JPH0266101A - Electric conductive particles and manufacture thereof - Google Patents

Electric conductive particles and manufacture thereof

Info

Publication number
JPH0266101A
JPH0266101A JP63219053A JP21905388A JPH0266101A JP H0266101 A JPH0266101 A JP H0266101A JP 63219053 A JP63219053 A JP 63219053A JP 21905388 A JP21905388 A JP 21905388A JP H0266101 A JPH0266101 A JP H0266101A
Authority
JP
Japan
Prior art keywords
layer
base metal
conductive particles
particles
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63219053A
Other languages
Japanese (ja)
Inventor
Ryo Kimura
涼 木村
Hideyuki Okinaka
秀行 沖中
Koji Kawakita
晃司 川北
Hisashi Nakamura
中村 恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63219053A priority Critical patent/JPH0266101A/en
Publication of JPH0266101A publication Critical patent/JPH0266101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain electric conductive particles having excellent electric conductivity and improved solderability and wettability at a low cost by coating surface of base metal particles with different kinds of two or more layers of noble metals. CONSTITUTION:The base metal particles consisting of one or more kinds among Fe, Co, Ni, Cu, Al, Mo and W or alloys thereof are prepared. Then, on the surface of the base metal particles, a first layer is formed by coating with the noble metal, which does not react with oxygen or the oxygen does not permeate there through, for example, one or more kinds among Au, Pt, Ag and Ir or alloys thereof. Successively, by applying the coating layer of Pd or Pd alloy on the first layer, hence the objective electric conductive particles are obtd. The noble metal layer on the first layer has effect preventing oxidization of the base metal layer by heat treatment. Further, the noble metal layer being the second layer has effect giving solderability and solder pitting resistance as an electrode material. Then, at the time of using the resultant electric conductive particles for the electrode of electronic parts, the parts having high performance can be provided at a low cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電極材料に用いる導電性粒子及びその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to conductive particles used in electrode materials and a method for producing the same.

従来の技術 従来より、導電性粒子と樹脂及び溶剤、場合によっては
それに微量のフリット、金属酸化物及び有機金属酸化物
を加えてなる導電性塗料が各種部品の電極材料として広
範囲に使用されている。
Conventional technology Conventionally, conductive paints made of conductive particles, resins, solvents, and in some cases trace amounts of frit, metal oxides, and organometallic oxides have been widely used as electrode materials for various parts. .

その導電性粒子としては、金・銀・白金・パラジウムな
どの高価な貴金属が用いられており、電極材料のコスト
低減のため、貴金属の使用量削減1、発明の名称 導電性粒子糾びその製造方法 2、特許請求の範囲 (1)卑金属粒子の表面を2層以上の異なった貴金属で
被覆したことを特徴とする導電性粒子。
Expensive precious metals such as gold, silver, platinum, and palladium are used as the conductive particles.In order to reduce the cost of electrode materials, the amount of precious metals used is reduced.1. Name of the invention: Conductive particles and their manufacturing method. 2. Claims (1) Conductive particles characterized in that the surfaces of base metal particles are coated with two or more layers of different noble metals.

(2)卑金属粒子が鉄・コバルト・ニッケ〜・銅・アル
ミニウム・モリブデン・タングステンのうちの少なくと
も1種あるいはそれらの合金系の 3、組成を有するこ
とを特徴とする請求項1記載の導電性粒子。
(2) The conductive particles according to claim 1, wherein the base metal particles have a composition of at least one of iron, cobalt, nickel, copper, aluminum, molybdenum, and tungsten, or an alloy thereof. .

(3)卑金属粒子の表面に接触する第1層の貴金属層が
金・白金・銀・イリジウムのうちの少なくとも1種ある
いはそれらの合金系の組成を有することを特徴とする特
許請求項1記載の導電性粒子。
(3) The first noble metal layer in contact with the surface of the base metal particles has a composition of at least one of gold, platinum, silver, and iridium or an alloy thereof. conductive particles.

(4)表面層の貴金属層がパラジウムまたはパラジウム
を含んだ合金系の組成を有することを特徴とする請求項
1記載の導電性粒子。
(4) The conductive particle according to claim 1, wherein the noble metal layer of the surface layer has a composition of palladium or an alloy containing palladium.

(5)卑金属粒子の粒子表面を無電解メツキにより、あ
るいは卑金属材料への置換などの検討がなされている。
(5) Considerations have been made to electroless plating the particle surfaces of base metal particles or replacing them with base metal materials.

卑金属材料への全面置換に対しては銅及びニッケル、一
部置換に対しては銀−鋼合金などが用いられているが、
いずれも空気中の焼付けあるいは放置などにより酸化物
が形成され、導電性が低下するため、焼付は雰囲気の制
御、保存方法が複雑になるという問題がある。
Copper and nickel are used for full replacement with base metal materials, and silver-steel alloys are used for partial replacement.
In both cases, oxides are formed when baked or left in the air, reducing conductivity. Baking poses a problem in that controlling the atmosphere and storing methods become complicated.

