JPS63132481A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS63132481A
JPS63132481A JP61277856A JP27785686A JPS63132481A JP S63132481 A JPS63132481 A JP S63132481A JP 61277856 A JP61277856 A JP 61277856A JP 27785686 A JP27785686 A JP 27785686A JP S63132481 A JPS63132481 A JP S63132481A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
region
type
silicon region
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61277856A
Other languages
Japanese (ja)
Inventor
Yoshihito Nakayama
中山 善仁
Hirohito Tanabe
田辺 博仁
Takeyuki Suzuki
健之 鈴木
Kazuaki Suzuki
鈴木 一昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61277856A priority Critical patent/JPS63132481A/en
Publication of JPS63132481A publication Critical patent/JPS63132481A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Abstract

PURPOSE:To reduce remarkably base resistance, by determining the position of an aperture for implanting impurity to form a high concentration P-type region in the manner of self align to the position of a first polycrystalline silicon region on a gate oxide film being a gate electrode. CONSTITUTION:A gate oxide film 5 and a polycrystalline silicon film are formed on a main surface of an N-type semiconductor substrate 3, and the polycrystalline silicon film is divided by etching into first and second polycrystalline silicon regions 6 and 6a. Mask material 12 is buried, resist 12a is again spread, and the second polycrystalline region 6a only is selectively eliminated to make an aperture. Impurity is doped from the aperture, and a high impurity concentration region 2a of one conductivity type is formed in the semiconductor substrate 3. By applying the first polycrystalline silicon region to a mask, impurity is doped, and a base region 9 of one conductivity type and a source region 10 of the opposite conductivity type are formed.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、絶縁ゲート型電界効果トランジスタの製造方
法に関するもので、特にその寄生トランジスタ動作を抑
制し破壊耐量を改善する製造方法に係るものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an insulated gate field effect transistor, and in particular to a manufacturing method for suppressing parasitic transistor operation and improving breakdown resistance. It is related to the method.

(従来の技術) 従来の二重拡散構造の絶縁ゲート型電界効果トランジス
タ(D  M OS  F E J )の製造方法につ
いて第3図を参照し以下説明する。
(Prior Art) A conventional method for manufacturing an insulated gate field effect transistor (DMOSFEJ) having a double diffusion structure will be described below with reference to FIG.

第3図(a )に示すようにN型半導体基板3を酸化す
ることにより酸化膜1を形成する。 次にP E P 
(P hoto  E ngravingP roce
ss)技術により酸化膜を開口し、開口部より不純物を
注入して高濃度P型ベース領域2を形成する。 次に再
度基板3を酸化した後、PEP技術により酸化膜4を残
し、酸化膜1を除去する。 次にゲート酸化を行い酸化
膜5を形成し更にゲート電極となる多結晶シリコン膜を
堆積し、PEP技術を用いて不必要な多結晶シリコン膜
を除去し、ゲート酸化膜5上にゲート電極となる多結晶
シリコン領域6を形成する(第3図(b)参照)。 次
に多結晶シリコン領域6をマスクとしてイオン注入技術
を用いて例えばボロン(B)と燐(P)とを順次拡散し
てチャネルとなる低濃度P型ベース領域9と、P型ベー
ス領域9内にN型ソース領域10をそれぞれ形成する(
第3図(c)参照)。 その後絶縁物層を堆積し、N型
ソース領域10とオーム接触をするソース電極を基板上
面に及び基板下面のドレイン領域3に接してドレイン電
極をそれぞれ形成してD  MOS  FETが冑られ
る。
As shown in FIG. 3(a), an oxide film 1 is formed by oxidizing an N-type semiconductor substrate 3. As shown in FIG. Next P E P
(Photo engraving process
ss) technique, the oxide film is opened, and impurities are implanted through the opening to form a heavily doped P-type base region 2. Next, after oxidizing the substrate 3 again, the oxide film 4 is left and the oxide film 1 is removed using PEP technology. Next, gate oxidation is performed to form an oxide film 5, and then a polycrystalline silicon film that will become a gate electrode is deposited.The unnecessary polycrystalline silicon film is removed using PEP technology, and a gate electrode is formed on the gate oxide film 5. A polycrystalline silicon region 6 is formed (see FIG. 3(b)). Next, using the polycrystalline silicon region 6 as a mask, ion implantation technology is used to sequentially diffuse, for example, boron (B) and phosphorus (P) to form a low-concentration P-type base region 9 that will become a channel, and inside the P-type base region 9. N-type source regions 10 are formed in (
(See Figure 3(c)). Thereafter, an insulating layer is deposited, and a source electrode in ohmic contact with the N-type source region 10 is formed on the upper surface of the substrate, and a drain electrode is formed in contact with the drain region 3 on the lower surface of the substrate, respectively, thereby completing the DMOS FET.

