JPH0543921A - Production of nickel fine powder - Google Patents

Production of nickel fine powder

Info

Publication number
JPH0543921A
JPH0543921A JP20174291A JP20174291A JPH0543921A JP H0543921 A JPH0543921 A JP H0543921A JP 20174291 A JP20174291 A JP 20174291A JP 20174291 A JP20174291 A JP 20174291A JP H0543921 A JPH0543921 A JP H0543921A
Authority
JP
Japan
Prior art keywords
nickel
carbonate
basic
hydrazine
hydrazine hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20174291A
Other languages
Japanese (ja)
Inventor
Masanobu Yano
政信 矢野
Kiyomi Sasaki
清美 佐々木
Yoshimasa Azuma
吉正 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP20174291A priority Critical patent/JPH0543921A/en
Publication of JPH0543921A publication Critical patent/JPH0543921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain nickel fine powder having good diffusivity, small particle diameters and extremely narrow particle size distribution range by using basic nickel carbonate as a raw material in a method for reacting nickel containing solution with hydrazine, etc. CONSTITUTION:Dispersion liquid which basic nickel carbonate is dispersed in solvent, such as water to form is heated to the prescribed temp. and kept at at that temp. and hydrazine hydrate (or hydrazine) is added to it while stirring. Then, nickel complex is formed by solid-liquid reaction between basic nickel carbonate and hydrazine hydrate and nickel ions are deposited as metallic nickel by the reducing action of hydrazine hydrate. The basic nickel carbonate is produced by making water solution of soluble nickel (II) salt, such as nickel chloride interact with alkali carbonate. The product arbitrary composition represented by the general formula, whose NiCO3.yNi(OH)2.H2O, can be usually used, but that of <=50ppm impurity element concentration is preferable and if 50ppm is exceeded, the diffusivity of the formed nickel powder is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル微粉末の製造方
法、特に、積層コンデンサの内部電極材料として有用な
ニッケルの微粉末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine nickel powder, and more particularly to a method for producing fine nickel powder which is useful as an internal electrode material of a multilayer capacitor.

【0002】[0002]

【従来の技術】近年、小型且つ大容量の積層セラミック
コンデンサの生産コストの低減化を図るべく、内部電極
材料として白金、パラジウム等の貴金属に代わりニッケ
ルなどの卑金属を用い、非還元性誘電体磁器を誘電体材
料とする積層セラミックコンデンサが、例えば、特公昭
56−46641号公報にて提案され、また、その金属
ニッケル粉末の製造方法として、例えば、特開昭53−
95165号公報にて、塩化ニッケル、炭酸ニッケル及
び酢酸ニッケルのうちいずれか一種を含むニッケル含有
溶液にヒドラジン若しくはヒドラジン化合物を添加、混
合して100℃以下の温度で加熱する方法が提案されて
いる。
2. Description of the Related Art In recent years, in order to reduce the production cost of a small-sized and large-capacity monolithic ceramic capacitor, non-reducing dielectric ceramics have been used by using a base metal such as nickel instead of a noble metal such as platinum or palladium as an internal electrode material. A multilayer ceramic capacitor using as a dielectric material is proposed in, for example, Japanese Patent Publication No. 56-46641, and as a method for producing the metallic nickel powder thereof, for example, Japanese Patent Laid-Open No. 53-
Japanese Patent No. 95165 proposes a method in which a hydrazine or a hydrazine compound is added to and mixed with a nickel-containing solution containing any one of nickel chloride, nickel carbonate, and nickel acetate, and the mixture is heated at a temperature of 100 ° C. or lower.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記方
法で生成したニッケル粉末は粒度分布幅が広く、また、
バインダに対する分散性が悪いため、積層コンデンサの
内部電極材料として使用した場合、内部欠陥や電気特性
の劣化を招くという問題があった。
However, the nickel powder produced by the above method has a wide particle size distribution range, and
Since the dispersibility in the binder is poor, there is a problem that when it is used as an internal electrode material of a multilayer capacitor, internal defects and deterioration of electric characteristics are caused.