さらには、卑金属粒子に貴金属を被覆する方法が試みら
れている(例えば、特公昭46−40593号公報、特
開昭60−100679号公報)。このような貴金属被
覆粒子を用いた導電性塗料をセラミック材料に塗布し、
空気中で焼付けて電極を形成した場合、それぞれの貴金
属に対応した間層をか出てくる。
Furthermore, attempts have been made to coat base metal particles with noble metals (for example, Japanese Patent Publication No. 46-40593 and Japanese Patent Application Laid-Open No. 60-100679). A conductive paint using such precious metal-coated particles is applied to a ceramic material,
When electrodes are formed by baking in air, an interlayer corresponding to each noble metal emerges.

例えば、特公昭61−22028号公報にみられるよう
な方法にて、貴金属が銀である場合には電気部品として
用いる時に銀のマイグレーシロンが問題となり、信頼性
面で課題が残る。まだ、パラジウムのコーテイング膜を
設けて大気中雰囲気にて熱処理される時には、パラジウ
ムが400℃付近から酸化パラジウムとなり、粒子の核
である卑金属粒子を酸化してしまい電気抵抗を増大させ
るという課題があった。
For example, in the method as shown in Japanese Patent Publication No. 61-22028, when the noble metal is silver, migration of silver becomes a problem when used as an electrical component, and problems remain in terms of reliability. However, when a palladium coating film is provided and heat treated in the air, palladium turns into palladium oxide at around 400°C, oxidizing the base metal particles that are the core of the particles and increasing electrical resistance. Ta.

さらには、金・白金をコーティングする場合にはコスト
がかかりすぎることと、金にはハンダ喰われが発生する
ことが問題となる。
Furthermore, when coating with gold or platinum, there are problems in that it is too expensive and the gold tends to be eaten by solder.

発明が解決しようとする課題 上記した構成の卑金属粒子を核として貴金属被覆を施し
た導電性粒子については、銀のマイグレーション、金の
ハンダ喰われ、高温での熱処理によるパラジウムの酸化
及びそれに伴う卑金属粒子の酸化、耐ハンダ特性の低下
などの間層があり、材料コスト以上の複雑なプロセスを
要求されるため、導電性粒子のコストを大幅に削減でき
ないという問題がある。
Problems to be Solved by the Invention Regarding conductive particles having base metal particles having the above-described structure as cores and coated with noble metals, silver migration, gold solder eating, palladium oxidation due to high temperature heat treatment, and the accompanying base metal particles occur. There is a problem that the cost of conductive particles cannot be significantly reduced because there are interlayers such as oxidation of the conductive particles and deterioration of solder resistance properties, and a complicated process that exceeds the material cost is required.

本発明はかかる点に鑑みてなされたもので、導電性に優
れ、ハンダ付は性、濡れ性を高めた導電性粒子を安価に
提供することを目的としている。
The present invention has been made in view of the above, and an object of the present invention is to provide, at a low cost, conductive particles that have excellent conductivity, improved solderability, and wettability.

課題を解決するだめの手段 上記課題を解決するために本発明の導電性粒子は、卑金
属粒子の粒子表面を2層以上の貴金属にて被覆するとい
う構成を備えたものであり、さらに貴金属被覆の方法と
して無電解メツキ法を用いるという構成を備えたもので
ある。ここで、卑金属粒子としては鉄・コバルト・ニン
ケル・銅・アルミニウム・モリブデン・タングステンの
うちの1種あるいは2種以上の合金組成を有するものが
好ましい。まだ、卑金属粒子に被覆する第1層目の貴金
属としては酸素と反応しない、もしくは酸素を通過させ
ないもので構成する。具体的には金・白金・銀・イリジ
ウムのうちの少なくとも1種あるいは2種以上の合金系
であっても良い。そして、最上層の表面層にはパラジウ
ムまたはパラジウムを含んだ合金系の組成にて構成する
ものである。
Means for Solving the Problems In order to solve the above problems, the conductive particles of the present invention have a structure in which the particle surface of base metal particles is coated with two or more layers of noble metals, and furthermore, the conductive particles of the present invention have a structure in which the particle surface of base metal particles is coated with two or more layers of noble metals. The structure uses an electroless plating method. Here, the base metal particles preferably have an alloy composition of one or more of iron, cobalt, nickel, copper, aluminum, molybdenum, and tungsten. However, the noble metal in the first layer coated on the base metal particles is made of a material that does not react with oxygen or does not allow oxygen to pass therethrough. Specifically, it may be an alloy of at least one or two or more of gold, platinum, silver, and iridium. The uppermost surface layer is composed of palladium or an alloy containing palladium.

作用 本発明は上記した構成により、基体粒子が卑金属である
にもかかわらず、酸素の存在下にて卑金属が酸化するこ
となしに熱処理することができるものである。
Effect of the Invention Due to the above-described structure, the present invention enables heat treatment in the presence of oxygen without oxidizing the base metal, even though the base particles are made of a base metal.

これを実現するために、卑金属粒子の表面に被覆した第
1層目の貴金属によって卑金属粒子の酸化が防止できる
ものである。この第1層目は緻密な膜とすることが重要
であシ、被覆層は薄くても良い。
In order to achieve this, oxidation of the base metal particles can be prevented by the first layer of noble metal coated on the surface of the base metal particles. It is important that this first layer be a dense film, and the covering layer may be thin.

