JP3698098B2 - Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component - Google Patents

Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component Download PDF

Info

Publication number
JP3698098B2
JP3698098B2 JP2001377455A JP2001377455A JP3698098B2 JP 3698098 B2 JP3698098 B2 JP 3698098B2 JP 2001377455 A JP2001377455 A JP 2001377455A JP 2001377455 A JP2001377455 A JP 2001377455A JP 3698098 B2 JP3698098 B2 JP 3698098B2
Authority
JP
Japan
Prior art keywords
powder
base metal
conductive
metal powder
conductive powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001377455A
Other languages
Japanese (ja)
Other versions
JP2003183703A (en
Inventor
央光 本郷
昌禎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001377455A priority Critical patent/JP3698098B2/en
Publication of JP2003183703A publication Critical patent/JP2003183703A/en
Application granted granted Critical
Publication of JP3698098B2 publication Critical patent/JP3698098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐酸化性を有する導電粉末の製造方法、上述の製造方法によって得られる導電粉末、上述の導電粉末を含有してなる導電性ペースト、および上述の導電性ペーストを用いて内部電極が形成された積層セラミック電子部品に関するものであり、特に、積層セラミックコンデンサの内部電極形成に好適な導電性ペーストに用いられる耐酸化性を有する導電粉末の製造方法、導電粉末、導電性ペーストおよび積層セラミック電子部品に関する。
【0002】
【従来の技術】
従来、積層セラミック電子部品、例えば積層セラミックコンデンサのように、生のセラミック積層体とペースト塗布膜を同時焼成して焼結させる場合に用いられる、内部電極形成用の導電性ペーストとしては、高温下でも酸化に対して安定で、かつ素体セラミック焼成温度より融点の高いPd、Ag−Pd、Pt等の貴金属粉末と、有機ビヒクルと、を含有してなる導電性ペーストが用いられてきた。しかし、これら貴金属粉末は高価であり、かつ価格が安定しないことから、近年ではNi粉末、Cu粉末、またはこれらを主成分として含有する粉末等の卑金属粉末を含有してなる導電性ペーストを用いて内部電極を形成した、低コストな積層セラミックコンデンサや多層セラミック基板等の積層セラミック電子部品が生産されている。
【0003】
上述のような積層セラミック電子部品の製造工程においては、Ni粉末やCu粉末の酸化を防止するため、脱バインダー工程および本焼成工程における雰囲気制御が非常に重要となる。このうち、脱バインダー工程においては、これら卑金属粉末の酸化を防止するため、窒素気流等の中性雰囲気か、もしくはこれら卑金属粉末が酸化しない程度のごく低温の酸化雰囲気により、有機物の分解を目的とした熱処理が行われている。
【0004】
【発明が解決しようとする課題】
有機物の熱分解のためには、その燃焼のために必要な十分な酸素と温度が要求される。しかしながら、従来の卑金属粉末を含有してなる導電性ペーストを用いる場合には、上述したように、窒素気流中等の中性雰囲気か、もしくはこれら卑金属粉末が酸化しない程度のごく低温の酸化雰囲気中で脱バインダーを行わなければならなかった。この脱バインダー工程における雰囲気にバラツキが生じ、有機物の分解や除去が不十分となると、残留したカーボン成分が本焼成時にセラミックの焼結を阻害し、セラミックが焼結不足となってしまう。そのため、十分な静電容量や絶縁抵抗が得られないという問題が発生する。
【0005】
また、逆に、脱バインダー工程時に卑金属が酸化してしまうと、卑金属粉末の酸化膨張による脱バインダー時の層剥がれといった構造不良や、酸化による卑金属粉末の焼結不足による取得容量の低下や、等価直列抵抗ならびにtanδの増加等の不具合が発生する。したがって、脱バインダー時において微妙な雰囲気管理が必要となり、工程管理が煩雑となり、工程不良の原因となる問題がある。
【0006】
このような問題を解決する方法として、特開平1−258306号公報、特開平1−265406号公報及び特開平1−80008号公報において、卑金属粉末の酸化防止のため、Ni粉末にB粉末またはB化合物粉末の1種または1種以上を含ませるとともに、無機質フィラーおよび有機ビヒクルを含有させた導電性ペーストが開示されている。しかしながら、この方法では、ペースト混錬が不十分である場合、B粉末またはB化合物粉末の分散状態が不十分となり、卑金属粉末の耐酸化性にバラツキが生じるという問題がある。
【0007】
また、無電解めっき反応によって、Ag粉末あるいはCu粉末表面にNi−B合金を析出させる技術が特開昭63−27567号公報に開示されている。しかし、この公報において開示されている従来の無電解めっきの方法である、金属塩、還元剤、錯化剤、pH調整剤などで調整された1液の無電解めっき液に被めっき物である粉末を浸漬する方法では、板のような被めっき物と比べて被面積が大きいため、めっき反応速度が異常に速く、所望の金属析出量の制御が困難である。また、通常の無電解めっき液は、金属塩濃度が希薄であり、粉末のような比表面積が大きな被めっき物では、粉末投入時にめっき液の分解が急速に進み、粉末表面への金属の析出が不十分になるといった問題があった。
【0008】
本発明は、上記従来の問題に鑑みなされたものであり、その目的は、導電性ペーストに用いられる耐酸化性を有する導電粉末の製造方法、導電粉末、導電性ペーストおよび積層セラミック電子部品を提供することにある。
【0009】
【課題を解決するための手段】
こうした粉末への金属無電解めっきの問題を解決する方法として、本発明者は、被めっき物である卑金属粉末と、金属塩とを混合した溶液に、還元剤溶液を添加して、卑金属粉末表面にNi−B合金を析出させる方法を見出した。これにより、耐酸化性を有する導電粉末を得ることができる。この導電粉末を用いた導電性ペーストは、高温下でも酸化に対して安定であるため、焼成工程を経る積層セラミック電子部品の内部電極の形成等に好適に用いることができる。
【0010】
さらに、本発明者は、耐酸化性を有する卑金属粉末を作製するのに、好適な卑金属粉末の溶液濃度や反応温度などの反応条件を見出した。
【0011】
すなわち、本発明の耐酸化性を備える導電粉末の製造方法は、Ni粉末、Cu粉末、Niまたは/およびCuを主成分とする合金粉末からなる群から選ばれる少なくとも1種の卑金属粉末と、Ni塩とを含む金属塩溶液に、水素化硼化物を含む還元剤溶液を混合し、前記卑金属粉末の表面にNi−B合金粉末を析出させる析出工程を備える。析出工程では、前記Ni塩が還元剤溶液により液相還元されることにより、Ni−B合金粉末が卑金属粉末の表面に析出する。また、金属塩溶液における卑金属粉末の溶液濃度が400g/L以上であることを特徴としている。Lとは103cm3を示す。
【0012】
上記の方法によれば、金属塩溶液と卑金属粉末とを混合することにより、還元剤溶液の投入時に還元剤が卑金属粉末表面の触媒作用により分解し電子を放出し、卑金属粉末近傍には金属イオンが高濃度で存在するため、金属イオンの還元がすぐに起こり、卑金属粉末表面に金属が析出する。そのため、卑金属粉末溶液に金属塩溶液と還元剤溶液とを同時に添加する方法や、卑金属粉末を混合した還元剤溶液に金属塩溶液を添加する方法に比べて、卑金属粉末表面で金属が析出しやすく、Ni−B合金粉末を析出させる場合は、卑金属粉末の耐酸化性を高くすることができる。
【0013】
なお、上述の製造方法は、析出工程の反応温度が、0℃以上、50℃以下であることが好ましい。
【0014】
また、上述の製造方法は、析出工程の後に、Ni−B合金粉末が表面に析出した卑金属粉末を100℃以上で熱処理する熱処理工程をさらに備えることが好ましい。
【0015】
また、上述の製造方法は、前記析出工程の後に、前記Ni−B合金粉末が表面に析出した前記卑金属粉末を粉砕処理する粉砕処理工程をさらに備えることが好ましい。
【0016】
また、上述の製造方法は、前記卑金属粉末の平均粒径より小さく、かつ、前記卑金属粉末100重量部に対して50重量部以下の量のNi−B合金粉末を析出させることが好ましい。
【0017】
また、上述の製造方法は、前記卑金属粉末の平均粒径が、1.0μm以下であることが好ましい。
【0018】
また、上述の製造方法は、前記Ni−B合金粉末の平均粒径は、0.1μm以下であり、かつ、前記卑金属粉末の平均粒径の1/2以下であることが好ましい。
【0019】
本発明の導電粉末は、上述の本発明の導電粉末の製造方法によって得られたことを特徴としている。これにより、耐酸化性を有する導電粉末を得ることができる。
【0020】
本発明の導電性ペーストは、上述の本発明の導電粉末と、有機ビヒクルと、を含有してなることを特徴としている。
【0021】
本発明の積層セラミック電子部品は、複数のセラミック層が積層されてなるセラミック積層体と、前記セラミック層間に形成された複数の内部電極とを備える積層セラミック電子部品であって、前記内部電極は、上記導電性ペーストを用いて形成されていることを特徴としている。