前記横道のD  MOS  FETにJ3いては、第3
図(c)からも分かるようにN型ソース領域10、低1
101112P型ベース領域9及びドレイン領域3とか
らなるN P N奇生トランジスタ11が存在する構造
となっている。 このNPN奇生トランジスタ11のエ
ミッタはN型ソース領域10、ベースは低濃度P型ベー
ス領域9、コレクタはN型ドレイン領域3にそれぞれ対
応する。 この素子をし負荷動作にて使用したとき、素
子がオン状態からスイッチオフするとドレインとソース
との間にドレイン正、ソース負の大きい誘導起電力が印
加されることになり、このため奇生トランジスタ11が
動作し熱暴走により破壊され、それに伴い素子が破壊し
やすいという欠点があり、このような寄生1〜ランジス
タ11の影響を阻止する方払が望まれている。
In the DMOS FET on the side street, J3 is the third
As can be seen from Figure (c), the N-type source region 10, the low 1
It has a structure in which an N P N odd transistor 11 consisting of a 101112P type base region 9 and drain region 3 exists. The emitter of this NPN parasitic transistor 11 corresponds to the N type source region 10, the base corresponds to the lightly doped P type base region 9, and the collector corresponds to the N type drain region 3, respectively. When this element is used in load operation, when the element is switched off from the on state, a large induced electromotive force is applied between the drain and source, with the drain positive and the source negative, resulting in an unnatural transistor. 11 operates and is destroyed due to thermal runaway, which has the disadvantage that the element is likely to be destroyed.Therefore, a method to prevent such influence of the parasitic transistors 1 to 11 is desired.

(発明が解決しようとする問題点) 奇生トランジスタ11がスイッチオフ時の大ぎい誘導起
電力によって動作するのを防止するためには、寄生トラ
ンジスタ11のベースに対応するP型ベース領域9の不
純物密度を大きくし奇生トランジスタ11のベース抵抗
を低減することが必要である。 このためには第3図(
c)において高i11度P型ベース領域側面8とN型ソ
ース領域側面13との距離mを最小にすることが望まし
い。
(Problems to be Solved by the Invention) In order to prevent the parasitic transistor 11 from operating due to a large induced electromotive force when the parasitic transistor 11 is turned off, impurities in the P-type base region 9 corresponding to the base of the parasitic transistor 11 must be removed. It is necessary to increase the density and reduce the base resistance of the parasitic transistor 11. For this purpose, see Figure 3 (
In c), it is desirable to minimize the distance m between the high i11 degree P-type base region side surface 8 and the N-type source region side surface 13.

この場合N型ソース領域側面13より高ill!fP型
ベース領域の側面8が外側(図面右側)になった場合、
N型ソース領域直下は高濃度P型ベース領域となり、ベ
ース抵抗を低減でき奇生トランジスタのオン動作を防止
できるが、このMOS  FETのしきい値電圧に影響
を及ぼすことになり問題となる。 従って距離mを最小
に制御することが望ましい。
In this case, it is higher than the side surface 13 of the N-type source region! When the side surface 8 of the fP type base region is on the outside (on the right side of the drawing),
Directly below the N-type source region becomes a highly doped P-type base region, which can reduce the base resistance and prevent an anomalous transistor from turning on, but it affects the threshold voltage of this MOS FET, which poses a problem. Therefore, it is desirable to control the distance m to a minimum.

しかしながら従来技術では前述のように高濃度P型ベー
ス領1Ii12と、ゲート電極となる多結晶シリコン膜
6とはPEP技術を用いて個々に形成されるので、第3
図(b)に示す高濃度P型ベース領域2の側面8と多結
晶シリコン膜6の側面7との距IIjlilは、マスク
合わせ精度と高濃度P型ベース領域2の横方向拡散精度
とによって決められる。
However, in the prior art, as described above, the highly doped P-type base region 1Ii12 and the polycrystalline silicon film 6 that will become the gate electrode are formed individually using the PEP technique.
The distance IIjlil between the side surface 8 of the highly doped P-type base region 2 and the side surface 7 of the polycrystalline silicon film 6 shown in FIG. It will be done.