さらに、第2層目のパラジウムまたはパラジウム合金に
よる被覆層は、ノ・ンダ浸漬・ノ・ンダリフローによる
ハンダ喰われを防止し、ノ・ンダとの接着強度・信頼性
を高めることができる。また、第1層目に銀を用いた時
にはマイグレーションを防止するバリヤーの役目も果た
す。
Furthermore, the second coating layer made of palladium or palladium alloy can prevent solder from being eaten away by solder dipping and solder reflow, and can improve adhesive strength and reliability with solder. Furthermore, when silver is used in the first layer, it also serves as a barrier to prevent migration.

ここで、パラジウム層の被覆だけでは電極材料として空
気中にて焼付けを行うと、温度の上昇とともに約400
度Cから酸化パラジウムとなるため、酸素のバリヤーと
しての役割はなく、卑金属粒子を酸化させてしまう。ま
た、基体粒子に卑金属を用いる目的は導電性とコストの
点で優れているためであり、空気中で熱処理することが
可能となれば複雑な雰囲気制御をしながら熱処理するこ
とが必要でなくなり、トータルコストを下げることが可
能となるものである。さらに、電極形成される部品(セ
ラミック)は空気中にて焼成されることが多く、雰囲気
焼成を可能にするためには、耐還元力をつけなければな
らないなどの制約が要求されるが、本発明は上述したよ
うにこの要求を満足するものである。
Here, if the palladium layer alone is used as an electrode material and is baked in air, as the temperature increases, the
Since it becomes palladium oxide at a temperature of 100°C, it does not act as an oxygen barrier and oxidizes base metal particles. In addition, the purpose of using base metals for the base particles is that they are superior in terms of conductivity and cost, and if heat treatment can be performed in air, it will no longer be necessary to perform heat treatment while controlling the complicated atmosphere. This makes it possible to lower the total cost. Furthermore, the parts (ceramics) on which the electrodes are formed are often fired in the air, and in order to make atmosphere firing possible, restrictions such as the need to have reduction resistance are required. The invention satisfies this need as described above.

また、卑金属粉末への貴金属の被覆方法としては、電気
メツキ法・熱分解法・蒸着法・無電解メツキ法などがあ
る。このなかで無電解メツキ法が被覆性に最も優れてお
シ、これによって貴金属被覆粉末を安価に作成すること
が可能となる。
Furthermore, methods for coating the base metal powder with noble metals include electroplating, thermal decomposition, vapor deposition, and electroless plating. Among these methods, the electroless plating method has the best coating properties, and this makes it possible to produce noble metal coated powder at low cost.

実施例 以下、本発明について実施例によシ詳細に説明する。Example Hereinafter, the present invention will be explained in detail using examples.

〈実施例1〉 市販の銅粉末10gをアンモニア;2occ/l。<Example 1> 10 g of commercially available copper powder was mixed with ammonia; 2 occ/l.

力性カリi T971、硝酸銀;1o9/71を加えて
よく攪拌・混合して分散させる。このよづに調整された
液に還元剤としてブドウ糖に0.1Nのホμマリンを1
3g/lの比率にてアンモニア10CGとともに加え、
よく攪拌する。すると、銀で覆われた銅粉末が沈澱する
。これをろ過により取出して得られた銀と銅の比率は重
量比で1:2であった。
Add Potassium I T971 and silver nitrate; 1o9/71 and stir and mix well to disperse. Add 0.1N of homorin to glucose as a reducing agent to the solution adjusted to this level.
Added with 10CG of ammonia at a ratio of 3g/l,
Stir well. Copper powder coated with silver then precipitates. The weight ratio of silver and copper obtained by filtering this was 1:2.

次に、市販の銅粉末10gをシアン化金カリ;129/
l、シアン化カリ;7og/lの液中に攪拌しながら投
入して浸漬メツキを行う。すると、金で覆われた銅粉末
が沈澱する。これをろ過して取出して得られた金と銅の
比は重量比で約1:1であった。
Next, 10 g of commercially available copper powder was added to gold potassium cyanide; 129/
1. Potassium cyanide: Pour it into a 7 og/l solution with stirring and perform immersion plating. Then, copper powder coated with gold precipitates. The weight ratio of gold and copper obtained by filtering this was approximately 1:1.

さらに、2層目のパラジウム膜を形成させるために、中
性型のパラジウムイオンを含む活性液に上記メツキされ
た銅粉末を別々に浸漬し、活性化処理を行う。次に、塩
化パラジウムをアンモニア水に溶かして、さらに塩酸を
加えてP Hs、5に調整した無電解メツキ液を準備す
る。この無電解メツキ液中に活性化処理を終了した上記
粉末を浸漬させて硫酸ヒドラジンを加えて攪拌・混合す
ると、パラジウムメッキされた銅粉末が沈澱する。
Further, in order to form a second layer of palladium film, the plated copper powder is separately immersed in an activation solution containing neutral palladium ions to perform an activation treatment. Next, an electroless plating solution is prepared by dissolving palladium chloride in aqueous ammonia and adding hydrochloric acid to adjust the pH to 5. When the activated powder is immersed in this electroless plating solution and hydrazine sulfate is added and stirred and mixed, palladium-plated copper powder is precipitated.

