明の一実施例を図面を参照しながら詳細に説
明する。本発明の目的はこのような縦型のPチャンネル
電力用FETを提供することにある。本発明によるPf
ヤンネルMO5FETは第1図(a)〜(k)で示す各
工程のプロセスに従って製造される。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings. An object of the present invention is to provide such a vertical P-channel power FET. Pf according to the invention
The Jannel MO5FET is manufactured according to the steps shown in FIGS. 1(a) to 1(k).

(a)まず、B(ボロン)を高濃度にドープしたP4型
Si基板(11)上に低濃度のP型エピタキシャル成長
Jl(12)を形成したP−P+型基体(13)を用意
する。
(a) First, a PP+ type substrate (13) is prepared, in which a low concentration P type epitaxial growth Jl (12) is formed on a P4 type Si substrate (11) doped with a high concentration of B (boron).

(b)この基体(13)表面にホトレジスト処理した酸
化膜(14)をマスクにして選択的にN型のN型拡散W
J(15)を形成する。この部分は前記基板に対し部分
的に深く存在させる。
(b) Selective N-type diffusion W using the photoresist-treated oxide film (14) on the surface of this substrate (13) as a mask.
Form J(15). This portion is partially deep to the substrate.

(c)シかる後、ゲートとなる部分に熱酸化により新た
にゲート酸化膜(16)を形成する。このときFETの
周囲のフィールド部には最初の厚い酸化膜(14)をそ
のまま残存させる。この後全面にポリシリコン層をデポ
ジットし、ホトレジスト処理によってポリシリコン層を
選択的にエツチング除去することによりゲート酸化膜(
16)上にはゲート電極(17)を、N型拡散層(15
)上のゲート酸化膜(16)上には本発明の構成に欠く
ことのできない残存膜(18)を形成する。
(c) After this, a new gate oxide film (16) is formed by thermal oxidation on the portion that will become the gate. At this time, the initial thick oxide film (14) remains in the field area around the FET. After this, a polysilicon layer is deposited on the entire surface, and the gate oxide film (
16) A gate electrode (17) is placed on top of the N-type diffusion layer (15).
) A residual film (18), which is essential to the structure of the present invention, is formed on the gate oxide film (16) on the gate oxide film (16).

(d)続いてゲート電極(16)と残存膜(18)をマ
スクとし、チャンネル形成のためのN型領域(19)を
イオン注入又はデポジットと熱拡散により選択的に形成
する。前記熱拡散によりN型領域(19)はゲート電極
(17)の下部に横方向拡散により廻り込んでチャンネ
ル部を形成し、きらに先に形成した深いN型拡散層(1
5)と連結して同図に示す形状のN型拡散層(20)を
形成する。
(d) Next, using the gate electrode (16) and the remaining film (18) as a mask, an N-type region (19) for forming a channel is selectively formed by ion implantation or deposition and thermal diffusion. Due to the thermal diffusion, the N-type region (19) spreads around the lower part of the gate electrode (17) in the lateral direction to form a channel part, and the deep N-type region (19) formed earlier forms a channel part.
5) to form an N-type diffusion layer (20) having the shape shown in the figure.

(e)次にゲート電極(17)と残存膜(18)を再び
マスクとして、P+型ソース領域(21)をイオン注入
又はデポジットと熱処理によりN型拡散Jffi(20
)表面に選択的に形成する。結果、P−型エピタキシへ
・ルJW(12)とP+型ソース領域(21)とに挾ま
れたN型拡散Ji(20)表面がチャンネルとなる。本
工程は残存膜(18)を利用するので、ホトレジスト工
程は一切必要無い。
(e) Next, using the gate electrode (17) and the remaining film (18) as masks again, the P+ type source region (21) is ion-implanted or deposited and heat treated to form an N-type diffused Jffi (20
) selectively formed on the surface. As a result, the surface of the N-type diffused Ji (20) sandwiched between the P- type epitaxial layer JW (12) and the P+ type source region (21) becomes a channel. Since this step utilizes the remaining film (18), no photoresist step is necessary.