【0004】従って、本発明は、分散性が良く、粒径が
小さく粒度分布幅の極めて狭い金属ニッケル微粉末を得
ることを目的とするものである。
Therefore, an object of the present invention is to obtain a fine metal nickel powder having a good dispersibility, a small particle size and an extremely narrow particle size distribution width.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決するため、塩基性炭酸ニッケルを含む溶媒中にヒドラ
ジン又はヒドラジン水化物を加えて還元するようにした
ものである。
In order to solve the above-mentioned problems, the present invention is one in which hydrazine or hydrazine hydrate is added to a solvent containing basic nickel carbonate for reduction.

【0006】本発明において使用する塩基性炭酸ニッケ
ルは、例えば、塩化ニッケル(NiCl2)、硫酸ニッケ
ル(NiSO4)、硝酸ニッケル(Ni(NO32)、酢
酸ニッケルなどの水溶性ニッケル(II)塩水溶液に炭酸ア
ルカリを作用させることにより得られ、通常、一般式:
xNiCO3・yNi(OH)2・zH2Oで示される任意の組成の
ものを使用できるが、塩基性炭酸ニッケル中に含まれる
各不純物元素濃度が50ppm以下のものを使用するのが
好適である。これは、塩基性炭酸ニッケル中の全不純物
元素濃度が50ppmを越えると、不純物元素の影響を受
けて生成したニッケル粉末の分散性が低下するからであ
る。また、前記塩基性炭酸ニッケルは平均粒径が6〜9
μmで、粒度分布が0.2〜10μmである粉末を使用す
るのが好ましい。
The basic nickel carbonate used in the present invention is, for example, water-soluble nickel (II) such as nickel chloride (NiCl 2 ), nickel sulfate (NiSO 4 ), nickel nitrate (Ni (NO 3 ) 2 ), and nickel acetate. ) Obtained by reacting an aqueous solution of salt with an alkali carbonate, and usually has the general formula:
An arbitrary composition represented by xNiCO 3 · yNi (OH) 2 · zH 2 O can be used, but it is preferable to use one having an impurity element concentration of 50 ppm or less contained in basic nickel carbonate. .. This is because when the concentration of all impurity elements in basic nickel carbonate exceeds 50 ppm, the dispersibility of the nickel powder produced due to the influence of the impurity elements deteriorates. The basic nickel carbonate has an average particle size of 6-9.
Preference is given to using powders with a particle size distribution of 0.2 to 10 μm.

【0007】前記溶媒としては、還元剤が溶解するもの
であれば任意のものを使用できるが、一般的には水が使
用される。また、還元剤としては、還元作用の強いヒド
ラジン又はヒドラジン水化物を使用するのが好適であ
り、還元は、通常、浴温を65〜95℃、好ましくは、
70〜92℃に保持して行われる。前記塩基性炭酸ニッ
ケル、溶媒及び還元剤はモル比で1:15:190〜
1:30:230の割合で混合される。
Any solvent can be used as the solvent as long as it can dissolve the reducing agent, but water is generally used. As the reducing agent, it is preferable to use hydrazine or hydrazine hydrate having a strong reducing action, and the reduction is usually performed at a bath temperature of 65 to 95 ° C., preferably
The temperature is maintained at 70 to 92 ° C. The basic nickel carbonate, solvent and reducing agent are in a molar ratio of 1: 15: 190-90.
It is mixed in a ratio of 1: 30: 230.

【0008】[0008]

【作用】塩基性炭酸ニッケルを溶媒に添加すると、塩基
性炭酸ニッケル粉末が溶媒に分散し、その分散液を所定
温度にまで加熱、維持し、撹拌しながらヒドラジン水化
物を加えると、塩基性炭酸ニッケルとヒドラジン水化物
との固体−液体反応によりニッケル錯塩を生成し、さら
にヒドラジン水化物の還元作用によりニッケルイオンが
還元され、金属ニッケルとして析出する。
[Function] When basic nickel carbonate is added to the solvent, the basic nickel carbonate powder is dispersed in the solvent, and the dispersion is heated and maintained at a predetermined temperature, and when hydrazine hydrate is added with stirring, the basic carbonate is added. A solid-liquid reaction between nickel and hydrazine hydrate produces a nickel complex salt, and the reducing action of hydrazine hydrate further reduces nickel ions to deposit metal nickel.