このようにして、それぞれのメツキにて銅粉銀メツキ層
−パラジウムメッキ層が形成された導電性粒子、及び銅
粉−金メツキ層−パラジウムメッキ層が形成された導電
性粒子が得られた。
In this way, conductive particles on which a copper powder-silver plating layer-palladium plating layer were formed and conductive particles on which a copper powder-gold plating layer-palladium plating layer were formed were obtained.

また、従来例として、市販の銅粉末10gを銀鏡反応に
よって処理すると、銀で覆われた銅粉末が沈澱する。こ
れをろ過により取出して得られた銀と銅の比率は重量比
で1:2であった。そして、銅粉にパラジウム膜を形成
させるために、中性型のパラジウムイオンを含む活性液
に銅粉末を浸漬し、活性化処理を行う。次に、塩化パラ
ジウムをアンモニア水に溶かして、さらに塩酸を加えて
P H8,5に調整した無電解メツキ液を準備する。
Further, as a conventional example, when 10 g of commercially available copper powder is treated by silver mirror reaction, copper powder covered with silver is precipitated. The weight ratio of silver and copper obtained by filtering this was 1:2. Then, in order to form a palladium film on the copper powder, the copper powder is immersed in an activation solution containing neutral palladium ions to perform an activation treatment. Next, an electroless plating solution is prepared by dissolving palladium chloride in aqueous ammonia and adding hydrochloric acid to adjust the pH to 8.5.

この無電解メツキ液中に活性化処理を終了した粉末を浸
漬させて硫酸ヒドラジンを加えて攪拌・混合すると、パ
ラジウムメッキされた銅粉末が沈澱する。
When the activated powder is immersed in this electroless plating solution and hydrazine sulfate is added and stirred and mixed, palladium-plated copper powder is precipitated.

このようにして得られた本発明及び従来例それぞれの導
電性粒子5Iをガラスフリットとしてホウケイ酸鉛ガラ
ス: 2.0wt%、バインダーとしてエチルセルロ−
ス 溶媒としてテレビネオ−7v;1−5cc  の組成に
て三本ローlvi/i:てよく混練してペーストとする
The thus obtained conductive particles 5I of the present invention and the conventional example were used as a glass frit, and borosilicate lead glass: 2.0 wt%, and ethyl cellulose was used as a binder.
A mixture of 1-5 cc of TVNEO-7V as a solvent was thoroughly kneaded using three rolls to form a paste.

こうして得られたペーストをスクリーン印刷にて96%
アルミナ基板上に印刷して、105℃で10分間乾燥の
後、焼成炉に入れ、700’C−10分間,8cc℃ー
10分間,900℃−10分間の各焼成条件にて空気中
にて焼成した。
96% of the paste obtained in this way was screen printed.
After printing on an alumina substrate and drying at 105℃ for 10 minutes, it was placed in a firing furnace and baked in air under the following firing conditions: 700'C for 10 minutes, 8cc℃ for 10 minutes, and 900℃ for 10 minutes. Fired.

以上のようにして得られた電極の比抵抗は下記の第1表
に示す通り、十分に低い特性であり、これに対し従来の
ような被覆粉末では卑金属粒子の酸化が起こり、実用上
、低抵抗を要求される電極材料として好ましくないこと
が明らかである。また、銀被覆による卑金属粒子では電
気特性は十分であるが、得られた電極材料のハンダ浸漬
による電極の喰われに対しては不十分であり、実用に供
しえないものである。これは、金の被覆についても同じ
ことが起こり、被覆層の厚みを十分にとることが必要で
あり、これではコスト面でのメリットは出てこない。
As shown in Table 1 below, the resistivity of the electrode obtained in the above manner is sufficiently low.On the other hand, with conventional coated powder, base metal particles are oxidized, making it difficult for practical use. It is clear that this is not preferable as an electrode material that requires resistance. Further, although silver-coated base metal particles have sufficient electrical properties, they are insufficient to prevent the electrode from being eaten away by solder immersion in the obtained electrode material, and cannot be put to practical use. The same thing happens with gold coatings, and it is necessary to have a sufficient thickness of the coating layer, which does not provide any cost advantage.

以上のように卑金属粒子を金あるいは銀にて被覆した後
、第2層としてパラジウム層にて被覆することによって
、空気中にて熱処理できる電極材料が得られた。ここで
、第1層目の貴金属として金と銀について実験したが、
白金・イリジウムでも同じ結果が得られることは明白で
ある。
As described above, by coating base metal particles with gold or silver and then coating them with a palladium layer as a second layer, an electrode material that can be heat-treated in air was obtained. Here, we experimented with gold and silver as the precious metals for the first layer.
It is clear that the same results can be obtained with platinum and iridium.