【0022】
【発明の実施の形態】
本発明の一実施の形態について図1および図2に基づいて説明すれば、以下の通りである。
【0023】
本実施の形態にかかる導電粉末について、図1(a)および図1(b)に基づいて詳細に説明する。図1(a)に示すように、導電粉末1は、卑金属粉末2と、Ni−B合金粉末3aとからなる。
【0024】
卑金属粉末2は、例えば、Ni粉末、Cu粉末、Ni−P合金粉末、Ni−Cr合金粉末、Cu−Zn合金粉末、Pd粉末が付着したNi粉末、Ag粉末が付着したNi粉末、Pd−Ag合金粉末が付着したNi粉末、Pt粉末が付着したNi粉末、Pd粉末が付着したCu粉末、Ag粉末が付着したCu粉末、Pd−Ag合金粉末が付着したCu粉末、Pt粉末が付着したCu粉末等が挙げられ、積層セラミック電子部品のセラミック特性に合わせて適宜選択される。
【0025】
Ni−B合金粉末3aは、卑金属粉末2の表面に析出している。Ni−B合金粉末3aを卑金属粉末2表面に析出させる方法は、被めっき物である卑金属粉末2とNi塩とを混合した溶液に、水素化硼化物を含む還元剤溶液を添加する方法である。本発明では、卑金属粉末2とNi塩とを混合した溶液に、上記還元剤溶液を添加する条件を詳細に検討し、卑金属粉末2の溶液濃度及び反応温度を制御することによって、同じ析出量のNi−B合金粉末3aで耐酸化性を向上させる条件を見出した。Ni−B合金粉末3aの析出時における溶液中の卑金属粉末2濃度が高いほど、卑金属粉末2表面でNi−B合金粉末3aが析出する割合が高くなり、卑金属粉末2の耐酸化性が向上する。卑金属粉末2の溶液濃度は400g/L以上が必要であり、これより濃度が低い場合はNi−B合金粉末が卑金属粉末表面以外において単独で析出するため、耐酸化性が低下する。また、卑金属粉末2の溶液濃度の上限値は、特に限定されるものではないが、1000g/L以下が好ましく、800g/L以下がより好ましい。
【0026】
また、反応温度の下限値については、0℃以上であることが好ましく、20℃以上であることがより好ましい。反応温度が低いほどNi−B合金粉末3aの急激な析出を制御することができ、卑金属粉末2表面でのNi−B合金粉末3aの析出が起こりやすくなるため、耐酸化性を向上させることができる。また、反応温度の上限値については、50℃以下であることが好ましい。反応温度が50℃を超えると、Ni−B合金粉末3aの急激な析出が起こり、卑金属粉末2表面以外で単独に析出するため、耐酸化性が低下する。
【0027】
次に、上記導電粉末1に熱を加えた場合について、図1(b)に基づいて詳細に説明する。図1(b)に示すように、加熱された導電粉末1aは、卑金属粉末2が、酸化硼素膜3bにより略被覆された構成となる。
【0028】
酸化硼素膜3bは、Ni−B合金粉末3aに含まれるB成分が酸化した後、熔融して卑金属粉末2の表面を略被覆するように残留させたものである。Ni−B合金粉末3aは、特開昭56−84806号公報に記載されているように、温度が上昇すると、まずB成分が酸化して酸化硼素となり、さらに温度が上昇すると、酸化硼素が熔融する。この酸化硼素は、卑金属粉末2の表面を略被覆する酸化硼素膜3bとなり、卑金属粉末2の酸化を防止する。
【0029】
つまり、Ni−B合金粉末3aを卑金属粉末2表面に析出させた導電粉末1を含有する導電性ペーストは、ペースト中にB粉末またはB化合物を添加して分散させた導電性ペーストに比べて、ペースト中にNi−B合金粉末が均一に分散されているため、卑金属粉末の耐酸化性のバラツキを少なくすることができる。また、卑金属粉末2の近傍にNi−B合金粉末3aが存在しているので、例えば導電性ペーストを焼成した場合、酸化硼素膜3bが卑金属粉末2を被覆する割合がより高くなる。このような導電粉末1を含有してなる導電性ペーストを用いて内部電極を形成した積層セラミック電子部品は、その製造過程である焼成工程において、酸化硼素膜3bが卑金属粉末2の表面を略被覆することから、卑金属粉末2の耐酸化性が高まる。
【0030】
なお、卑金属粉末2の表面にNi−B合金粉末3aを析出させた後に100℃以上で熱処理を行い、さらに粉砕処理を行うことが好ましい。熱処理を行うことにより、粉末の粉砕処理時ならびにペースト作製時にNi−B合金粉末3aが卑金属粉末2から離脱することを抑制することができるため、本発明の効果をより顕著なものとすることができる。また、Ni−B合金粉末3aの析出や熱処理を行うことで、卑金属粉末2の凝集が起こる可能性があるため、熱処理後に粉砕処理を行うことが好ましい。
【0031】
また、Ni−B合金粉末3aの平均粒径は、卑金属粉末2の平均粒径よりも小さいことが好ましい。Ni−B合金粉末3aの平均粒径が卑金属粉末2の平均粒径よりも小さい場合に、上述した酸化硼素膜3bが卑金属粉末2を被覆し、卑金属粉末2の耐酸化性を高めることができるという本発明の効果を得られる。他方、Ni−B合金粉末3aの平均粒径が卑金属粉末2の平均粒径以上であると、この導電粉末を含有してなる導電性ペーストを用いて内部電極を形成した積層セラミック電子部品は、脱バインダー時における卑金属粉末の酸化膨張による層剥がれといった構造不良や、酸化による卑金属粉末の焼結不足による取得容量の低下や、等価直列抵抗ならびにtanδの増加等の不具合が発生することがある。
【0032】
また、Ni−B合金粉末3aの卑金属粉末2表面への析出量は、卑金属粉末100重量部に対して、50重量部以下であることが好ましい。Ni−B合金粉末の析出量が50重量部を超えると、多量のNi−B合金粉末が熔融し、内部電極の電極として機能が損なわれることがある。なお、Ni−B合金粉末の析出量の下限値は特に限定しないが、Ni−B合金粉末3aの析出量が0.1重量部程度であればよい。この程度の量が析出していれば、導電粉末の酸化開始温度が上昇し、すなわち卑金属粉末の耐酸化性を向上させる効果を得ることができる。この導電粉末を含有してなる導電性ペーストを用いて内部電極を形成した積層セラミック電子部品において、脱バインダー時における導電粉末の酸化膨張による層剥がれといった構造不良の発生、酸化による導電粉末の焼結不足による取得容量の低下、等価直列抵抗ならびにtanδの増加等の不具合が発生することを抑制することができる。
【0033】
また、卑金属粉末の平均粒径は、1.0μm以下であることが好ましい。一般的に、卑金属粉末は平均粒径が小さくなるほど比表面積が増えて活性になり、酸化が起こりやすくなる。特に、卑金属粉末の平均粒径が1.0μm以下の場合に酸化が起こりやすくなる傾向がある。そのため、本発明において、卑金属粉末の平均粒径が1.0μm以下である場合に本発明の耐酸化効果が十分に発揮される。卑金属粉末の平均粒径が1.0μmを超える場合も本発明の耐酸化効果は得られるが、もともと比表面積が小さく酸化に対して敏感でないため、その耐酸化効果は1.0μm以下の粉末ほど顕著ではない。
【0034】
また、Ni−B合金粉末の平均粒径は、0.10μm以下で、かつ、卑金属粉末の平均粒径の1/2以下であることが好ましい。上述する範囲内である場合、Ni−B合金粉末が卑金属粉末の表面をより均一に被覆することができるため、卑金属粉末の耐酸化性が十分得られる。
【0035】
得られたNi−B合金粉末を分析した結果、この粉末は、非晶質であり、また、粉末中に含まれているB成分の構成割合は、約25モル%であった。なお、Ni−B合金粉末中に含まれるB成分の構成割合については、特に限定されるものではない。
【0036】
本発明の導電性ペーストは、上述の導電粉末と、有機ビヒクルとを含有してなる。有機ビヒクルの材料は、特に限定されるものではないが、従来より積層セラミック電子部品内部電極形成に好適な導電性ペーストに一般的に用いられている有機ビヒクル、具体的には、スクリーン印刷法、グラビア印刷法、スプレー法等によって、積層セラミックコンデンサ、多層セラミック基板、チップバリスタ、チップLCフィルタ、チップインダクタ等の内部電極形成に好適な導電性ペーストに用いられる有機ビヒクル、より具体的には、例えば、エチルセルロース樹脂をテルピネオール等の溶剤に溶解させたもの等を適宜用いることができる。
【0037】
本発明の積層セラミック電子部品について、図2に基づいて詳細に説明する。図2に示すように、本実施形態にかかる積層セラミック電子部品11は、略直方体型であり、セラミック積層体12と、内部電極13・13と、端子電極14・14と、めっき膜15・15とから構成されている。
【0038】
セラミック積層体12は、BaTiO3を主成分とする誘電体材料からなるセラミック層12aが複数積層された生のセラミック積層体が焼成されてなる。
【0039】
各内部電極13・13は、セラミック積層体12内の各セラミック層12a・12a間にあって、複数の生のセラミック層12a上に本発明の導電性ペーストが印刷され、生のセラミック層とともに積層されてなる生のセラミック積層体と同時に焼成されてなる。また、各内部電極13・13のそれぞれの端縁は、セラミック積層体12のいずれかの端面に露出するように形成されている。
【0040】
端子電極14・14は、セラミック積層体12の端面に露出した各内部電極13・13の一端と電気的かつ機械的に接合されるように、端子電極形成用の導電性ペーストがセラミック積層体12の端面に塗布され焼き付けられてなる。
【0041】
めっき膜15・15は、例えば、SnやNi等の無電解めっきや、はんだめっき等からなり、端子電極14・14上に少なくとも1層形成されてなる。
【0042】
なお、本発明の積層セラミック電子部品のセラミック積層体12の材料は、上述の実施形態に限定されることはなく、例えば、PbZrO3等その他の誘電体材料や、絶縁体、磁性体、半導体材料からなっても構わない。また、本発明の積層セラミック電子部品の内部電極13の枚数は、上述の実施形態に限定されることはなく、何層形成されていても構わない。また、端子電極14の形成位置ならびに個数は、上述の実施形態に限定されるものではない。また、めっき膜15・15は、必ずしも備えている必要はなく、また何層形成されていても構わない。
【0043】
【実施例】
〔実施例1〕