(f)その後ゲート電極(17)と残存膜(18)を覆
う様にして全面にCVD(化学反応気相析出)法による
リンドープの絶縁酸化膜(22a)を形成し、全面をパ
ッシベーションすると共に、ゲート電極(17)による
段差を平坦化する為の5OG(スピンオングラス)酸化
膜(22b)を形成する。そして、平坦化した酸化膜(
21)上にホトレジスト膜(23)をスピンオン塗布し
、露光・現像することで残存膜(18)に対応する部分
に開孔部(24)を有するホトレジスト膜(23)とす
る。開孔部(24)は残存膜(18)パターンと同程度
の大きさか若しくは位置合せ精度を考慮してやや大きな
開孔部(24)とする。
(f) After that, a phosphorus-doped insulating oxide film (22a) is formed on the entire surface by CVD (chemical vapor deposition) so as to cover the gate electrode (17) and the remaining film (18), and the entire surface is passivated. A 5OG (spin-on-glass) oxide film (22b) is formed to flatten the step caused by the gate electrode (17). Then, the planarized oxide film (
21) A photoresist film (23) is spin-on coated on top, exposed and developed to form a photoresist film (23) having openings (24) in portions corresponding to the remaining film (18). The openings (24) are made to be approximately the same size as the remaining film (18) pattern, or slightly larger in consideration of alignment accuracy.

(g)ホトレジスト膜(23)をマスクとして酸化膜(
21)をエツチングし、残存膜(18)周囲の酸化膜(
21)を残すようにして残存膜(18)の頭部を露出さ
せる。エツチングにはウェット方式による等方エツチン
グ又はドライ方式による異方又は等方エツチングを用い
る。
(g) Using the photoresist film (23) as a mask, the oxide film (
21) and remove the oxide film (18) around the remaining film (18).
21) to expose the top of the remaining membrane (18). For etching, wet isotropic etching or dry anisotropic or isotropic etching is used.

(h)続いてポリシリコン(Poly−Si)とシリコ
ン酸化膜(SiOz)との選択性を利用して、残存膜(
18)だけをエツチング除去する。エツチングにはHF
をベースとしたウェット方式の他、SF6をエツチング
ガスとするR I E (Reactive Ion 
Etching)によるドライ方式が選択できる。RI
Eでは選択比の高い異方性エツチングができるので、極
めて正確なエツチング除去ができる。
(h) Next, using the selectivity between polysilicon (Poly-Si) and silicon oxide film (SiOz), the remaining film (
18) is removed by etching. HF for etching
In addition to the wet method based on
A dry method (Etching) can be selected. R.I.
Since E allows anisotropic etching with a high selectivity, extremely accurate etching removal is possible.

(i)残存膜(18)を除去した後の酸化膜(22)の
段差をマスクとしてリン(P)等の不純物をイオン注入
することにより、ソース領域(21)の真中部分にN+
型のコンタクト拡散層(25)を形成する。イオン注入
はN型拡散層(20)表面のゲート酸化膜〈16)を貫
通して行なわれ、ソース領域(21)に対して完全なセ
ルファラインにより形成できる。
(i) By ion-implanting impurities such as phosphorus (P) using the steps of the oxide film (22) after removing the remaining film (18) as a mask, N+
A mold contact diffusion layer (25) is formed. The ion implantation is performed through the gate oxide film (16) on the surface of the N-type diffusion layer (20), and can be formed by a complete self-alignment with respect to the source region (21).

(j)酸化膜(21)を開孔してN+型コンタクト拡散
層(25〉とソース領域(21)の一部を露出し、ソー
スコンタクト孔とする。
(j) A hole is opened in the oxide film (21) to expose a part of the N+ type contact diffusion layer (25>) and the source region (21) to form a source contact hole.

(k)全面にAt又は1%Siを含むAfi −Siの
蒸着によりN4型コンタクト拡散層(25)とP+型ソ
ース領域(21)の双方にコンタクトするソース電極(
26)を形成し、ポリシリコン層からはゲート電極Gを
取り出し、P+基板(11)裏面からドレインとなるべ
き電極りをI’1−Ni−Ag等の蒸着により取り出す
(k) A source electrode that contacts both the N4 type contact diffusion layer (25) and the P+ type source region (21) by evaporating Afi-Si containing At or 1% Si on the entire surface (
26) is formed, a gate electrode G is taken out from the polysilicon layer, and an electrode to be a drain is taken out from the back surface of the P+ substrate (11) by vapor deposition of I'1-Ni-Ag or the like.