〈実施例2〉 市販のニッケル粉末:6gに実施例1と同じ方法にて銀
メツキ層−パラジウムメッキ層を形成したニッケル粒子
を得た。一方、同じニッケル粉末:5!!を塩化白金、
塩酸溶液に浸漬して還元剤を攪拌・混合しながら白金メ
ツキ層を形成する。次に、パラジウム層は実施例1と同
じ方法にてニッケル粉末にメツキ処理する。
<Example 2> Nickel particles were obtained by forming a silver plating layer and a palladium plating layer on 6 g of commercially available nickel powder using the same method as in Example 1. On the other hand, the same nickel powder: 5! ! platinum chloride,
A platinum plating layer is formed by immersing it in a hydrochloric acid solution and stirring and mixing the reducing agent. Next, the palladium layer is plated with nickel powder in the same manner as in Example 1.

このような方法にてニッケル粉−銀メツキ層−パラジウ
ムメッキ層が形成された導電性粒子、及びニッケル粉−
白金メツキ層−パラジウムメッキ層が形成された導電性
粒子が得られた。
Conductive particles on which nickel powder, silver plating layer, and palladium plating layer were formed by such a method, and nickel powder.
Conductive particles on which a platinum plating layer and a palladium plating layer were formed were obtained.

このようにして得られた導電性粒子:5yにガラスフリ
ットとしてホウケイ酸鉛ガラス:2.0wt%、バイン
ダートシてエチルセルロース:1.c)wt%、溶媒と
してテレビネオ−/I/:1.2CCの組成にて三本ロ
ールにてよく混練してペーストとする。こうして得られ
たペーストをスクリーン印刷にてアルミナ基板上に印刷
し、105℃で1o分間乾燥の後、焼成炉に入れて、8
00〜1000Cにて10〜30分間保持の条件にて大
気中雰囲気にて焼成した。以上のようにして得られた電
極の比抵抗は下記の第2表に示す通シに十分に低いもの
で、従来例のような被覆粉末では卑金属粒子の酸化が起
こり、実用上低抵抗が要求される電極材料として適して
いないことが解る。また、得られた電極材料のハンダ浸
漬による電極の喰われに対しては、銀の被覆による卑金
属粒子では不十分であシ、実装時における耐ハンダ・特
性として実用に供し得ないことが解る。ここで、従来例
としては、実施例1中で述べたものにおいて、銅粉末を
ニッケル粉末に置き換えた以外は全く同一条件で作製し
た。
Conductive particles thus obtained: 5y, lead borosilicate glass as a glass frit: 2.0 wt%, ethyl cellulose as a binder: 1. c) wt%, TVNeo-/I/:1.2CC as a solvent, and thoroughly kneaded with three rolls to form a paste. The paste obtained in this way was printed on an alumina substrate by screen printing, dried at 105°C for 10 minutes, and then placed in a firing furnace for 80 minutes.
Firing was carried out in the air under conditions of holding at 00 to 1000C for 10 to 30 minutes. The specific resistance of the electrode obtained as described above is sufficiently low as shown in Table 2 below, and in the case of coated powder as in the conventional example, oxidation of base metal particles occurs, and low resistance is required for practical purposes. It can be seen that it is not suitable as an electrode material. Furthermore, it can be seen that the base metal particles coated with silver are not sufficient to prevent the electrode from being eaten away by immersion of the obtained electrode material in solder, and cannot be put to practical use as a solder resistance property during mounting. Here, as a conventional example, it was produced under exactly the same conditions as described in Example 1 except that the copper powder was replaced with nickel powder.

以上のように、卑金属粒子を銀または白金にて被覆した
後に、第2層としてパラジウム層を被覆することによっ
て、大気中にて熱処理できる電極材料が得られた。
As described above, by coating base metal particles with silver or platinum and then coating them with a palladium layer as a second layer, an electrode material that can be heat-treated in the atmosphere was obtained.

〈実施例3〉 実施例1にて用いた導電性粒子:5gをガラスフリット
として軟化点Hs3ocを有するホウケイ酸鉛ガラス;
 5.Qwt%、バインダーとしてエチルセルロース;
1.Qwt%、溶媒としてテレピネオール;12cc 
の組成にて三本ロールにてよく混練してペーストとする
<Example 3> Conductive particles used in Example 1: 5 g of lead borosilicate glass having a softening point Hs3oc as a glass frit;
5. Qwt%, ethyl cellulose as binder;
1. Qwt%, terpineol as solvent; 12cc
The following composition is thoroughly kneaded using three rolls to form a paste.

一方、抵抗体は酸化〃テニウムをペースト化し、パラジ
ウム電極にて作成した電極バンドを形成したアルミナ基
板上にスクリーン印刷する。この時、アルミナ基板には
あらかじめチップサイズ(32×1.6mm)に分割で
きるように溝切り加工がなされている。また、抵抗体は
850℃−10分間の焼成条件にて焼成され、所望の抵
抗値に設計されている。このようなチップ抵抗器の端面
の機械的強度を実現するために、上記導電性粒子をペー
スト化して端子電極として塗布する。その後、105C
−10分間の乾燥の後、550℃−10分間の条件にて
大気中焼付けを行う。このようにして得られたチップ抵
抗器は酸化ルテニウムによる安定した抵抗特性と、本発
明方法による端子電極の構成により、安価で高性能なチ
ップ抵抗器が得られた。
On the other hand, the resistor is made by making a paste of thenium oxide and screen-printing it on an alumina substrate on which an electrode band made of palladium electrodes is formed. At this time, the alumina substrate is pre-grooved so that it can be divided into chip sizes (32×1.6 mm). Further, the resistor is fired under firing conditions of 850° C. for 10 minutes and designed to have a desired resistance value. In order to achieve mechanical strength of the end face of such a chip resistor, the above conductive particles are made into a paste and applied as a terminal electrode. After that, 105C
After drying for -10 minutes, baking is performed in the air at 550°C for 10 minutes. The thus obtained chip resistor had stable resistance characteristics due to ruthenium oxide and the structure of the terminal electrode according to the method of the present invention, resulting in an inexpensive and high-performance chip resistor.