【0009】以下、実施例について説明する。Examples will be described below.

【0010】[0010]

【実施例】反応槽に15モルの純水を入れ、これを20
0〜300rpmの速度で回転する撹拌機で撹拌し、浴温
度を80℃に維持しながら、塩基性炭酸ニッケル(Ni
CO3・2Ni(OH)2・4H2O、平均粒径:8.0μm、粒
度範囲:0.2〜10μm)1モル及びヒドラジン水化物
190モルを順次投入し、Ni2+イオンチェッカーでニ
ッケルイオンが検出されなくなるまで保持する。なお、
塩基性炭酸ニッケル中の不純物濃度はFe<10ppm、M
g<10ppm、Ca<10ppm、Cu<10ppm、Na<50p
pm、Co<50ppm、全不純物濃度50ppm以下である。
次いで、反応液を室温にまで冷却した後、純水を静かに
加えて生成したニッケル粉末を洗浄液のpHが7.0〜
8.0になるまで洗浄する。ニッケル粉末を濾別したの
ち、90℃で乾燥して金属ニッケル粉末を得る。
[Example] 15 mol of pure water was put into a reaction tank, and 20
Stir with a stirrer rotating at a speed of 0 to 300 rpm, while maintaining the bath temperature at 80 ° C, basic nickel carbonate (Ni
CO 3 .2Ni (OH) 2 .4H 2 O, average particle size: 8.0 μm, particle size range: 0.2 to 10 μm) 1 mol and 190 mol of hydrazine hydrate were sequentially added, and nickel was added using an Ni 2+ ion checker. Hold until no ions are detected. In addition,
Impurity concentration in basic nickel carbonate is Fe <10ppm, M
g <10ppm, Ca <10ppm, Cu <10ppm, Na <50p
pm, Co <50 ppm, and total impurity concentration is 50 ppm or less.
Then, after cooling the reaction solution to room temperature, pure water is gently added to produce nickel powder, and the pH of the cleaning solution is adjusted to 7.0.
Wash to 8.0. After the nickel powder is filtered off, it is dried at 90 ° C. to obtain metallic nickel powder.

【0011】得られた金属ニッケル粉末の物理的特性を
測定したところ、一次粒子の平均粒径が0.6μmで、
粒度範囲が0.2〜5.0と粒度分布が極めて狭い球状
の微粉末であった。また、タップ密度は2.0g/ml、比
表面積は2.4m2/gで、ニッケル微粉末中の不純物濃度
はAl<10ppm、Fe<10ppm、Mg<10〜50ppm、
Ca<−、Cu<10ppmであった。
The physical properties of the obtained metallic nickel powder were measured, and the average particle diameter of the primary particles was 0.6 μm.
The spherical fine powder had a very narrow particle size distribution with a particle size range of 0.2 to 5.0. The tap density is 2.0 g / ml, the specific surface area is 2.4 m 2 / g, the impurity concentration in the nickel fine powder is Al <10 ppm, Fe <10 ppm, Mg <10-50 ppm,
Ca <− and Cu <10 ppm.

【0012】前記ニッケル粉末47.5wt%と分散剤4.
0wt%を、エチルセルロースにテルピネオールを混練し
て調製したビヒクル10.0wt%と30〜60分混合し
た後、3本ロールミルで2〜4回混練し、前記ビヒクル
38.5wt%とテルピネオールを加えて混合し、粘度
4.5〜16pa.、比重1.2〜2.0に調整し、更に3
0〜60分混合処理してニッケルペーストを調製する。
47.5 wt% of the nickel powder and the dispersant 4.
0 wt% was mixed with 10.0 wt% of a vehicle prepared by kneading terpineol in ethyl cellulose for 30 to 60 minutes, then kneaded 2 to 4 times with a three-roll mill, and 38.5 wt% of the vehicle and terpineol were added and mixed. The viscosity is adjusted to 4.5 to 16 pa. And the specific gravity is 1.2 to 2.0.
A nickel paste is prepared by mixing for 0 to 60 minutes.