このようにして製造された本発明のPチャンネル型の縦
型MOSFETは、N+型コンタクト拡散層(25)を
形成することでN型拡散層(20)とソース電極(21
)との良好なオーミックコンタクトが得られ、N型拡散
層(20)の電位が安定して定まるので、ゲート電極(
17)下にチャンネル(反転層)が安定して形成され、
従って安定したMOSFET動作が得られる。
The P-channel type vertical MOSFET of the present invention manufactured in this way can be formed by forming an N+ type contact diffusion layer (25), thereby forming an N type diffusion layer (20) and a source electrode (21).
), and the potential of the N-type diffusion layer (20) is stably determined.
17) A channel (inversion layer) is stably formed below,
Therefore, stable MOSFET operation can be obtained.

そして本発明の製造方法によれば、残存膜(18)を利
用してN+型コンタクト拡散層(25)をセルファライ
ンにより形成できるので、ゲート電極(17)との、及
びソース領域(21)とのマスク合せ余裕を持たせる必
要が無く、従ってパターンサイズを縮小できる。
According to the manufacturing method of the present invention, the N+ type contact diffusion layer (25) can be formed by self-line using the remaining film (18), so that it can be connected to the gate electrode (17) and the source region (21). There is no need to provide a margin for mask alignment, and the pattern size can therefore be reduced.

本発明の第2の実施例は、SOG酸化膜(22b)と等
方エツチングを利用することによりソース電極(26)
の被覆性を改善するものである。
In the second embodiment of the present invention, the source electrode (26) is etched by using the SOG oxide film (22b) and isotropic etching.
This improves the coverage of

すなわち、第1図(f)においてSOG酸化膜(22b
)を形成することにより残存膜(18)上の酸化膜(2
1)の膜厚よりソース領域(21)上の酸化膜(21)
の膜厚を厚くし、 第1図(g>において残存膜(18)より大きく酸化膜
(21)をエツチングすることで残存膜(18)頭部が
完全に突出するように露出させ、 第1図(h)において残存膜(18)を除去することに
より酸化膜(21)に段差を付け、 第1図(j)において前記段差を等方エツチングするこ
とにより、前記段差による膜厚の薄い部分を除去してソ
ースコンタクト孔とし且つ膜厚の厚い部分は前記等方エ
ツチングにより緩らかな段差に形成し、 第1図(k)においてソース電極(26)を形成するこ
とにより、ソース電極(26)の段切れや断線を防止し
た、信頼性の高い縦型MO3FETとすることができる
That is, in FIG. 1(f), the SOG oxide film (22b
) on the remaining film (18).
The oxide film (21) on the source region (21) is thicker than the film thickness of 1).
By increasing the film thickness of the oxide film (21) and etching the oxide film (21) larger than the remaining film (18) in FIG. In FIG. 1(h), a step is formed in the oxide film (21) by removing the remaining film (18), and in FIG. is removed to form a source contact hole, and the thick part is formed into a gentle step by the above-mentioned isotropic etching, and the source electrode (26) is formed as shown in FIG. 1(k). ) can be made into a highly reliable vertical MO3FET that prevents breakage and disconnection.

(ト)発明の効果 以上に説明した如く、本発明によれば、残存膜〈18)
を利用することによりゲート電極(17)とN+型コン
タクト拡散層(25)、及びソース領域(21)とN′
″型コシコンタクト拡散層5)とをセルファラインによ
り形成できるので、微細化に適した縦型MO5FETの
製造方法を提供できる利点を有する。
(g) Effects of the invention As explained above, according to the present invention, residual film <18>
By using
Since the ``type stiff contact diffusion layer 5) can be formed by self-alignment, it has the advantage of providing a method for manufacturing a vertical MO5FET suitable for miniaturization.