〈実施例4〉 実施例2にて用いた導電性粒子5gをガラスフリットと
して軟化点650℃を有するホウケイ酸鉛ガラス;1.
Qwt%、バインダーとしてエチルセルロ−ス テレピネオール1,100 の組成にて三本ロー/VK
てよく混練してペーストとする。一方、誘電体セラミッ
クはBaTi05を主成分とする材料を直径10mmφ
、厚さ1,ommに成形し、1320℃〜120分の焼
成条件にて焼結させた後、上記ペースト化した導電性粒
子をコンデンサ磁器の両面に塗布・乾燥した後、850
℃−10分の焼付は条件にて熱処理した。このようにし
て得られたコンデンサの誘電率は1200oの特性を有
していた。
<Example 4> Lead borosilicate glass having a softening point of 650° C. using 5 g of the conductive particles used in Example 2 as a glass frit; 1.
Qwt%, three rows/VK with a composition of 1,100 ethyl cellulose-sterepineol as a binder
Mix well to make a paste. On the other hand, dielectric ceramic is a material whose main component is BaTi05 with a diameter of 10 mmφ.
After molding to a thickness of 1,000 mm and sintering at 1,320°C to 120 minutes, the paste-formed conductive particles were applied to both sides of the capacitor porcelain and dried.
The heat treatment was carried out under the conditions of baking at -10 minutes. The capacitor thus obtained had a dielectric constant of 1200°.

これは実施例2における2種類の導電性粒子について同
じであった。また、本実施例ではディスク型のセラミッ
クコンデンサの面電極として用いたが、チッフコンデン
サの端子電極に用いても良い結果が得られることは容易
に考えられる。さらに、調型体材料としてBaTi05
系以外にもSrTi03pboを主成分とするペロプス
カイト構造を有する高誘電率材料から、Ti02系の低
誘電率を有する材料ヲ使用したセラミックコンデンサの
端子電極にも用いることができるのは言うまでもない。
This was the same for the two types of conductive particles in Example 2. Further, in this example, it was used as a surface electrode of a disk-shaped ceramic capacitor, but it is easily thought that good results can be obtained by using it as a terminal electrode of a chip capacitor. Furthermore, BaTi05 is used as a mold material.
It goes without saying that it can also be used for the terminal electrodes of ceramic capacitors using materials other than the high dielectric constant material having a perovskite structure mainly composed of SrTi03pbo, as well as materials having a low dielectric constant such as Ti02 type.

〈実施例6〉 実施例1にて用いた導電性粒子5gにガラスフリッ)ヲ
o,swt%、バインダーとしてエチルセ)vo−スを
1.o wt%、溶媒としてテレピネオール1.20C
  の組成にて三本ロールでよく混練し、印刷ペースト
とする。こうして得られたペーストをスクリーン印刷に
て所望の回路パターンに印刷する。その後、乾燥の後に
900℃−10分の焼成条件にて焼付けた。
<Example 6> To 5 g of the conductive particles used in Example 1, 1.5 g of glass frit) and ethylcetate (swt%) were added as a binder. o wt%, terpineol 1.20C as solvent
The following composition is thoroughly kneaded using three rolls to form a printing paste. The thus obtained paste is printed into a desired circuit pattern by screen printing. Then, after drying, it was baked at 900° C. for 10 minutes.

このようにして得られた回路パターンの電極は抵抗も低
く、ハンダ付は性も良好であった。また。
The electrodes of the circuit pattern thus obtained had low resistance and good solderability. Also.

この電極は混成集積回路の導体電極、チップ部品のラン
ド電極に実用できた。
This electrode could be put to practical use as a conductor electrode for hybrid integrated circuits and a land electrode for chip components.

〈実施例6〉 実施例2にて用いた導電性粒子5gをバ・インダートシ
てエチルセルロース、テレピネオールヲ用いてペースト
化する。一方、磁性粒子として粒径1〜3/1mのNi
 − Znフェライト粉を上記方法にてペースト化する
。その後、磁性体ペーストと電極ペーストを交互に印刷
して、電極がスパイクル状になるよう構成する。これは
スパイラル状に構成された電極を磁性粒子が埋め込んだ
構造をしている。
<Example 6> 5 g of the conductive particles used in Example 2 were mixed into a paste using ethyl cellulose and terpineol. On the other hand, as magnetic particles, Ni with a particle size of 1 to 3/1 m
- Make Zn ferrite powder into a paste using the above method. After that, magnetic paste and electrode paste are printed alternately to form the electrodes into a spikele shape. This has a structure in which magnetic particles are embedded in spiral-shaped electrodes.