Ni粉末にNi−B合金粉末を析出させた実施例を示す。Ni−B合金粉末量は、Ni−B合金粉末析出後にNi粉末100重量部に対して、Ni−B合金粉末として0.90重量部になるように、B量としては0.05重量部になるようにNi−B合金粉末を析出させた。
【0044】
硫酸ニッケルNiSO4・6H2O(Ni塩)15gを純水1Lに溶解させ、液温を30℃に設定した。次に、このNi塩溶液に、粒径0.5μmのNi粉末400gを、Ni塩溶液を攪拌しながら添加し、Ni粉末をNi塩溶液に分散させ、Ni粉末濃度として400g/Lの溶液Aを調整した。以下、Ni粉末をNi塩溶液に分散させた溶液のことを溶液Aという。一方、水素化硼素ナトリウム5gと、水酸化ナトリウム5gとを純水1Lに溶解し、液温を30℃に設定した還元剤溶液を調整した。
【0045】
次いで、上記還元剤溶液を、溶液Aに、溶液Aを攪拌しながら添加し、Ni粉末表面へのNi−B合金粉末の還元析出反応を行った。析出反応後のNi粉末を水洗し、アセトン置換を行った後乾燥させ、粉末試料(試料)1を得た。
【0046】
〔実施例2〕
実施例2についてそれぞれ、実施例1におけるNi粉末濃度を、2倍に変更して、すなわち800g/Lにして、実施例1と同様にNi粉末表面にNi−B合金粉末の還元析出反応を行った。このとき、硫酸ニッケル、水素化硼素ナトリウム、水酸化ナトリウムの濃度も、それぞれ2倍にした。濃度以外の条件は、実施例1と同じにした。
【0047】
〔比較例1・2〕
比較例1・2について、それぞれ実施例1におけるNi粉末濃度を、1/2倍、1/4倍に変更して、すなわち200g/L、100g/Lにして、実施例1と同様にNi粉末表面にNi−B合金粉末の還元析出反応を行った。このとき、硫酸ニッケル、水素化硼素ナトリウム、水酸化ナトリウムの濃度も、それぞれ1/2倍、1/4倍にした。濃度以外の条件は、実施例1と同じにした。
【0048】
〔実施例3〜5〕
実施例3〜5についてそれぞれ、実施例2における液温を30℃から20℃、40℃、50℃にして、実施例2と同様にNi−B合金粉末の還元析出反応を行った。液温以外の条件は、実施例2と同じにした。
【0049】
実施例1〜5、比較例1〜2の反応条件について表1にまとめて示す。このような反応条件で作製した試料1〜7に含まれるB量を発光分光で分析した。その結果、いずれの試料についてもB量として0.05重量%含まれることが示され、B量に違いは見られなかった。
【0050】
【表1】

Figure 0003698098
【0051】
次に、Ni−B合金粉末を析出させたNi粉末の耐酸化性の確認のため、試料1〜7の導電粉末の酸化開始温度を、示差熱天秤を用いて空気気流中で室温より1000℃までの質量変化を測定した。導電粉末の酸化による重量増加が始まる温度を酸化開始温度と規定して、酸化開始温度を表2にまとめた。なお、比較例3において、Ni−B合金粉末を析出させていない粒径0.5μmのNi粉末を試料8として示す。
【0052】
【表2】
Figure 0003698098
【0053】
表2から、Ni粉末濃度を変更した試料1〜4で比較すると、Ni粉末濃度が800g/Lである溶液Aから得られた試料2の酸化開始温度が最も高く、Ni粉末濃度が低くなるほど耐酸化性が低くなることが判った。特に、Ni粉末濃度が200g/L以下になると、耐酸化性の低下が著しいことが判った。これらの結果から、Ni粉末濃度は、400g/L以上が好ましいことが示された。
【0054】
また、反応温度を変更した試料2および試料5〜7によると、反応温度は50℃以下が好ましいことが示された。
【0055】
〔実施例6〜10〕
次いで、試料1、2、5〜7の導電粉末を用いて、導電性ペーストを作製した。すなわち、表3に示すように、導電粉末50重量%と、エチルセルロース樹脂20重量%とテルピネオール80重量%とを混合してなる有機ビヒクル50重量%と、を混合した後、三本ロールにて分散処理を行い、ペースト試料(導電性ペースト)▲1▼、▲2▼、▲5▼〜▲7▼を作成した。
【0056】
【表3】
Figure 0003698098
【0057】
次いで、導電性ペースト▲1▼、▲2▼、▲5▼〜▲7▼を用いて、内部電極を形成した、設計段階の静電容量が1.0μFである積層セラミックコンデンサを作製した。すなわち、BaTiO3を主成分とするセラミックグリーンシートを準備し、所定枚数のセラミックグリーンシートの表面上に一方の端縁がセラミックグリーンシートのいずれかの端面側に露出するように、導電性ペースト▲1▼、▲2▼、▲5▼〜▲7▼を用いて内部電極となるべき電極膜を印刷した。次いで、これら複数のセラミックグリーンシートを所定枚数積層し圧着して、試料1、2、5〜7(導電性ペースト▲1▼、▲2▼、▲5▼〜▲7▼)の生のセラミック積層体を複数準備した。
【0058】
次いで、試料1、2、5〜7(導電性ペースト▲1▼、▲2▼、▲5▼〜▲7▼)の生のセラミック積層体を脱バインダーさせるにあたり、条件を表4の条件Aのように設定した。すなわち、耐酸化性のない導電粉末を用いた導電性ペーストの場合に導電粉末の酸化が生じ易い条件として、保持温度400℃、保持時間60分、Air雰囲気と設定し、これを脱バインダー条件Aとした。他方、導電粉末の酸化は生じにくいが、有機バインダーの熱分解が不十分となり易い条件として、保持温度250℃、保持時間60分、N2雰囲気と設定し、これを脱バインダー条件Bとした。これら条件A、Bを表4に示す。
【0059】
【表4】
Figure 0003698098
【0060】
次いで、上述の脱バインダー処理後に焼成し、さらにセラミック積層体の両端面にAgを導電成分とする端子電極形成用の導電性ペーストを塗布し、乾燥させた後これを焼き付けて、内部電極に電気的かつ機械的に接合された1対の端子電極を備える、試料1、2、5〜7の積層セラミックコンデンサを10000個づつ得た。
【0061】
そこで、試料1、2、5〜7の積層セラミックコンデンサを100個づつ抜き取り、静電容量(100個平均)、ショート不良発生率、層剥がれ不良発生率を測定し、3項目を総合して評価した。
【0062】
なお、評価は、静電容量が1.0±0.2μF、ショート不良発生率が0%、層剥がれ不良発生率が0%であり、本発明の範囲内である試料について○を、本発明の範囲外である試料について×を付した。
【0063】
〔比較例4〜7〕
次いで、試料3、4、および8の導電粉末を用いて、実施例6〜10と同様に導電性ペースト▲3▼、▲4▼、および▲8▼を作製し、試料3、4、および8(導電性ペースト▲3▼、▲4▼、および▲8▼)の積層セラミックコンデンサを作成した。なお、試料8(導電性ペースト▲8▼)については、脱バインダー条件A(比較例6)および条件B(比較例7)で脱バインダーさせた。
【0064】
そして、実施例6〜10と同様に、試料3、4、および8の積層セラミックコンデンサについて、静電容量(100個平均)、ショート不良発生率、層剥がれ不良発生率を測定し、3項目を総合して評価した。
【0065】
上記実施例6〜10および比較例4〜7の結果を表5にまとめた。
【0066】
【表5】
Figure 0003698098
【0067】
表5から明らかであるように、Ni粉末濃度が400g/L以上の溶液Aから得られた試料1、2、5〜7の導電粉末(導電性ペースト▲1▼、▲2▼、▲5▼〜▲7▼)を用いた積層セラミックコンデンサ(実施例6〜10)は、静電容量が1.0μFであり、ショート不良発生率、層剥がれ不良発生率がいずれも0%であり、良好な特性が得られた。
【0068】
これに対して、Ni粉末濃度が400g/Lより低い溶液から得られた試料3、4の導電粉末(導電性ペースト▲3▼、▲4▼)を用いた積層セラミックコンデンサ(比較例4、5)は、層剥がれ不良が発生した。
【0069】
また、反応温度が20℃〜50℃で得られた試料1、2、試料5〜7の導電粉末(導電性ペースト▲1▼、▲2▼、▲5▼、▲6▼、▲7▼)を用いた積層セラミックコンデンサ(実施例6〜10)は、静電容量が1.0μFであり、ショート不良発生率、層剥がれ不良発生率がいずれも0%であり、良好な特性が得られた。
【0070】
また、従来のNi粉末である試料8の導電粉末(導電性ペースト▲8▼)を用いた積層セラミックコンデンサ(比較例6、7)は、脱バインダー条件がAir雰囲気中で保持温度が高い場合(条件A)には、静電容量が極端に低くなって層剥がれ不良発生率が高くなり、N2雰囲気中で保持温度が低い場合(条件B)には、ショート不良発生率が高くなる。
【0071】
【発明の効果】
以上のように本発明の導電粉末の製造方法によれば、Ni粉末、Cu粉末、Niまたは/およびCuを主成分とする合金粉末からなる群から選ばれる少なくとも1種の卑金属粉末とNi塩を含む金属塩溶液に、水素化硼化物を含む還元剤溶液を混合して前記Ni塩溶液を液層還元し、前記卑金属粉末の表面にNi−B合金粉末を析出させる反応において、卑金属粉末の溶液濃度を400g/L以上にすることで、耐酸化性を有する導電粉末を提供することができる。また、このような導電粉末を用いた導電性ペーストを提供することができる。これにより、有機物の分解ならびに除去に十分な温度の酸化雰囲気中での脱バインダー処理を可能とし、このような導電性ペーストを用いて内部電極を形成する積層セラミック電子部品の歩留まりならびに生産性を向上させることができる。
【0072】
また、上述の導電粉末の製造方法において、反応温度を0℃以上、50℃以下にすることで、より確実に耐酸化性を有する導電粉末を提供することができる。
【0073】
また、上述の卑金属粉末の平均粒径は、1.0μm以下であることが好ましい。これにより、一般に卑金属粉末は、粒径が小さくなるほど比表面積が増えて活性になり、酸化が起こり易くなるが、卑金属粉末の耐酸化性を向上させるという本発明の効果が顕著となる。また、積層セラミック電子部品のさらなる薄層化や多層化に貢献できる効果がある。
【0074】
また、上述のNi−B合金粉末の平均粒径は、0.1μm以下であり、かつ、卑金属粉末の平均粒径の1/2以下であることが好ましい。これにより、Ni−B合金粉末の表面をより均一に被覆することができ、卑金属粉末の耐酸化性が十分に得られるという効果がある。
【図面の簡単な説明】