従って第3図(c)にあ(プる距離mを最小にすること
が望まれているが前述のようにマスク合わせ精度と高濃
度P型ベース領域2の横方向拡散精度の制約により距1
4mを最小にすることが困難であった。
Therefore, as shown in FIG. 3(c), it is desirable to minimize the distance m, but as mentioned above, due to constraints on mask alignment accuracy and lateral diffusion accuracy of the high-concentration P-type base region 2, the distance m
It was difficult to minimize the distance to 4m.

本発明は前記実情に鑑みてなされたもので、その目的は
前記問題点を解決し、寄生トランジスタ動作を抑制し、
破壊耐量の向上したMO8型電界効果1−ランジスタの
製造方法を提供することである。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to solve the above-mentioned problems, suppress parasitic transistor operation,
An object of the present invention is to provide a method for manufacturing an MO8 type field effect transistor with improved breakdown resistance.

[発明の構成] (問題点を解決するための手段) 本発明は(a)半導体基板上にゲート絶縁膜を介して多
結晶シリコン膜を堆積さぜる工程ど、4b )この多結
晶シリコン膜をPEP技術により、ゲート電極となる酸
化模上の第1多結晶シリコン領域と、第1多結晶シリコ
ン領域から所定距離だけ離間した第2多結晶シリコン領
域(後工程で、一導電型の高濃度ベース領域の不純物注
入用開口領域となる)とを同時に分割形成する工程と、
(c)多結晶シリコンとエツチング選択比のあるマスク
材例えばレジストを塗布し、多結晶シリコン上のマスク
材を除去して第1及び第2多結晶シリコン領域の間にの
みマスク材を埋め込む工程と、(d )再度マスク材を
塗布した後、第2多結晶シリコン領域のみを選択的に除
去開口する工程と(e)この除去した領域から不純物注
入を行い一導電型の高濃度ベース領域を形成する工程と
(f)ゲート電極となる前記第1多結晶シリコン領域を
マスクとして不純物をドープしてチャネルとなる一導電
バ1の低濃度ベース領域を形成し、次に同じ第1多結晶
シリコン領域をマスクとして反対導電型のソース領域を
前記一導電型低温度ベース領域内に形成づ−る工程とを
含むことを特徴とする電界効果トランジスタの製造方法
である。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes (a) a step of depositing a polycrystalline silicon film on a semiconductor substrate via a gate insulating film; By using PEP technology, a first polycrystalline silicon region on an oxide model that will become a gate electrode, and a second polycrystalline silicon region spaced a predetermined distance from the first polycrystalline silicon region (in a later process, a high concentration of one conductivity type) are formed. a step of simultaneously forming the base region separately (which will become an opening region for impurity implantation in the base region);
(c) A step of applying a mask material, such as a resist, having an etching selectivity to polycrystalline silicon, removing the mask material on the polycrystalline silicon, and embedding the mask material only between the first and second polycrystalline silicon regions. , (d) After applying the mask material again, selectively removing and opening only the second polycrystalline silicon region, and (e) implanting impurities from this removed region to form a highly concentrated base region of one conductivity type. and (f) doping impurities using the first polycrystalline silicon region that will become the gate electrode as a mask to form a low concentration base region of one conductive bar 1 that will become the channel, and then doping the first polycrystalline silicon region that will become the gate electrode. forming a source region of an opposite conductivity type in the low-temperature base region of one conductivity type using the method as a mask.

(作用) 以下の説明において一導電型をP型、反対導電型をN型
とする。 P型をN型に、N型をP型に代えても作用は
同じである。
(Function) In the following description, one conductivity type will be referred to as P type, and the opposite conductivity type will be referred to as N type. Even if the P type is replaced with the N type, or the N type is replaced with the P type, the effect is the same.

本5で明の製造方法によれば、ゲート電極となり且つN
型ソース領域形成のためのマスクとなる第1多結晶シリ
コン領域と、高KI Ig、P型ベース領域形成のため
の不純物注入間口領域となる第2多結晶シリコン領域と
が同時にr−’ F: P技術によりピルファライン(
自己整合)的に分離形成される。
According to the manufacturing method disclosed in Book 5, the gate electrode and the N
A first polycrystalline silicon region that will serve as a mask for forming a type source region and a second polycrystalline silicon region that will serve as an impurity implantation opening region for forming a high KI Ig, P type base region are simultaneously r-'F: Pilfaline (
self-aligned).