そして、印刷された材料は1000℃−120分の焼成
条件にて焼結される。このようにして得られたインダク
タ部品は、インダクタンス100mHの特性を有するチ
ップインダクタが得られた。
The printed material is then sintered under firing conditions of 1000° C. for 120 minutes. The inductor component thus obtained was a chip inductor having an inductance of 100 mH.

ここで、上記実施例においては、卑金属粒子として、銅
またはニンケルを用いた場合について説明したが、これ
はその他に、鉄・コバルト・アルミニウム・モリブデン
・タングステンなども用いることができるものであり、
さらにはそれらの合金系の組成を有するものであっても
よいものである。
Here, in the above embodiment, the case where copper or nickel was used as the base metal particles was explained, but in addition to this, iron, cobalt, aluminum, molybdenum, tungsten, etc. can also be used.
Furthermore, it may have a composition based on an alloy thereof.

また、卑金属粒子の表面に接触する第1層の貴金属とし
ては、上述したように金・白金・銀・イリジウムのうち
の1種を用いることができるが、これはその餞に、それ
らの合金系の組成を有するものであってもよいものであ
る。
Furthermore, as the noble metal in the first layer in contact with the surface of the base metal particles, one of gold, platinum, silver, and iridium can be used, as described above, but this may be based on alloys of these metals. It may have the following composition.

さらに、表面層(第2層)の貴金属としては、パラジウ
ムを用いた場合についてのみ説明したが、これはパラジ
ウムを含んだ合金系の組成を有するもので構成しても差
支えないものである。
Furthermore, although palladium has been described as the noble metal of the surface layer (second layer), it may also be composed of an alloy containing palladium.

発明の効果 以上のように本発明は卑金属の表面を2層以上の異なっ
た貴金属で被覆した導電性粒子であり、卑金属粒子が第
1層として金・白金・銀・イリジウムのうちの少なくと
も1種あるいはそれらの合金系の組成を有した被覆層を
設け、さらに表面層としてパラジウムまたはパラジウム
を含んだ合金系の組成を有した被覆層を設けることによ
り、第1層の貴金属層は卑金属層の熱処理による酸化を
防止することに効果的であシ、第2層の貴金属層は電極
材料としてハンダ付は性・耐ノ・ンダ喰われ性を付与さ
せることに効果的である。これら、それぞれの貴金属層
に異なった役割を持たせることによって貴金属層の被覆
厚みを可能な限り薄くすることができる。また、空気中
にて熱処理することができるために、複雑な雰囲気制御
を必要とする電気炉・雰囲気ガスを用いずとも高性能な
電極材料を提供することができるものである。
Effects of the Invention As described above, the present invention provides conductive particles in which the surface of a base metal is coated with two or more layers of different noble metals, and the base metal particles have at least one of gold, platinum, silver, and iridium as the first layer. Alternatively, by providing a coating layer having a composition of alloys thereof, and further providing a coating layer having a composition of palladium or an alloy containing palladium as a surface layer, the first noble metal layer can be heat treated as a base metal layer. The second noble metal layer, as an electrode material, is effective in imparting solderability, chipping resistance, and solder attack resistance. By giving these respective noble metal layers different roles, the coating thickness of the noble metal layer can be made as thin as possible. Furthermore, since heat treatment can be performed in air, a high-performance electrode material can be provided without using an electric furnace or atmospheric gas that requires complicated atmosphere control.

また、この導電性粒子を電子部品の電極に用いた時、安
価で高性能な部品を提供することができるものである。
Furthermore, when these conductive particles are used in electrodes of electronic components, inexpensive and high-performance components can be provided.

Claims (6)