【図1】(a)は、本発明の一実施形態にかかる導電粉末の図解的断面図であり、(b)は、(a)の導電粉末を熱処理した(焼結後の)ものの図解的断面図である。
【図2】本発明の一実施形態にかかる積層セラミック電子部品の断面図である。
【符号の説明】
1 導電粉末
2 卑金属粉末
3a Ni−B合金粉末
11 積層セラミック電子部品
12a セラミック層
12 セラミック積層体
13 内部電極[0001]
BACKGROUND OF THE INVENTION
The present invention provides a method for producing a conductive powder having oxidation resistance, a conductive powder obtained by the above-described production method, a conductive paste containing the above-mentioned conductive powder, and an internal electrode using the above-described conductive paste. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a formed multilayer ceramic electronic component, and in particular, a method for producing conductive powder having oxidation resistance used for a conductive paste suitable for forming an internal electrode of a multilayer ceramic capacitor, conductive powder, conductive paste, and multilayer ceramic It relates to electronic components.
[0002]
[Prior art]
Conventionally, a conductive paste for forming an internal electrode, which is used when a raw ceramic laminate and a paste coating film are simultaneously fired and sintered, such as a multilayer ceramic electronic component, for example, a multilayer ceramic capacitor, is used at a high temperature. However, conductive pastes containing noble metal powders such as Pd, Ag-Pd, Pt and the like, which are stable against oxidation and have a melting point higher than the ceramic firing temperature, and organic vehicles have been used. However, since these noble metal powders are expensive and the price is not stable, in recent years, a conductive paste containing a base metal powder such as Ni powder, Cu powder, or a powder containing these as a main component is used. Low-cost multilayer ceramic capacitors and multilayer ceramic substrates with internal electrodes are produced.
[0003]
In the manufacturing process of the multilayer ceramic electronic component as described above, it is very important to control the atmosphere in the debinding step and the main firing step in order to prevent oxidation of Ni powder and Cu powder. Among these, in the debinding step, in order to prevent oxidation of these base metal powders, the purpose is to decompose organic substances in a neutral atmosphere such as a nitrogen stream or in a very low temperature oxidizing atmosphere that does not oxidize these base metal powders. Heat treatment is performed.
[0004]
[Problems to be solved by the invention]
In order to thermally decompose organic matter, sufficient oxygen and temperature necessary for the combustion are required. However, when using a conventional conductive paste containing a base metal powder, as described above, in a neutral atmosphere such as in a nitrogen stream, or in a very low-temperature oxidizing atmosphere that does not oxidize these base metal powders. Debinding had to be done. If the atmosphere in the binder removal process varies and the decomposition and removal of organic substances become insufficient, the remaining carbon component inhibits the ceramic sintering during the main firing, and the ceramic becomes insufficiently sintered. Therefore, there arises a problem that sufficient electrostatic capacity and insulation resistance cannot be obtained.
[0005]
Conversely, if the base metal oxidizes during the binder removal step, structural failure such as delamination during binder removal due to oxidative expansion of the base metal powder, reduction in the acquired capacity due to insufficient sintering of the base metal powder due to oxidation, or equivalent Problems such as an increase in series resistance and tan δ occur. Therefore, subtle atmosphere management is required at the time of debinding, and there is a problem that process management becomes complicated and causes process defects.
[0006]
As a method for solving such a problem, in Japanese Patent Application Laid-Open No. 1-258306, Japanese Patent Application Laid-Open No. 1-265406 and Japanese Patent Application Laid-Open No. 1-80008, in order to prevent oxidation of base metal powder, Ni powder is mixed with B powder or B A conductive paste containing one or more compound powders and containing an inorganic filler and an organic vehicle is disclosed. However, in this method, when paste kneading is insufficient, there is a problem that the dispersion state of the B powder or the B compound powder becomes insufficient and the oxidation resistance of the base metal powder varies.