また、本発明の第2の実施例によれば、ゲート電極(1
7)側面の酸化膜(21)を緩らかな段差に形成できる
ので、ソース電極(26)の段切れや断線を防止した、
信頼性の高い縦型MOSFETを提供できる利点をも有
する。
Further, according to the second embodiment of the present invention, the gate electrode (1
7) Since the oxide film (21) on the side surface can be formed into a gentle step, breakage and disconnection of the source electrode (26) can be prevented.
It also has the advantage of providing a highly reliable vertical MOSFET.

【図面の簡単な説明】 第1図(a)〜(k)は夫々本発明の製造方法を説明す
る為の断面図、第2図は従来例を説明する為の断面図で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1K are cross-sectional views for explaining the manufacturing method of the present invention, and FIG. 2 is a cross-sectional view for explaining a conventional example.

Claims (4)

【特許請求の範囲】[Claims] (1)ドレインとなる第1導電型半導体基体の表面の一
部に不純物を拡散して第2導電型拡散層を形成する工程
、 前記基体表面にゲート絶縁膜を介してゲート電極を形成
すると共に、前記第2導電型拡散層表面の一部に前記ゲ
ート電極材料を残存膜として残す工程、 前記ゲート絶縁膜と前記残存膜をマスクとしてMOSF
ETのチャンネル部分を形成する第2導電型の不純物を
拡散する工程、 前記ゲート絶縁膜と前記残存膜を再びマスクとしてMO
SFETのソース領域を形成する第1導電型の不純物を
拡散する工程、 前記ゲート絶縁膜と前記残存膜を覆うように全面を絶縁
膜で覆う工程、 前記絶縁膜上にホトレジスト膜を形成し、パターニング
して前記残存膜に対応する部分を開孔する工程、 前記ホトレジスト膜をマスクとして前記絶縁膜をエッチ
ングすることにより前記残存膜の頭部を露出させる工程
、 前記絶縁膜と残存膜の選択性により前記残存膜だけをエ
ッチング除去する工程、 前記残存膜を除去した後の開孔を利用して第1導電型不
純物を拡散することにより、前記第2導電型拡散層の表
面に第1導電型高濃度コンタクト拡散層を形成する工程
、 前記絶縁膜を開孔して前記高濃度コンタクト拡散層と前
記ソース領域の一部を露出する工程、前記高濃度コンタ
クト拡散層と前記ソース領域の双方にコンタクトするソ
ース電極を形成する工程とを具備することを特徴とする
縦型MOSFETの製造方法。
(1) A step of diffusing an impurity into a part of the surface of the first conductivity type semiconductor substrate that will become the drain to form a second conductivity type diffusion layer, and forming a gate electrode on the surface of the substrate via a gate insulating film. , leaving the gate electrode material as a residual film on a part of the surface of the second conductivity type diffusion layer; using the gate insulating film and the residual film as a mask to form a MOSFET;
A step of diffusing a second conductivity type impurity to form a channel portion of ET, using the gate insulating film and the remaining film as a mask again, MO
a step of diffusing impurities of a first conductivity type to form a source region of the SFET; a step of covering the entire surface with an insulating film so as to cover the gate insulating film and the remaining film; forming a photoresist film on the insulating film and patterning it; a step of opening a hole in a portion corresponding to the remaining film; a step of exposing a top portion of the remaining film by etching the insulating film using the photoresist film as a mask; a step of etching away only the remaining film, and diffusing a first conductivity type impurity using the openings after removing the remaining film, thereby forming a first conductivity type high impurity on the surface of the second conductivity type diffusion layer; forming a concentrated contact diffusion layer; opening a hole in the insulating film to expose a portion of the high concentration contact diffusion layer and the source region; and contacting both the high concentration contact diffusion layer and the source region. A method for manufacturing a vertical MOSFET, comprising the step of forming a source electrode.
(2)ドレインとなる第1導電型基体の表面の一部に不
純物を拡散して第2導電型拡散層を形成する工程、 前記基体表面にゲート絶縁膜を介してゲート電極を形成
すると共に、前記第2導電型拡散層表面の一部に前記ゲ
ート絶縁膜材料を残存膜として残す工程、 前記ゲート絶縁膜と前記残存膜をマスクとしてMOSF
ETのチャンネル部分を形成する第2導電型の不純物を
拡散する工程、 前記ゲート絶縁膜と前記残存膜を再びマスクとしてMO
SFETのソース領域を形成する第1導電型の不純物を
拡散する工程、 前記ゲート絶縁膜と前記残存膜を覆う様に全面を絶縁膜