【特許請求の範囲】[Claims] (1)卑金属粒子の表面を2層以上の異なった貴金属で
被覆したことを特徴とする導電性粒子。
(1) Conductive particles characterized in that the surfaces of base metal particles are coated with two or more layers of different noble metals.
(2)卑金属粒子が鉄・コバルト・ニッケル・銅・アル
ミニウム・モリブデン・タングステンのうちの少なくと
も1種あるいはそれらの合金系の組成を有することを特
徴とする請求項1記載の導電性粒子。
(2) The conductive particles according to claim 1, wherein the base metal particles have a composition of at least one of iron, cobalt, nickel, copper, aluminum, molybdenum, and tungsten, or an alloy thereof.
(3)卑金属粒子の表面に接触する第1層の貴金属層が
金・白金・銀・イリジウムのうちの少なくとも1種ある
いはそれらの合金系の組成を有することを特徴とする特
許請求項1記載の導電性粒子。
(3) The first noble metal layer in contact with the surface of the base metal particles has a composition of at least one of gold, platinum, silver, and iridium or an alloy thereof. conductive particles.
(4)表面層の貴金属層がパラジウムまたはパラジウム
を含んだ合金系の組成を有することを特徴とする請求項
1記載の導電性粒子。
(4) The conductive particle according to claim 1, wherein the noble metal layer of the surface layer has a composition of palladium or an alloy containing palladium.
(5)卑金属粒子の粒子表面を無電解メッキにより、第
1層目を金・白金・銀・イリジウムのうちの少なくとも
1種あるいはそれらの合金系を含んだ組成にて被覆し、
第2層目としてパラジウムまたはパラジウム合金にて被
覆し、2層以上の異なった貴金属で被覆することを特徴
とする導電性粒子の製造方法。
(5) coating the particle surface of the base metal particles with a composition containing at least one of gold, platinum, silver, and iridium or an alloy system thereof as a first layer by electroless plating;
A method for producing conductive particles, characterized in that the second layer is coated with palladium or a palladium alloy, and the second layer is coated with two or more different noble metals.
(6)請求項1に記載した導電性粒子を用いた電子部品
用電極。
(6) An electrode for electronic components using the conductive particles according to claim 1.
JP63219053A 1988-09-01 1988-09-01 Electric conductive particles and manufacture thereof Pending JPH0266101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63219053A JPH0266101A (en) 1988-09-01 1988-09-01 Electric conductive particles and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63219053A JPH0266101A (en) 1988-09-01 1988-09-01 Electric conductive particles and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0266101A true JPH0266101A (en) 1990-03-06

Family

ID=16729527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63219053A Pending JPH0266101A (en) 1988-09-01 1988-09-01 Electric conductive particles and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0266101A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186803A (en) * 1992-01-10 1993-07-27 Tokyo Tungsten Co Ltd Multiple powder for needle wire, needle wire using multiple powder and production of needle wire
JPH0845337A (en) * 1994-07-29 1996-02-16 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive
WO1996024938A1 (en) * 1995-02-08 1996-08-15 Hitachi Chemical Co., Ltd. Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
GB2375880A (en) * 2001-03-19 2002-11-27 Astrium Gmbh A conductor for a cryogenic device
WO2006035840A1 (en) * 2004-09-29 2006-04-06 Tdk Corporation Conductive particle manufacturing method, conductive paste, and electronic component manufacturing method
JP2006225744A (en) * 2005-02-21 2006-08-31 Hitachi Maxell Ltd Functional particle and method for producing the same
JP2008098508A (en) * 2006-10-13 2008-04-24 Fujikura Ltd Wiring substrate
US7641971B2 (en) 2003-08-13 2010-01-05 Crane Company Metal-treated particles for remediation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186803A (en) * 1992-01-10 1993-07-27 Tokyo Tungsten Co Ltd Multiple powder for needle wire, needle wire using multiple powder and production of needle wire
JPH0845337A (en) * 1994-07-29 1996-02-16 Shin Etsu Polymer Co Ltd Anisotropic conductive adhesive
WO1996024938A1 (en) * 1995-02-08 1996-08-15 Hitachi Chemical Co., Ltd. Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
GB2375880A (en) * 2001-03-19 2002-11-27 Astrium Gmbh A conductor for a cryogenic device
US7641971B2 (en) 2003-08-13 2010-01-05 Crane Company Metal-treated particles for remediation
US8859036B2 (en) 2003-08-13 2014-10-14 Crane Company Method of making metal-treated particles of specific surface area for remediation
WO2006035840A1 (en) * 2004-09-29 2006-04-06 Tdk Corporation Conductive particle manufacturing method, conductive paste, and electronic component manufacturing method
US8075949B2 (en) 2004-09-29 2011-12-13 Tdk Corporation Method of production of a conductive particle, conductive paste, and method of production of electronic device
JP2006225744A (en) * 2005-02-21 2006-08-31 Hitachi Maxell Ltd Functional particle and method for producing the same
JP2008098508A (en) * 2006-10-13 2008-04-24 Fujikura Ltd Wiring substrate

Similar Documents

Publication Publication Date Title
JPH0378906A (en) Conductive paste
JPH0266101A (en) Electric conductive particles and manufacture thereof
JP2002334614A (en) Conductive particles
JP3918450B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JPH0543921A (en) Production of nickel fine powder
JPS5874030A (en) Electronic part, conductive film composition and method of producing same
JP2001118424A (en) Copper alloy powder for conductive paste
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JPH03215916A (en) Method for formation of electrode and electronic part using it
JPS58107605A (en) Method of producing chip resistor
JPH07130573A (en) Ceramic powder coated with conductive metal
JPS635842B2 (en)
JP2808639B2 (en) Conductive particles for electrodes of ceramic electronic components
JPH03214716A (en) Formation of electrode and electronic parts using the same
JP3698098B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JPH01313803A (en) Conductive paste
JP2553658B2 (en) Electrode material for electronic parts
JPH02215006A (en) Conductive particle and manufacture thereof
JPS634338B2 (en)
JPS63301405A (en) Manufacture of low temperature baking type conductive paste and circuit board
JPH02215005A (en) Conductive grain and its manufacture
JPH07226111A (en) Thick-film conductive paste composition capable of being plated
JP2760542B2 (en) Manufacturing method of ceramic circuit board
JPS6278179A (en) Electroless plating process for ceramic circuit substrate