【0013】このニッケルペーストを内部電極形成用導
電ペーストとして用い、常法により積層セラミックコン
デンサを製造した。即ち、まず、常法により(Ba0.98
Ca0.021.01(Ti0.84Zr0.16)O2からなる組成を
有するチタン酸バリウム系誘電体磁器の仮焼粉末を調製
し、これに3重量%の有機バインダを加えて湿式混合
し、セラミックグリーンシートを得る。このセラミック
グリーンシートの表面に325〜400メッシュのスク
リーンを用いてスクリーン印刷法により前記ニッケルペ
ーストを塗布する。このセラミックグリーンシートを前
記ニッケルペーストで形成した塗膜の一端が積層体の端
面に交互に露出するように複数枚重ね、その上下にニッ
ケルペーストの塗布されていないセラミックグリーンシ
ートを重ねた後、全体を圧着し、積層体を構成する。こ
の積層体を所定寸法にカットしてコンデンサチップを
得、外部電極との接合中間層として各チップをニッケル
ペースト中にディッピングにより、その端面にニッケル
ペーストを塗布する。なお、このニッケルペーストはデ
ィッピング用に調製した前記内部電極形成用ニッケルペ
ーストと同種のものである。次いで、前記コンデンサチ
ップを非酸化性雰囲気中、1250±100℃の温度で
焼成し、ニッケル層を誘電体層からなるコンデンサユニ
ットを得る。このユニットの両端に、その各接合中間層
を被覆するように、Ag又はAg−Pdを主成分とする導
電性ペーストを塗布した後、加熱硬化させて外部電極を
形成し、その上にニッケルメッキ又は錫メッキを施し、
積層セラミックコンデンサ(定格電圧:25V)を得
る。
Using this nickel paste as a conductive paste for forming internal electrodes, a monolithic ceramic capacitor was manufactured by a conventional method. That is, first, according to the conventional method (Ba 0.98
Ca 0.02 ) 1.01 (Ti 0.84 Zr 0.16 ) O 2 A barium titanate-based dielectric ceramic calcinated powder was prepared, and 3 wt% of an organic binder was added thereto and wet mixed to prepare a ceramic green sheet. To get The nickel paste is applied to the surface of the ceramic green sheet by a screen printing method using a 325 to 400 mesh screen. After stacking a plurality of the ceramic green sheets so that one end of the coating film formed by the nickel paste is alternately exposed on the end surface of the laminate, and stacking the ceramic green sheets not coated with the nickel paste on the upper and lower sides, the whole Are pressure-bonded to form a laminated body. This laminated body is cut into a predetermined size to obtain a capacitor chip, and each chip is applied as an intermediate layer for joining with an external electrode by dipping each chip in a nickel paste. The nickel paste is of the same kind as the internal electrode forming nickel paste prepared for dipping. Next, the capacitor chip is fired at a temperature of 1250 ± 100 ° C. in a non-oxidizing atmosphere to obtain a capacitor unit having a nickel layer as a dielectric layer. A conductive paste containing Ag or Ag-Pd as a main component is applied to both ends of this unit so as to cover the respective bonding intermediate layers, and then heat-cured to form external electrodes, and nickel plating is performed on the external electrodes. Or tin plated,
Obtain a monolithic ceramic capacitor (rated voltage: 25V).

【0014】得られた積層セラミックコンデンサについ
て、サーマルショックによるクラック不良の発生率及び
電気的特性を測定したところ表1に示す結果が得られ
た。
The rate of occurrence of crack defects due to thermal shock and the electrical characteristics of the obtained monolithic ceramic capacitor were measured, and the results shown in Table 1 were obtained.