[0007]
Japanese Patent Laid-Open No. 63-27567 discloses a technique for depositing a Ni—B alloy on the surface of Ag powder or Cu powder by electroless plating reaction. However, the conventional electroless plating method disclosed in this publication is an object to be plated in a single electroless plating solution adjusted with a metal salt, a reducing agent, a complexing agent, a pH adjusting agent, or the like. In the method of immersing the powder, the area to be plated is larger than that of an object to be plated such as a plate. Therefore, the plating reaction rate is abnormally high, and it is difficult to control the desired metal deposition amount. In addition, a normal electroless plating solution has a dilute metal salt concentration, and if the object to be plated has a large specific surface area such as a powder, the decomposition of the plating solution proceeds rapidly when the powder is charged, and the metal deposits on the powder surface. There was a problem that became insufficient.
[0008]
The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a method for producing a conductive powder having oxidation resistance used for a conductive paste, a conductive powder, a conductive paste, and a multilayer ceramic electronic component. There is to do.
[0009]
[Means for Solving the Problems]
As a method for solving the problem of metal electroless plating on such a powder, the present inventor added a reducing agent solution to a mixed solution of a base metal powder to be plated and a metal salt, A method for precipitating a Ni-B alloy was found. Thereby, the conductive powder which has oxidation resistance can be obtained. Since the conductive paste using the conductive powder is stable against oxidation even at a high temperature, it can be suitably used for forming an internal electrode of a multilayer ceramic electronic component that undergoes a firing process.
[0010]
Furthermore, the present inventor has found reaction conditions such as a solution concentration and a reaction temperature suitable for producing a base metal powder having oxidation resistance.
[0011]
That is, the method for producing a conductive powder having oxidation resistance according to the present invention comprises at least one base metal powder selected from the group consisting of Ni powder, Cu powder, Ni or / and an alloy powder containing Cu as a main component, and Ni. There is provided a precipitation step of mixing a reducing agent solution containing a borohydride with a metal salt solution containing a salt to precipitate Ni-B alloy powder on the surface of the base metal powder. In the precipitation step, the Ni salt is liquid phase reduced by a reducing agent solution, whereby Ni-B alloy powder is precipitated on the surface of the base metal powder. Moreover, the solution concentration of the base metal powder in the metal salt solution is 400 g / L or more. L is 10 Three cm Three Indicates.
[0012]
According to the above method, by mixing the metal salt solution and the base metal powder, when the reducing agent solution is charged, the reducing agent is decomposed by the catalytic action on the surface of the base metal powder and releases electrons, and metal ions are present in the vicinity of the base metal powder. Is present at a high concentration, the reduction of metal ions occurs immediately and the metal is deposited on the surface of the base metal powder. Therefore, compared to the method of adding a metal salt solution and a reducing agent solution simultaneously to a base metal powder solution or the method of adding a metal salt solution to a reducing agent solution mixed with a base metal powder, metal is more likely to precipitate on the surface of the base metal powder. When the Ni-B alloy powder is precipitated, the oxidation resistance of the base metal powder can be increased.
[0013]
In the above production method, the reaction temperature in the precipitation step is preferably 0 ° C. or higher and 50 ° C. or lower.
[0014]
Moreover, it is preferable that the manufacturing method described above further includes a heat treatment step of heat-treating the base metal powder on which the Ni—B alloy powder is deposited on the surface after the precipitation step at 100 ° C. or higher.
[0015]
Moreover, it is preferable that the above-described manufacturing method further includes a pulverization treatment step of pulverizing the base metal powder on which the Ni-B alloy powder is precipitated on the surface after the precipitation step.
[0016]
Moreover, it is preferable that the said manufacturing method precipitates the Ni-B alloy powder of the quantity smaller than the average particle diameter of the said base metal powder, and 50 weight part or less with respect to 100 weight part of the said base metal powder.
[0017]
Moreover, it is preferable that the average particle diameter of the said base metal powder is 1.0 micrometer or less.
[0018]
In the above-described production method, the Ni—B alloy powder preferably has an average particle size of 0.1 μm or less and is ½ or less of the average particle size of the base metal powder.
[0019]
The conductive powder of the present invention is obtained by the above-described method for producing a conductive powder of the present invention. Thereby, the conductive powder which has oxidation resistance can be obtained.
[0020]
The conductive paste of the present invention is characterized by containing the above-described conductive powder of the present invention and an organic vehicle.
[0021]
The multilayer ceramic electronic component of the present invention is a multilayer ceramic electronic component comprising a ceramic laminate formed by laminating a plurality of ceramic layers, and a plurality of internal electrodes formed between the ceramic layers. It is formed using the said electrically conductive paste.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
One embodiment of the present invention will be described below with reference to FIGS.
[0023]
The conductive powder according to the present embodiment will be described in detail with reference to FIGS. 1 (a) and 1 (b). As shown to Fig.1 (a), the electrically conductive powder 1 consists of the base metal powder 2 and the Ni-B alloy powder 3a.
[0024]
The base metal powder 2 is, for example, Ni powder, Cu powder, Ni-P alloy powder, Ni-Cr alloy powder, Cu-Zn alloy powder, Ni powder with Pd powder attached, Ni powder with Ag powder attached, Pd-Ag Ni powder with alloy powder, Ni powder with Pt powder, Cu powder with Pd powder, Cu powder with Ag powder, Cu powder with Pd-Ag alloy powder, Cu powder with Pt powder Etc., and are appropriately selected according to the ceramic characteristics of the multilayer ceramic electronic component.
[0025]
The Ni—B alloy powder 3 a is precipitated on the surface of the base metal powder 2. The method of precipitating the Ni-B alloy powder 3a on the surface of the base metal powder 2 is a method of adding a reducing agent solution containing a borohydride to a solution obtained by mixing the base metal powder 2 that is an object to be plated and a Ni salt. . In the present invention, the conditions for adding the reducing agent solution to the mixed solution of the base metal powder 2 and the Ni salt are examined in detail, and the solution concentration of the base metal powder 2 and the reaction temperature are controlled, so that the same precipitation amount can be obtained. The conditions for improving the oxidation resistance were found with the Ni-B alloy powder 3a. The higher the concentration of the base metal powder 2 in the solution at the time of precipitation of the Ni-B alloy powder 3a, the higher the proportion of the Ni-B alloy powder 3a deposited on the surface of the base metal powder 2, and the oxidation resistance of the base metal powder 2 is improved. . The solution concentration of the base metal powder 2 needs to be 400 g / L or more. When the concentration is lower than this, the Ni-B alloy powder precipitates alone on the surface other than the surface of the base metal powder, so that the oxidation resistance is lowered. Moreover, the upper limit of the solution concentration of the base metal powder 2 is not particularly limited, but is preferably 1000 g / L or less, and more preferably 800 g / L or less.
[0026]
Moreover, about the lower limit of reaction temperature, it is preferable that it is 0 degreeC or more, and it is more preferable that it is 20 degreeC or more. As the reaction temperature is lower, the rapid precipitation of the Ni-B alloy powder 3a can be controlled, and the precipitation of the Ni-B alloy powder 3a on the surface of the base metal powder 2 is likely to occur, so that the oxidation resistance can be improved. it can. Moreover, about the upper limit of reaction temperature, it is preferable that it is 50 degrees C or less. When the reaction temperature exceeds 50 ° C., the Ni—B alloy powder 3a is rapidly precipitated, and the Ni—B alloy powder 3a precipitates separately on the surface other than the surface of the base metal powder 2, so that the oxidation resistance decreases.
[0027]
Next, the case where heat is applied to the conductive powder 1 will be described in detail with reference to FIG. As shown in FIG. 1B, the heated conductive powder 1a has a structure in which a base metal powder 2 is substantially covered with a boron oxide film 3b.
[0028]
The boron oxide film 3b is formed by melting the B component contained in the Ni-B alloy powder 3a and then melting it so that it substantially covers the surface of the base metal powder 2. As described in JP-A-56-84806, the Ni-B alloy powder 3a first oxidizes B component to boron oxide when the temperature rises, and when the temperature rises further, the boron oxide melts. To do. This boron oxide becomes a boron oxide film 3b that substantially covers the surface of the base metal powder 2, and prevents the base metal powder 2 from being oxidized.
[0029]
That is, the conductive paste containing the conductive powder 1 in which the Ni-B alloy powder 3a is deposited on the surface of the base metal powder 2 is compared with the conductive paste in which B powder or B compound is added and dispersed in the paste. Since the Ni-B alloy powder is uniformly dispersed in the paste, variation in oxidation resistance of the base metal powder can be reduced. Further, since the Ni-B alloy powder 3a is present in the vicinity of the base metal powder 2, for example, when the conductive paste is fired, the ratio of the boron oxide film 3b covering the base metal powder 2 becomes higher. In the multilayer ceramic electronic component in which the internal electrode is formed by using such a conductive paste containing the conductive powder 1, the boron oxide film 3 b substantially covers the surface of the base metal powder 2 in the firing process as the manufacturing process. Therefore, the oxidation resistance of the base metal powder 2 is increased.