その後筒1、第2多結晶シリコン領域間のみにマスク材
を埋め込み、更に第1多結晶シリコン領域をマスクし且
つ第2多結晶シリコン領域をマスクしない十分大きな開
口を有するマスク材を基板上に坩積した後、第2多結晶
シリコン領域のみを除去し高濃度P型ベース領域の不純
物注入用開口を形成する。 高温度P型ベース領域と、
ゲート電極となる第1多結晶シリコン領域とを個々にマ
スク合わせにより形成していた従来の方法に比べ、本発
明の方法では、このマスク合わせの必要がなく、N型ソ
ース領域側面と高濃度P型ベース領域側面との距離(例
えば第3図(c”)の1Il)は主として高濃度P型ベ
ース領域の横方向拡散精度により決定される。。 不純
物の横方向拡散精度は周知のように不純物濃度等の要因
を管理すれば十分高精度とすることができる。
Thereafter, a mask material is buried only between the cylinder 1 and the second polycrystalline silicon region, and a mask material having a sufficiently large opening that masks the first polycrystalline silicon region but does not mask the second polycrystalline silicon region is placed on the substrate. After stacking, only the second polycrystalline silicon region is removed to form an impurity implantation opening for the highly doped P-type base region. a high temperature P-type base region;
Compared to the conventional method in which the first polycrystalline silicon region, which will become the gate electrode, is formed individually by mask alignment, the method of the present invention eliminates the need for mask alignment, and the side surfaces of the N-type source region and the high concentration P The distance from the side surface of the type base region (for example, 1Il in FIG. 3(c)) is mainly determined by the lateral diffusion accuracy of the highly doped P-type base region. As is well known, the lateral diffusion accuracy of impurities is determined by the impurity Sufficiently high accuracy can be achieved by controlling factors such as concentration.

これにより低濃度P型ベース領域内のチャネル領域とソ
ース領域との境界までのソース領域直下を高1313I
P型ベース領域とすることができる。
This increases the height of 1313I just below the source region up to the boundary between the channel region and source region in the lightly doped P-type base region.
It can be a P-type base region.

そのためMOS  FETのしきい値電圧に影響を及ぼ
すことなく奇生トランジスタのベース抵抗を大幅に低減
できるので、寄生トランジスタが動作しにくくなりスイ
ッチオフ時の破壊を防止することができる。
Therefore, the base resistance of the parasitic transistor can be significantly reduced without affecting the threshold voltage of the MOS FET, making it difficult for the parasitic transistor to operate and preventing destruction when the switch is turned off.

(実施例) 以下図面を参照して本発明の実施例を二重拡散構造のM
OS  FETについて説明する。
(Example) With reference to the drawings, an example of the present invention will be described below with reference to the drawings.
The OS FET will be explained.

第1図(a )において、N型半導体基板3の一方の主
面にゲート酸化することによりゲート酸化膜5を設(づ
る。 その上にLP  CVD法等で多結晶シリコン膜
を堆積する。 次にゲート電極となるゲート酸化膜上の
第1多結晶シリコン領域6と、この第1多結晶シリコン
領域から所定距離nだけ離間し且つ後工程で高濃度P型
ベース領域の不練物注入用の間口領域となる第2多結晶
シリコン領域6aとを、両領域間の多結晶シリコン模を
P E P技術により選択除去することによりfi=、
1時にセルファライン(自己整合)的に形成する。
In FIG. 1(a), a gate oxide film 5 is formed by gate oxidation on one main surface of an N-type semiconductor substrate 3. A polycrystalline silicon film is deposited thereon by LP CVD or the like. A first polycrystalline silicon region 6 on the gate oxide film, which will become a gate electrode, and a frontage spaced apart from the first polycrystalline silicon region by a predetermined distance n and for injecting impurities into a high concentration P-type base region in a later process. By selectively removing the second polycrystalline silicon region 6a and the polycrystalline silicon pattern between the two regions using PEP technology, fi=
At 1:00, it is formed in a self-aligned manner.

同図(b)にJ3いて、多結晶シリコンとエツチング選
択比のあるマスク材、例えばレジストを全面に塗布した
後1例えばRIE(反応性イオンエツチング)にてエツ
チングを行い、第1多結晶シリコン領域(ゲート電極)
6と第2多結晶シリコン領IQ (3aとの間にのみレ
ジスト12を残す(埋め込む)。 なd′3マスク材に
酸化物を使用することも望ましい実施態様である。
In the figure (b), at J3, a mask material having an etching selectivity with polycrystalline silicon, such as a resist, is applied to the entire surface, and then etching is performed, for example, by RIE (reactive ion etching), and the first polycrystalline silicon region is etched. (gate electrode)
The resist 12 is left (embedded) only between 6 and the second polycrystalline silicon region IQ (3a). It is also a desirable embodiment to use an oxide for the mask material d'3.