で覆い、次いでSOG絶縁膜により表面を平坦化する工
程、 前記絶縁膜上にホトレジスト膜を形成し、パターニング
して前記残存膜に対応する部分を開孔する工程、 前記ホトレジスト膜をマスクとして前記絶縁膜を前記残
存膜より大きな開孔部でエッチングし、前記残存膜の頭
部を露出させる工程、 前記絶縁膜と残存膜の選択性により前記残存膜だけをエ
ッチング除去する工程、 前記残存膜を除去した後の開孔を利用して第1導電型の
不純物を拡散することにより、前記第2導電型拡散層の
表面に第1導電型コンタクト拡散層を形成する工程、 前記ホトレジスト膜をマスクとして前記絶縁膜を等方エ
ッチングすることにより、前記絶縁膜を平坦化すると共
に前記コンタクト拡散層と前記ソース領域の一部を露出
する工程、 前記高濃度拡散コンタクト拡散層と前記ソース 領域の
双方にコンタクトするソース電極を形成する工程とを具
備することを特徴とする縦型MOSFETの製造方法。
(2) forming a second conductivity type diffusion layer by diffusing impurities into a part of the surface of the first conductivity type substrate that will become the drain; forming a gate electrode on the surface of the substrate via a gate insulating film; leaving the gate insulating film material as a residual film on a part of the surface of the second conductivity type diffusion layer, using the gate insulating film and the remaining film as a mask to form a MOSFET;
A step of diffusing a second conductivity type impurity to form a channel portion of ET, using the gate insulating film and the remaining film as a mask again, MO
a step of diffusing impurities of a first conductivity type to form a source region of the SFET; a step of covering the entire surface with an insulating film so as to cover the gate insulating film and the remaining film; and then planarizing the surface with an SOG insulating film; forming a photoresist film on the insulating film and patterning it to open a hole in a portion corresponding to the remaining film; using the photoresist film as a mask, etching the insulating film with an opening larger than the remaining film; a step of exposing the top portion of the film; a step of etching away only the remaining film with selectivity between the insulating film and the remaining film; and a step of etching impurities of the first conductivity type using the openings after removing the remaining film. forming a first conductivity type contact diffusion layer on the surface of the second conductivity type diffusion layer by diffusion; flattening the insulation film by isotropically etching the insulation film using the photoresist film as a mask; and a step of exposing a part of the contact diffusion layer and the source region, and a step of forming a source electrode in contact with both the high concentration diffusion contact diffusion layer and the source region. Method of manufacturing type MOSFET.
(3)前記高濃度コンタクト拡散層はN型領域であり且
つ前記ソース電極はAl又はAl−Siであることを特
徴とする請求項第1項又は第2項に記載の縦型MOSF
ETの製造方法。
(3) The vertical MOSF according to claim 1 or 2, wherein the high concentration contact diffusion layer is an N-type region and the source electrode is Al or Al-Si.
ET manufacturing method.
(4)前記ゲート電極材料はポリシリコンであり前記絶
縁膜は酸化膜であり且つ前記残存膜の選択除去はRIE
による異方性エッチングであることを特徴とする請求項
第1項又は第2項に記載の縦型MOSFETの製造方法
(4) The gate electrode material is polysilicon, the insulating film is an oxide film, and the remaining film is selectively removed by RIE.
3. The method for manufacturing a vertical MOSFET according to claim 1, wherein the method is anisotropic etching.
JP63235827A 1988-09-20 1988-09-20 Method for manufacturing vertical MOSFET Expired - Lifetime JPH07101741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235827A JPH07101741B2 (en) 1988-09-20 1988-09-20 Method for manufacturing vertical MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235827A JPH07101741B2 (en) 1988-09-20 1988-09-20 Method for manufacturing vertical MOSFET