[0030]
In addition, after depositing the Ni-B alloy powder 3a on the surface of the base metal powder 2, it is preferable to heat-treat at 100 degreeC or more, and also to grind | pulverize. By performing the heat treatment, it is possible to suppress the Ni-B alloy powder 3a from being detached from the base metal powder 2 at the time of pulverizing the powder and at the time of preparing the paste, so that the effect of the present invention is made more remarkable. it can. Moreover, since precipitation of the Ni-B alloy powder 3a and heat treatment may cause aggregation of the base metal powder 2, it is preferable to perform pulverization after the heat treatment.
[0031]
Moreover, it is preferable that the average particle diameter of the Ni-B alloy powder 3a is smaller than the average particle diameter of the base metal powder 2. When the average particle diameter of the Ni-B alloy powder 3a is smaller than the average particle diameter of the base metal powder 2, the above-described boron oxide film 3b covers the base metal powder 2, and the oxidation resistance of the base metal powder 2 can be improved. The effects of the present invention can be obtained. On the other hand, when the average particle size of the Ni-B alloy powder 3a is equal to or greater than the average particle size of the base metal powder 2, the multilayer ceramic electronic component in which the internal electrode is formed using the conductive paste containing the conductive powder is: Problems such as structural failure such as layer peeling due to oxidative expansion of the base metal powder at the time of binder removal, a decrease in acquisition capacity due to insufficient sintering of the base metal powder due to oxidation, and an increase in equivalent series resistance and tan δ may occur.
[0032]
Moreover, it is preferable that the precipitation amount to the base metal powder 2 surface of the Ni-B alloy powder 3a is 50 weight part or less with respect to 100 weight part of base metal powder. When the precipitation amount of Ni-B alloy powder exceeds 50 parts by weight, a large amount of Ni-B alloy powder may melt and the function as an electrode of the internal electrode may be impaired. In addition, the lower limit of the precipitation amount of Ni-B alloy powder is not particularly limited, but the precipitation amount of Ni-B alloy powder 3a may be about 0.1 parts by weight. If this amount is deposited, the oxidation start temperature of the conductive powder rises, that is, the effect of improving the oxidation resistance of the base metal powder can be obtained. In multilayer ceramic electronic parts with internal electrodes formed using conductive paste containing this conductive powder, structural defects such as delamination due to oxidative expansion of conductive powder during binder removal, sintering of conductive powder due to oxidation Generation | occurrence | production of malfunctions, such as a fall of the acquisition capacity by an insufficiency, an equivalent series resistance, and increase of tan-delta, can be suppressed.
[0033]
The average particle size of the base metal powder is preferably 1.0 μm or less. In general, as the average particle size of the base metal powder becomes smaller, the specific surface area increases and becomes active, and oxidation tends to occur. In particular, oxidation tends to occur when the average particle size of the base metal powder is 1.0 μm or less. Therefore, in this invention, when the average particle diameter of base metal powder is 1.0 micrometer or less, the oxidation resistance effect of this invention is fully exhibited. Even when the average particle size of the base metal powder exceeds 1.0 μm, the oxidation resistance effect of the present invention can be obtained. However, since the specific surface area is originally small and not sensitive to oxidation, the oxidation resistance effect is about 1.0 μm or less. Not noticeable.
[0034]
The average particle size of the Ni—B alloy powder is preferably 0.10 μm or less and 1/2 or less of the average particle size of the base metal powder. When it is within the above-described range, the Ni—B alloy powder can coat the surface of the base metal powder more uniformly, so that the oxidation resistance of the base metal powder is sufficiently obtained.
[0035]
As a result of analyzing the obtained Ni-B alloy powder, this powder was amorphous, and the component ratio of the B component contained in the powder was about 25 mol%. In addition, it does not specifically limit about the component ratio of B component contained in Ni-B alloy powder.
[0036]
The conductive paste of the present invention contains the above-mentioned conductive powder and an organic vehicle. The material of the organic vehicle is not particularly limited, but an organic vehicle that has been conventionally used for a conductive paste suitable for forming an internal electrode of a multilayer ceramic electronic component, specifically, a screen printing method, Organic vehicles used in conductive pastes suitable for forming internal electrodes such as multilayer ceramic capacitors, multilayer ceramic substrates, chip varistors, chip LC filters, chip inductors by gravure printing, spraying, etc. A solution obtained by dissolving ethyl cellulose resin in a solvent such as terpineol can be used as appropriate.
[0037]
The multilayer ceramic electronic component of the present invention will be described in detail with reference to FIG. As shown in FIG. 2, the multilayer ceramic electronic component 11 according to the present embodiment is a substantially rectangular parallelepiped type, and is a ceramic multilayer body 12, internal electrodes 13 and 13, terminal electrodes 14 and 14, and plated films 15 and 15. It consists of and.
[0038]
The ceramic laminate 12 is made of BaTiO Three A raw ceramic laminated body in which a plurality of ceramic layers 12a made of a dielectric material containing as a main component is laminated is fired.
[0039]
The internal electrodes 13 and 13 are located between the ceramic layers 12a and 12a in the ceramic laminate 12, and the conductive paste of the present invention is printed on the plurality of raw ceramic layers 12a and laminated together with the raw ceramic layers. It is fired at the same time as the raw ceramic laminate. Further, the respective end edges of the internal electrodes 13 and 13 are formed so as to be exposed at any end face of the ceramic laminate 12.
[0040]
The terminal electrode 14, 14 is electrically and mechanically joined to one end of each internal electrode 13, 13 exposed at the end face of the ceramic laminate 12, and the conductive paste for forming the terminal electrode is made of the ceramic laminate 12. It is applied and baked on the end face of the plate.
[0041]
The plating films 15 and 15 are made of, for example, electroless plating such as Sn or Ni, solder plating, or the like, and are formed on at least one layer on the terminal electrodes 14 and 14.
[0042]
In addition, the material of the ceramic laminate 12 of the multilayer ceramic electronic component of the present invention is not limited to the above-described embodiment. For example, PbZrO Three Other dielectric materials such as insulators, magnetic materials, and semiconductor materials may be used. The number of internal electrodes 13 of the multilayer ceramic electronic component of the present invention is not limited to the above-described embodiment, and any number of layers may be formed. Moreover, the formation position and the number of terminal electrodes 14 are not limited to the above-described embodiment. The plating films 15 and 15 are not necessarily provided, and any number of layers may be formed.
[0043]
【Example】
[Example 1]
An example in which Ni-B alloy powder is deposited on Ni powder is shown. The amount of Ni-B alloy powder is 0.05 parts by weight as the amount of B so that it becomes 0.90 parts by weight as Ni-B alloy powder with respect to 100 parts by weight of Ni powder after precipitation of Ni-B alloy powder. Ni-B alloy powder was deposited so as to be.
[0044]
Nickel sulfate NiSO Four ・ 6H 2 15 g of O (Ni salt) was dissolved in 1 L of pure water, and the liquid temperature was set to 30 ° C. Next, 400 g of Ni powder having a particle size of 0.5 μm is added to this Ni salt solution while stirring the Ni salt solution, the Ni powder is dispersed in the Ni salt solution, and a solution A having a Ni powder concentration of 400 g / L. Adjusted. Hereinafter, a solution in which Ni powder is dispersed in a Ni salt solution is referred to as a solution A. On the other hand, 5 g of sodium borohydride and 5 g of sodium hydroxide were dissolved in 1 L of pure water to prepare a reducing agent solution set at a liquid temperature of 30 ° C.
[0045]
Next, the reducing agent solution was added to the solution A while stirring the solution A, and a reduction precipitation reaction of the Ni-B alloy powder on the Ni powder surface was performed. The Ni powder after the precipitation reaction was washed with water, substituted with acetone, and then dried to obtain a powder sample (sample) 1.
[0046]
[Example 2]
For Example 2, the Ni powder concentration in Example 1 was changed to twice, that is, 800 g / L, and the Ni-B alloy powder was reduced and precipitated on the Ni powder surface in the same manner as in Example 1. It was. At this time, the concentrations of nickel sulfate, sodium borohydride, and sodium hydroxide were also doubled. Conditions other than the concentration were the same as in Example 1.