同図<C>において、再度レジスト12aを塗布し、高
濃度P型ベース領域となる半導体基板上の第2多結晶シ
リコン領域6aの上部のみを開口する。 レジスト12
aは第1多結晶シリコン領1或6をマスクし又レジスト
12aの開口領域面は十分大きくして、常に第2多結晶
シリコン領域6a上面を露出するようにする。
In <C> of the same figure, a resist 12a is applied again, and only the upper part of the second polycrystalline silicon region 6a on the semiconductor substrate, which will become a high concentration P type base region, is opened. resist 12
a masks the first polycrystalline silicon region 1 or 6, and the surface of the opening area of the resist 12a is made sufficiently large so that the upper surface of the second polycrystalline silicon region 6a is always exposed.

同図(d )において、高濃度P型ベース領域となる基
板上の第2多結晶シリコン領域6aのみを例えばRfE
により除去開口する。 次にイオン注入技術を用いて開
口部のN型半導体基板3に高濃度P型ベース領域2aを
形成する。
In the same figure (d), only the second polycrystalline silicon region 6a on the substrate, which will become the highly doped P-type base region, is heated using, for example, RfE.
By removing the opening. Next, a heavily doped P-type base region 2a is formed in the N-type semiconductor substrate 3 in the opening using ion implantation technology.

同図(e )及び(f )において、残したレジスt−
12,12aをすべて除去し、ゲート電極となる多結晶
シリコン膜6をマスクとしてイオン注入技術を用いて例
えばボロン(B)と燐(P)とを順次拡散してチャネル
となる低濃度P型ベース領域9と、このP型ベース領域
内に位置するN型ソース領域10を形成する。 このと
き高濃度P型ベース領域2aの一部が基板表面にでるよ
うにN型ソース領域10を形成する。 高濃度P型ベー
ス領域2aは低濃度P型ベース領域を形成する時の拡散
により横方向に拡散され広がり、チャネルとなるベース
領域とソース領域との境界13までのソース領域直下を
高濃度P型ベース領域とする。
In (e) and (f) of the same figure, the remaining register t-
12 and 12a are all removed, and using the polycrystalline silicon film 6, which will become the gate electrode, as a mask, ion implantation technology is used to sequentially diffuse, for example, boron (B) and phosphorus (P) to form a low concentration P-type base, which will become the channel. A region 9 and an N-type source region 10 located within this P-type base region are formed. At this time, an N-type source region 10 is formed so that a portion of the heavily doped P-type base region 2a is exposed on the substrate surface. The highly doped P-type base region 2a is diffused and spread laterally during the formation of the lightly doped P-type base region, and the region directly below the source region up to the boundary 13 between the base region and the source region, which becomes a channel, is made up of highly doped P-type base regions. Use as base area.

なお第1図(a)の第1.第2多結晶シリコン領域間の
距inは、あらかじめ高濃度P型ベース領域の横方向拡
散精度等を考慮して決められる。
Note that 1. in FIG. 1(a). The distance in between the second polycrystalline silicon regions is determined in advance in consideration of the lateral diffusion accuracy of the highly doped P-type base region and the like.

その後公知の方法によりドレイン、ソースの各電極等を
形成しD  MOS  FETが(11られる。
Thereafter, drain and source electrodes are formed by a known method to form a DMOS FET (11).

以上・の方法によりiiIられたl)  M OS  
F E T−においては、NPN型寄生トランジスタの
ベース領域の主としてトランジスタ作用が行われるソー
ス領域直下の領域を高温I′l!領域とすることが可能
でこれにより寄生トランジスタのエミッタ接合に沿った
ベース抵抗は小さくなりスイッチオフ時のエミッタ接合
バイアス電圧の上臂を抑えると共に寄生トランジスタの
電流増幅率を小さくでき、寄生トランジスタの熱暴走は
阻止される。
iii) M OS obtained by the above method
In FET-, the region immediately below the source region where the transistor action mainly takes place in the base region of the NPN parasitic transistor is heated to a high temperature I'l! This reduces the base resistance along the emitter junction of the parasitic transistor, suppresses the rise of the emitter junction bias voltage at switch-off, and reduces the current amplification factor of the parasitic transistor, reducing thermal runaway of the parasitic transistor. is prevented.

次に本発明の伯の実施例を第2図を参照して説明する。Next, a further embodiment of the present invention will be described with reference to FIG.