Publications (2)

Publication Number Publication Date
JPH0282628A true JPH0282628A (en) 1990-03-23
JPH07101741B2 JPH07101741B2 (en) 1995-11-01

Family

ID=16991845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235827A Expired - Lifetime JPH07101741B2 (en) 1988-09-20 1988-09-20 Method for manufacturing vertical MOSFET

Country Status (1)

Country Link
JP (1) JPH07101741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508371A (en) * 1992-03-20 1995-09-14 シリコニックス インコーポレーテッド Threshold adjustment in vertical DMOS devices
US5511448A (en) * 1993-10-26 1996-04-30 Mazda Motor Corporation Power transfer apparatus for four-wheel drive automotive vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180163A (en) * 1984-01-27 1985-09-13 シーメンス・アクチエンゲゼルシヤフト Semiconductor element and method of producing same
JPS62200766A (en) * 1986-02-28 1987-09-04 Oki Electric Ind Co Ltd Manufacture of high withstand voltage dsamosfet element
JPS62211955A (en) * 1986-03-12 1987-09-17 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6350069A (en) * 1986-08-19 1988-03-02 Matsushita Electronics Corp Manufacture of mos field effect transistor
JPS63132481A (en) * 1986-11-22 1988-06-04 Toshiba Corp Manufacture of field effect transistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180163A (en) * 1984-01-27 1985-09-13 シーメンス・アクチエンゲゼルシヤフト Semiconductor element and method of producing same
JPS62200766A (en) * 1986-02-28 1987-09-04 Oki Electric Ind Co Ltd Manufacture of high withstand voltage dsamosfet element
JPS62211955A (en) * 1986-03-12 1987-09-17 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6350069A (en) * 1986-08-19 1988-03-02 Matsushita Electronics Corp Manufacture of mos field effect transistor
JPS63132481A (en) * 1986-11-22 1988-06-04 Toshiba Corp Manufacture of field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07508371A (en) * 1992-03-20 1995-09-14 シリコニックス インコーポレーテッド Threshold adjustment in vertical DMOS devices
US5511448A (en) * 1993-10-26 1996-04-30 Mazda Motor Corporation Power transfer apparatus for four-wheel drive automotive vehicle

Also Published As

Publication number Publication date
JPH07101741B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
US6852597B2 (en) Method for fabricating power semiconductor device having trench gate structure
JPH07122745A (en) Semiconductor device and its manufacture
JPH07120795B2 (en) Method of manufacturing semiconductor device
JP2566202B2 (en) Semiconductor element and its manufacturing method
GB2319395A (en) MOS-gated semiconductor device
JPH0846196A (en) Mos transistor and its preparation
JPH0282628A (en) Manufacture of vertical mosfet
JP4401453B2 (en) Method of manufacturing power semiconductor device using semi-insulating polysilicon (SIPOS) film
JP2000299457A (en) Semiconductor device and its manufacture
JP2697062B2 (en) Method for manufacturing semiconductor device
JPS6116573A (en) Manufacture of mis type semiconductor device
JPH06163905A (en) Fabrication of insulated gate semiconductor
US6023087A (en) Thin film transistor having an insulating membrane layer on a portion of its active layer
JP2519541B2 (en) Semiconductor device
JP2925910B2 (en) Manufacturing method of insulated gate semiconductor device
JPS603157A (en) Manufacture of semiconductor device
JP2000091440A (en) Manufacture of semiconductor integrated circuit device
JPH09102604A (en) Semiconductor device
JPH1174513A (en) Semiconductor of insulating gate type and its manufacture
JPH0194666A (en) Preparation of mosfet
JP3638189B2 (en) Method for manufacturing field effect transistor
JP2002110813A (en) Semiconductor device and its manufacturing method
KR0175366B1 (en) Semiconductor device and method of manufacturing the same
JPH065679B2 (en) Method for manufacturing MOS semiconductor device
JPS61214472A (en) Manufacture of semiconductor element