[0047]
[Comparative Examples 1 and 2]
For Comparative Examples 1 and 2, the Ni powder concentration in Example 1 was changed to 1/2 times and 1/4 times, that is, 200 g / L and 100 g / L, respectively, and Ni powder was the same as in Example 1. A reduction precipitation reaction of Ni-B alloy powder was performed on the surface. At this time, the concentrations of nickel sulfate, sodium borohydride, and sodium hydroxide were also halved and ¼, respectively. Conditions other than the concentration were the same as in Example 1.
[0048]
[Examples 3 to 5]
For each of Examples 3 to 5, the liquid temperature in Example 2 was changed from 30 ° C. to 20 ° C., 40 ° C., and 50 ° C., and a reduction precipitation reaction of Ni—B alloy powder was performed in the same manner as in Example 2. Conditions other than the liquid temperature were the same as in Example 2.
[0049]
Table 1 summarizes the reaction conditions of Examples 1 to 5 and Comparative Examples 1 and 2. The amount of B contained in Samples 1 to 7 prepared under such reaction conditions was analyzed by emission spectroscopy. As a result, it was shown that any sample contained 0.05 wt% as the B amount, and no difference was observed in the B amount.
[0050]
[Table 1]
Figure 0003698098
[0051]
Next, in order to confirm the oxidation resistance of the Ni powder on which the Ni-B alloy powder was deposited, the oxidation start temperature of the conductive powders of Samples 1 to 7 was set to 1000 ° C. from room temperature in an air stream using a differential thermal balance. The mass change up to was measured. The temperature at which weight increase due to oxidation of the conductive powder begins is defined as the oxidation start temperature, and the oxidation start temperatures are summarized in Table 2. In Comparative Example 3, a Ni powder having a particle size of 0.5 μm, on which no Ni—B alloy powder is deposited, is shown as Sample 8.
[0052]
[Table 2]
Figure 0003698098
[0053]
From Table 2, comparing samples 1 to 4 with different Ni powder concentrations, the oxidation start temperature of sample 2 obtained from solution A having a Ni powder concentration of 800 g / L is the highest, and the lower the Ni powder concentration, the more resistant to acid. It was found that the chemical properties are low. In particular, it was found that when the Ni powder concentration was 200 g / L or less, the reduction in oxidation resistance was remarkable. From these results, it was shown that the Ni powder concentration is preferably 400 g / L or more.
[0054]
Further, according to Sample 2 and Samples 5 to 7 in which the reaction temperature was changed, it was shown that the reaction temperature is preferably 50 ° C. or less.
[0055]
[Examples 6 to 10]
Next, a conductive paste was prepared using the conductive powders of Samples 1, 2, and 5-7. That is, as shown in Table 3, 50% by weight of a conductive powder, 50% by weight of an organic vehicle formed by mixing 20% by weight of an ethylcellulose resin and 80% by weight of terpineol, and then dispersed by a three roll. Processing was performed to prepare paste samples (conductive paste) (1), (2), (5) to (7).
[0056]
[Table 3]
Figure 0003698098
[0057]
Next, using the conductive pastes (1), (2), and (5) to (7), a multilayer ceramic capacitor having an internal electrode formed and having a design stage capacitance of 1.0 μF was produced. That is, BaTiO Three A ceramic green sheet containing as a main component is prepared, and conductive pastes {1}, ▲ are formed so that one end edge is exposed on one end face side of the ceramic green sheet on the surface of a predetermined number of ceramic green sheets. Using 2 ▼ and (5) to (7), an electrode film to be an internal electrode was printed. Next, a predetermined number of these ceramic green sheets are laminated and pressure-bonded, and raw ceramic laminates of Samples 1, 2, 5 to 7 (conductive paste (1), (2), (5) to (7)) are obtained. Prepared multiple bodies.
[0058]
Next, in debinding the raw ceramic laminates of Samples 1, 2, 5 to 7 (conductive pastes (1), (2), (5) to (7)), the conditions were as shown in Table 4 Condition A. Was set as follows. That is, in the case of a conductive paste using a conductive powder having no oxidation resistance, the conductive powder is likely to be oxidized as a holding temperature of 400 ° C., a holding time of 60 minutes, and an air atmosphere. It was. On the other hand, the conductive powder is less likely to be oxidized, but the thermal decomposition of the organic binder tends to be insufficient. The holding temperature is 250 ° C., the holding time is 60 minutes, N 2 The atmosphere was set, and this was designated as binder removal condition B. These conditions A and B are shown in Table 4.
[0059]
[Table 4]
Figure 0003698098
[0060]
Next, firing is performed after the above binder removal treatment, and a conductive paste for forming a terminal electrode containing Ag as a conductive component is applied to both end faces of the ceramic laminate. 10,000 multilayer ceramic capacitors of Samples 1, 2, and 5 to 7 each having a pair of terminal electrodes bonded to each other mechanically and mechanically were obtained.
[0061]
Therefore, 100 multilayer ceramic capacitors of Samples 1, 2, and 5-7 were taken out one by one, and the capacitance (average of 100) was measured, the short-circuit defect occurrence rate, and the layer peeling failure occurrence rate were measured, and the three items were evaluated comprehensively. did.
[0062]
The evaluation was made with respect to a sample having an electrostatic capacity of 1.0 ± 0.2 μF, a short-circuit defect occurrence rate of 0%, and a layer peeling failure occurrence rate of 0%. X was attached | subjected about the sample which is out of the range of.
[0063]
[Comparative Examples 4 to 7]
Next, using the conductive powders of Samples 3, 4, and 8, conductive pastes (3), (4), and (8) were prepared in the same manner as in Examples 6 to 10, and Samples 3, 4, and 8 were produced. Multilayer ceramic capacitors of (conductive pastes (3), (4), and (8)) were prepared. Sample 8 (conductive paste (8)) was debindered under binder removal conditions A (Comparative Example 6) and B (Comparative Example 7).
[0064]
Then, in the same manner as in Examples 6 to 10, the multilayer ceramic capacitors of Samples 3, 4, and 8 were measured for capacitance (average of 100), short-circuit failure occurrence rate, and layer peeling failure occurrence rate. Overall evaluation.
[0065]
The results of Examples 6 to 10 and Comparative Examples 4 to 7 are summarized in Table 5.
[0066]
[Table 5]
Figure 0003698098
[0067]
As is clear from Table 5, the conductive powders of Samples 1, 2, and 5-7 obtained from the solution A having a Ni powder concentration of 400 g / L or more (conductive paste (1), (2), (5) The multilayer ceramic capacitors (Examples 6 to 10) using (7) to (7) have a capacitance of 1.0 μF, and the occurrence rate of short circuit failure and the occurrence of layer peeling failure are both 0%, which is good. Characteristics were obtained.
[0068]
In contrast, multilayer ceramic capacitors (Comparative Examples 4 and 5) using conductive powders (conductive pastes (3) and (4)) of Samples 3 and 4 obtained from a solution having a Ni powder concentration lower than 400 g / L. ), Layer peeling failure occurred.
[0069]
In addition, conductive powders of Samples 1, 2 and Samples 5-7 obtained at a reaction temperature of 20 ° C. to 50 ° C. (conductive paste (1), (2), (5), (6), (7)) The monolithic ceramic capacitors using Examples (Examples 6 to 10) had a capacitance of 1.0 μF, and the occurrence rate of short circuit failure and the occurrence rate of layer peeling failure were both 0%, and good characteristics were obtained. .
[0070]
In addition, in the multilayer ceramic capacitor (Comparative Examples 6 and 7) using the conductive powder of Sample 8 (conductive paste (8)), which is a conventional Ni powder, when the debinding condition is high in the air atmosphere (the holding temperature is high) In condition A), the electrostatic capacity becomes extremely low and the layer peeling failure occurrence rate becomes high, and N 2 When the holding temperature is low in the atmosphere (Condition B), the occurrence rate of short circuit defects is high.
[0071]
【The invention's effect】
As described above, according to the method for producing a conductive powder of the present invention, at least one base metal powder selected from the group consisting of Ni powder, Cu powder, Ni or / and an alloy powder containing Cu as a main component, and a Ni salt are used. In a reaction of mixing a reducing agent solution containing a borohydride with a metal salt solution containing the Ni salt solution and subjecting the Ni salt solution to precipitation on the surface of the base metal powder, a solution of the base metal powder By setting the concentration to 400 g / L or more, a conductive powder having oxidation resistance can be provided. In addition, a conductive paste using such a conductive powder can be provided. This enables debinding in an oxidizing atmosphere at a temperature sufficient for decomposition and removal of organic substances, and improves the yield and productivity of multilayer ceramic electronic components that form internal electrodes using such conductive paste. Can be made.