まず第3図(a )のようにN!l!!4’導体卓板3
を酸化して酸化膜1を設け、PEP技術により酸化膜を
間口し、高濃度P型ベース領域2を形成するために不純
物を注入する。 次に不純物の拡散を行った後、酸化膜
を除去し、ゲート酸化を行いゲート酸化膜5を設け、そ
の上に多結晶シリコン膜を堆積し、PEP技術を用いて
高濃度P型ベース領域となる半導体基板上の第2多結晶
シリコン領[5aとゲート電極となるゲート酸化膜上の
第1多結晶シリコン領域6とを同時に自己整合的に形成
する。 その後は第1図(b)ないし同図(f)に示す
工程と同一工程を行い第2図に示すものとなる。
First, as shown in Figure 3(a), N! l! ! 4' conductor table board 3
is oxidized to form an oxide film 1, the oxide film is opened by PEP technology, and impurities are implanted to form a heavily doped P-type base region 2. Next, after diffusing impurities, the oxide film is removed, gate oxidation is performed to form a gate oxide film 5, a polycrystalline silicon film is deposited on it, and a high concentration P-type base region is formed using PEP technology. A second polycrystalline silicon region [5a] on the semiconductor substrate and a first polycrystalline silicon region 6 on the gate oxide film, which will become the gate electrode, are simultaneously formed in a self-aligned manner. After that, the same steps as those shown in FIGS. 1(b) to 1(f) are carried out, resulting in the product shown in FIG. 2.

第2図に示す実施例においては、初めに形成した高濃度
P型ベース領域2はゲート電極となる第1多結晶シリコ
ン領域6と個々に形成される。
In the embodiment shown in FIG. 2, the first formed highly doped P-type base region 2 is formed separately from the first polycrystalline silicon region 6 which will become the gate electrode.

このため第1多結晶シリコン領域の側面7と高濃度P型
ベース領域の側面8との距離は、マスク合わせ粘度と高
m度P型ベース領域2の横方向拡散粘度により決められ
る。 しかしその後形成する^濃度P型ベース領M2a
  (破線で示す)はその不純物注入用開口部が第1多
結晶シリコン領域と自己整合的に形成されるので、横方
向拡散精度のみを考慮して開口部の大きさは決定され、
拡散によりチャネル領域とソース領域との境界13まで
のソース領域直下を高濃度P型ベース領域とすることが
できる。
Therefore, the distance between the side surface 7 of the first polycrystalline silicon region and the side surface 8 of the high concentration P type base region is determined by the mask alignment viscosity and the lateral diffusion viscosity of the high m concentration P type base region 2. However, the ^concentration P type base region M2a formed after that
Since the impurity implantation opening (indicated by the broken line) is formed in self-alignment with the first polycrystalline silicon region, the size of the opening is determined by considering only the lateral diffusion accuracy.
By diffusion, the area immediately below the source region up to the boundary 13 between the channel region and the source region can be made into a highly doped P-type base region.

なお上記実施例においては、Nチャネル型の素子につい
て述ぺたがPチャネル型の素子についても同様適用でき
る。
Although the above embodiments have been described with respect to N-channel type elements, the same applies to P-channel type elements.

[発明の効果] 以上詳述したように、従来の技術では高濃度P型ベース
領域とゲート電極となる第1多結晶シリコン領域とをP
EP技術を用い個々に形成していたため、PEP技術の
マスク合わせ精度と高濃度P型ベース領域の横方向拡散
精度とによって、高濃度P型ベース領域とソース領域側
面との距離(例えば第3図(c)の距fi1m)が決め
られ、この距離を短くするのが困難であった。 しかし
本発明の製造方法によれば、高濃度P型領域形成のため
の不純物注入用開口部の位置がゲート電極となるゲート
酸化股上の第1多結晶シリコン領域の位置と自己整合的
に決定されるので、高濃度P型ベース領域側面とソース
領域側面の前記距離(例えばmを高濃度P型ベース領域
の横方向拡散精度のみで決めることができ、従来に比べ
て前記距離を大幅に短くJることが可能となった。 こ
のため奇生1−ランジスタ作用が主として行われるソー
ス電極直下の領域のベース抵抗を従来構造に比べて大幅
に低減することができる。 これにより寄生トランジス
タのlj+作を抑制し熱暴走するのを防止することがで
き、破壊耐量の大きい電界効果トランジスタの製造方法
を提供することができる。
[Effects of the Invention] As detailed above, in the conventional technology, the highly doped P-type base region and the first polycrystalline silicon region that becomes the gate electrode are
Since they were formed individually using EP technology, the distance between the high concentration P type base region and the side surface of the source region (for example, the distance between the high concentration P type base region and the side surface of the source region) is determined by the mask alignment accuracy of the PEP technology and the lateral diffusion accuracy of the high concentration P type base region. The distance fi1m) in (c) was determined, and it was difficult to shorten this distance. However, according to the manufacturing method of the present invention, the position of the impurity injection opening for forming the highly doped P-type region is determined in a self-aligned manner with the position of the first polycrystalline silicon region on the gate oxide ridge, which becomes the gate electrode. Therefore, the distance (for example, m) between the side surface of the highly doped P-type base region and the side surface of the source region can be determined only by the lateral diffusion accuracy of the highly doped P-type base region, and the distance can be significantly shortened compared to the conventional method. Therefore, the base resistance in the region directly under the source electrode, where the parasitic transistor action mainly takes place, can be significantly reduced compared to the conventional structure. It is possible to provide a method for manufacturing a field effect transistor that can suppress and prevent thermal runaway and has a high breakdown resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電界効果1〜ランジスタの製造工程の
実施例を承り断面図、第2図は本発明の電界効果1−ラ
ンジスタの製造工程の他の実施例を示す断面図、第3図
は従来の1・6界効果i〜ランジスタの!8!造工程を
示す断面図である。 1・・・酸化膜、 2,2a・・・一導電型高不純物温
度領域(高濃度P型ベース領域)、 3・・・半導体基
板(N型ドレイン領域)、  4・・・酸化膜、  5
・・・グー1−絶縁膜〈ゲートM化膜)、 6・・・第
1多結品シリコン領域(ゲート電極)、 6a・・・第
2多結晶シリコン領域、 7・・・第1多結晶シリコン
領域側面、 8・・・高濃度P型ベース領域側面、9・
・・一導電型ベース領域〈低温度P型ベース領域)、1
0・・・反対導電型ソース領域(N型ソース領域)、1
1・・・NPN型寄生トランジスタ、  12゜128
・・・多結晶シリコンとエツチング選択比のあるマスク
材(例えばレジスト)、 13・・・N型ソース領域側
面。 第1図(1) (d)                      
イオン注入第1図(2) 第2図 第3図(1) 第3図(2)
FIG. 1 is a cross-sectional view showing an embodiment of the field effect 1 to transistor manufacturing process of the present invention, FIG. 2 is a cross-sectional view showing another embodiment of the field effect 1 to transistor manufacturing process of the present invention, and FIG. The figure shows the conventional 1.6 field effect i~ transistor! 8! FIG. 3 is a cross-sectional view showing the manufacturing process. DESCRIPTION OF SYMBOLS 1... Oxide film, 2, 2a... One conductivity type high impurity temperature region (high concentration P type base region), 3... Semiconductor substrate (N type drain region), 4... Oxide film, 5
... Goo 1 - Insulating film (gate M film), 6... First polycrystalline silicon region (gate electrode), 6a... Second polycrystalline silicon region, 7... First polycrystalline silicon region Silicon region side surface, 8...High concentration P type base region side surface, 9.
...One conductivity type base region (low temperature P type base region), 1
0... Opposite conductivity type source region (N type source region), 1
1...NPN type parasitic transistor, 12°128
. . . Mask material (for example, resist) with etching selectivity to polycrystalline silicon, 13 . . . Side surface of N-type source region. Figure 1 (1) (d)
Ion implantation Figure 1 (2) Figure 2 Figure 3 (1) Figure 3 (2)

Claims (1)