[0072]
Moreover, in the manufacturing method of the above-mentioned electroconductive powder, the electroconductive powder which has oxidation resistance more reliably can be provided by making reaction temperature into 0 degreeC or more and 50 degrees C or less.
[0073]
Moreover, it is preferable that the average particle diameter of the above-mentioned base metal powder is 1.0 μm or less. As a result, the base metal powder generally becomes more active as the particle size becomes smaller and becomes active, and oxidation is likely to occur. However, the effect of the present invention to improve the oxidation resistance of the base metal powder becomes remarkable. Further, there is an effect that it is possible to contribute to further thinning and multilayering of the multilayer ceramic electronic component.
[0074]
Moreover, it is preferable that the average particle diameter of the above-mentioned Ni-B alloy powder is 0.1 μm or less and 1/2 or less of the average particle diameter of the base metal powder. Thereby, the surface of the Ni-B alloy powder can be coated more uniformly, and the oxidation resistance of the base metal powder can be sufficiently obtained.
[Brief description of the drawings]
FIG. 1A is a schematic cross-sectional view of a conductive powder according to an embodiment of the present invention, and FIG. 1B is a schematic view of a heat-treated (after sintering) conductive powder of (a). It is sectional drawing.
FIG. 2 is a cross-sectional view of a multilayer ceramic electronic component according to an embodiment of the present invention.
[Explanation of symbols]
1 Conductive powder
2 Base metal powder
3a Ni-B alloy powder
11 multilayer ceramic electronic components
12a Ceramic layer
12 Ceramic laminate
13 Internal electrodes

Claims (10)

Ni粉末、Cu粉末、ならびにNiまたは/およびCuを主成分とする合金粉末からなる群から選ばれる少なくとも1種の卑金属粉末と、Ni塩とを含む金属塩溶液に、水素化硼化物を含む還元剤溶液を混合し、前記卑金属粉末の表面にNi−B合金粉末を析出させる析出工程を備える導電粉末の製造方法であって、
前記金属塩溶液における卑金属粉末濃度が、400g/L以上であることを特徴とする導電粉末の製造方法。
Reduction containing a borohydride in a metal salt solution containing at least one base metal powder selected from the group consisting of Ni powder, Cu powder, and alloy powder containing Ni or / and Cu as a main component and Ni salt A method for producing a conductive powder comprising a precipitation step of mixing an agent solution and precipitating Ni-B alloy powder on the surface of the base metal powder,
A method for producing a conductive powder, wherein the base metal powder concentration in the metal salt solution is 400 g / L or more.
前記析出工程における温度が、0℃以上、50℃以下であることを特徴とする請求項1記載の導電粉末の製造方法。The temperature in the said precipitation process is 0 degreeC or more and 50 degrees C or less, The manufacturing method of the electrically-conductive powder of Claim 1 characterized by the above-mentioned. 前記析出工程の後に、前記Ni−B合金粉末が表面に析出した前記卑金属粉末を、100℃以上で熱処理する熱処理工程をさらに備えることを特徴とする請求項1または2記載の導電粉末の製造方法。3. The method for producing a conductive powder according to claim 1, further comprising a heat treatment step of heat-treating the base metal powder on which the Ni—B alloy powder is precipitated on the surface after the precipitation step at 100 ° C. or more. . 前記析出工程の後に、前記Ni−B合金粉末が表面に析出した前記卑金属粉末を粉砕処理する粉砕処理工程をさらに備えることを特徴とする請求項1ないし3のいずれか1項に記載の導電粉末の製造方法。The conductive powder according to any one of claims 1 to 3, further comprising a pulverization treatment step of pulverizing the base metal powder on which the Ni-B alloy powder is precipitated on the surface after the precipitation step. Manufacturing method. 前記卑金属粉末の平均粒径より小さく、かつ、前記卑金属粉末100重量部に対して50重量部以下の量のNi−B合金粉末を析出させることを特徴とする請求項1ないし4のいずれか1項に記載の導電粉末の製造方法。5. The Ni—B alloy powder having an amount smaller than the average particle diameter of the base metal powder and 50 parts by weight or less based on 100 parts by weight of the base metal powder is precipitated. The manufacturing method of the electrically-conductive powder as described in a term. 前記卑金属粉末の平均粒径が、1.0μm以下であることを特徴とする請求項1ないし5のいずれか1項に記載の導電粉末の製造方法。6. The method for producing a conductive powder according to claim 1, wherein an average particle diameter of the base metal powder is 1.0 μm or less. 前記Ni−B合金粉末の平均粒径は、0.1μm以下であり、かつ、前記卑金属粉末の平均粒径の1/2以下であることを特徴とする請求項1ないし6のいずれか1項に記載の導電粉末の製造方法。The average particle diameter of the Ni-B alloy powder is 0.1 μm or less, and is ½ or less of the average particle diameter of the base metal powder. A method for producing a conductive powder as described in 1. 請求項1ないし7のいずれか1項に記載の導電粉末の製造方法によって得られたことを特徴とする導電粉末。A conductive powder obtained by the method for producing a conductive powder according to claim 1. 請求項8に記載の導電粉末と、有機ビヒクルとを含有してなることを特徴とする導電性ペースト。A conductive paste comprising the conductive powder according to claim 8 and an organic vehicle. 複数のセラミック層が積層されてなるセラミック積層体と、前記セラミック層間に形成された複数の内部電極とを備える積層セラミック電子部品であって、
前記内部電極は、請求項9に記載の導電性ペーストを用いて形成されていることを特徴とする積層セラミック電子部品。
A multilayer ceramic electronic component comprising a ceramic laminate formed by laminating a plurality of ceramic layers and a plurality of internal electrodes formed between the ceramic layers,
A multilayer ceramic electronic component, wherein the internal electrode is formed using the conductive paste according to claim 9.
JP2001377455A 2001-12-11 2001-12-11 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component Expired - Lifetime JP3698098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377455A JP3698098B2 (en) 2001-12-11 2001-12-11 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377455A JP3698098B2 (en) 2001-12-11 2001-12-11 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2003183703A JP2003183703A (en) 2003-07-03
JP3698098B2 true JP3698098B2 (en) 2005-09-21

Family

ID=27590800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377455A Expired - Lifetime JP3698098B2 (en) 2001-12-11 2001-12-11 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Country Status (1)

Country Link
JP (1) JP3698098B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836659B1 (en) * 2006-07-06 2008-06-10 삼성전기주식회사 Method for manufacturing metal nanoparticles
CN103611932B (en) * 2013-12-18 2016-04-13 江苏科技大学 The sonochemistry preparation method of the coated phosphorus nickel alloy layer of a kind of Copper Powder Surface

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699143B2 (en) * 1985-10-02 1994-12-07 株式会社村田製作所 Nickel powder manufacturing method
JPS6327567A (en) * 1986-07-18 1988-02-05 Mitsubishi Electric Corp Electrically conductive paste
JP3230261B2 (en) * 1992-01-13 2001-11-19 株式会社村田製作所 Antioxidant method for copper powder
JP3918450B2 (en) * 2000-07-05 2007-05-23 株式会社村田製作所 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Also Published As

Publication number Publication date
JP2003183703A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP4081987B2 (en) Metal powder manufacturing method, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP3644235B2 (en) Multilayer ceramic electronic components
US5871840A (en) Nickel powder containing a composite oxide of La and Ni and process for preparing the same
KR970004274B1 (en) Seramic capacitor
KR20000028837A (en) Nickel composite particle and production process therefor
JP2003013103A (en) Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component
JPH07207185A (en) Coated palladium fine powder and conductive paste
JP3918450B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
EP1454688A1 (en) Copper alloy powder for electroconductive paste
US6815045B2 (en) Method for manufacturing a metal powder, a metal powder, an electroconductive paste using the same, and a multilayer ceramic electronic component using the same
JP3698098B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2002275511A (en) Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
EP0834368B1 (en) Nickel powder and process for preparing the same
JP4595235B2 (en) Method for producing conductive powder having oxidation resistance, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JP2004068090A (en) Method for manufacturing conductive powder, conductive powder, conductive paste and electronic partt of laminated ceramic
JPH0696988A (en) Paste for forming internal electrode of multilayer ceramic capacitor and multilayer ceramic capacitor employing the paste
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
WO2024135396A1 (en) Multilayer ceramic electronic component and method for producing same
JPH03215916A (en) Method for formation of electrode and electronic part using it
JP4085587B2 (en) Metal powder manufacturing method, metal powder, conductive paste and multilayer ceramic electronic component
JP2965646B2 (en) Base metal composition for external electrode of chip type multilayer capacitor
JP4441951B2 (en) Multilayer ceramic electronic components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Ref document number: 3698098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

EXPY Cancellation because of completion of term