【特許請求の範囲】 1(a)半導体基板上にゲート絶縁膜を介して多結晶シ
リコン膜を堆積させる工程と、 (b)前記多結晶シリコン膜を選択エッチングにより、
ゲート電極となる第1多結晶シリコン領域と第1多結晶
シリコン領域から所定距離だけ離間した第2多結晶シリ
コン領域とに分割する工程と、 (c)前記第1多結晶シリコン領域と前記第2多結晶シ
リコン領域との間にマスク材を埋め込む工程と、 (d)前記第2多結晶シリコン領域のみを選択的に除去
開口する工程と、 (e)前記開口部より不純物をドープして前記半導体基
板内に一導電型高不純物濃度領域を形成する工程と (f)前記第1多結晶シリコン領域をマスクとして不純
物をドープして前記半導体基板内に一導電型ベース領域
及びこの一導電型ベース領域内に位置する反対導電型ソ
ース領域をそれぞれ形成する工程とを含むことを特徴と
する電界効果トランジスタの製造方法。 2 第1多結晶シリコン領域と第2多結晶シリコン領域
との間に埋め込む前記マスク材がレジストである特許請
求の範囲第1項記載の電界効果トランジスタの製造方法
。 3 第1多結晶シリコン領域と第2多結晶シリコン領域
との間に埋め込むマスク材が酸化物である特許請求の範
囲第1項記載の電界効果トランジスタの製造方法。
[Claims] 1 (a) a step of depositing a polycrystalline silicon film on a semiconductor substrate via a gate insulating film; (b) selectively etching the polycrystalline silicon film,
(c) dividing the first polycrystalline silicon region into a first polycrystalline silicon region that will become a gate electrode and a second polycrystalline silicon region spaced apart from the first polycrystalline silicon region by a predetermined distance; embedding a mask material between the polycrystalline silicon region; (d) selectively removing and opening only the second polycrystalline silicon region; and (e) doping impurities from the opening to remove the semiconductor. (f) forming a base region of one conductivity type in the semiconductor substrate by doping impurities using the first polycrystalline silicon region as a mask; and (f) forming a base region of one conductivity type in the semiconductor substrate. forming source regions of opposite conductivity type located within the respective regions. 2. The method of manufacturing a field effect transistor according to claim 1, wherein the mask material buried between the first polycrystalline silicon region and the second polycrystalline silicon region is a resist. 3. The method of manufacturing a field effect transistor according to claim 1, wherein the mask material buried between the first polycrystalline silicon region and the second polycrystalline silicon region is an oxide.
JP61277856A 1986-11-22 1986-11-22 Manufacture of field effect transistor Pending JPS63132481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61277856A JPS63132481A (en) 1986-11-22 1986-11-22 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61277856A JPS63132481A (en) 1986-11-22 1986-11-22 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS63132481A true JPS63132481A (en) 1988-06-04

Family

ID=17589230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61277856A Pending JPS63132481A (en) 1986-11-22 1986-11-22 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS63132481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282628A (en) * 1988-09-20 1990-03-23 Sanyo Electric Co Ltd Manufacture of vertical mosfet
JP2012178602A (en) * 2005-05-24 2012-09-13 Cree Inc Methods for fabricating silicon carbide devices having smooth surface of channel region
CN112701151A (en) * 2019-10-23 2021-04-23 株洲中车时代电气股份有限公司 SiC MOSFET device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282628A (en) * 1988-09-20 1990-03-23 Sanyo Electric Co Ltd Manufacture of vertical mosfet
JP2012178602A (en) * 2005-05-24 2012-09-13 Cree Inc Methods for fabricating silicon carbide devices having smooth surface of channel region
CN112701151A (en) * 2019-10-23 2021-04-23 株洲中车时代电气股份有限公司 SiC MOSFET device and manufacturing method thereof
CN112701151B (en) * 2019-10-23 2022-05-06 株洲中车时代电气股份有限公司 SiC MOSFET device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2791760B2 (en) Thin film transistor and method of manufacturing the same
US6359318B1 (en) Semiconductor device with DMOS and bi-polar transistors
KR0177785B1 (en) Transistor with offset structure and method for manufacturing the same
JPH01225166A (en) Manufacture of conductivity modulation type mosfet
US5541433A (en) High speed poly-emitter bipolar transistor
KR100377130B1 (en) Semiconductor device and fabricating method thereof
US4970173A (en) Method of making high voltage vertical field effect transistor with improved safe operating area
US7161210B2 (en) Semiconductor device with source and drain regions
US6747313B1 (en) Thin film transistor
JP3170610B2 (en) Manufacturing method of vertical field effect transistor
JPS63132481A (en) Manufacture of field effect transistor
EP0805497B1 (en) Method of fabrication of a bipolar transistor
US4216038A (en) Semiconductor device and manufacturing process thereof
JP3488339B2 (en) Manufacturing method of lateral bipolar transistor
KR100253261B1 (en) Fabrication method of thin film transistor
KR100295636B1 (en) Thin film transistor and fabricating method thereof
JP3233510B2 (en) Method for manufacturing semiconductor device
JP2005507563A (en) Field effect transistor on insulating layer and method of manufacturing the same
JP3300238B2 (en) Semiconductor device and manufacturing method thereof
KR100390153B1 (en) Semiconductor device and manufacturing method thereof
KR100304718B1 (en) A power semiconductor device and method for manufacturing thereof
KR960012261B1 (en) Mos-depletion type cut-off transistor
JP3048261B2 (en) Method for manufacturing semiconductor device
JPH1098111A (en) Mos semiconductor device and manufacture thereof
KR100268924B1 (en) method for manufacturing semiconductor device