【0015】なお、クラック不良の発生率は、数十個の
積層セラミックコンデンサを試料とし、これを予熱する
ことなく240℃の熔融半田浴に数秒間浸漬し、これを
室温にまで自然冷却した後、超音波探傷により試料内部
のクラックを検出し、総試料数に対する内部クラックが
発生した試料数の割合を求めた。また、絶縁抵抗劣化時
間は、積層セラミックコンデンサの定格電力の4倍の電
圧(100V)を印加すると同時に、外部電極端子間の
絶縁抵抗を連続的に測定し、その絶縁抵抗が1MΩ以下
になるまでの時間である。更に、絶縁抵抗劣化は、積層
セラミックコンデンサの初期抵抗値をIRメータで測定
し、100Vの電圧を印加をした後の絶縁抵抗値が従来
の積層セラミックコンデンサと同じであれば、絶縁抵抗
劣化なしとした。また、絶縁破壊電圧は、積層セラミッ
クコンデンサの外部電極端子に電圧を印加し、これを1
00V/secで増加させて、電極端子間の電流値が1
mA以上となった時の電圧値を測定して、これを絶縁破
壊電圧とした。
The rate of occurrence of crack defects was determined by using several tens of monolithic ceramic capacitors as samples, immersing them in a molten solder bath at 240 ° C. for several seconds without preheating, and then naturally cooling them to room temperature. The cracks inside the sample were detected by ultrasonic flaw detection, and the ratio of the number of samples with internal cracks to the total number of samples was calculated. In addition, the insulation resistance deterioration time is measured by continuously measuring the insulation resistance between the external electrode terminals while applying a voltage (100 V) that is four times the rated power of the monolithic ceramic capacitor until the insulation resistance becomes 1 MΩ or less. It's time. Furthermore, the insulation resistance deterioration is determined to be no insulation resistance deterioration if the initial resistance value of the multilayer ceramic capacitor is measured with an IR meter and the insulation resistance value after applying a voltage of 100 V is the same as that of the conventional multilayer ceramic capacitor. did. For the dielectric breakdown voltage, apply a voltage to the external electrode terminals of the monolithic ceramic capacitor,
The current value between the electrode terminals is 1 when it is increased at 00V / sec.
The voltage value when it became mA or more was measured, and this was made into the dielectric breakdown voltage.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示す結果から、本発明方法に
より得たニッケル微粉末を用いると、クラック不良の発
生率が従来法により得たニッケル粉末を用いたものの約
1/7に減少し、電気特性の劣化を防止できることが解
る。
From the results shown in Table 1, when the nickel fine powder obtained by the method of the present invention is used, the occurrence rate of crack defects is reduced to about 1/7 that of the nickel powder obtained by the conventional method, and the electrical characteristics are reduced. It can be seen that deterioration of can be prevented.

【0018】[0018]

【発明の効果】以上説明したように、本発明は、塩基性
炭酸ニッケル、特に、高純度で特定の粒径の塩基性炭酸
ニッケルを原料として用い、固液反応によりニッケル微
粉末を製造するようにしたので、一次粒子の平均粒径が
小さく、粒度範囲が0.2〜5.0μmと極めて狭い球状
のニッケル微粉末を得ることができ、しかも、そのバイ
ンダに対する分散性を向上させることができるという優
れた効果を奏する。
As described above, according to the present invention, basic nickel carbonate, in particular, basic nickel carbonate having a high purity and a specific particle size is used as a raw material to produce fine nickel powder by solid-liquid reaction. Since the average particle size of the primary particles is small, it is possible to obtain a spherical nickel fine powder having an extremely narrow particle size range of 0.2 to 5.0 μm, and it is possible to improve the dispersibility in the binder. It has an excellent effect.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩基性炭酸ニッケルを含む溶媒中にヒド
ラジン又はヒドラジン水化物を加えて還元することを特
徴とするニッケル微粉末の製造方法。
1. A method for producing fine nickel powder, which comprises adding hydrazine or hydrazine hydrate to a solvent containing basic nickel carbonate for reduction.
【請求項2】 塩基性炭酸ニッケル中の不純物元素濃度
が50ppm以下である請求項1に記載の方法。
2. The method according to claim 1, wherein the concentration of the impurity element in the basic nickel carbonate is 50 ppm or less.
【請求項3】 還元を65〜95℃の範囲内の温度で行
う請求項1又は2に記載の方法。
3. The method according to claim 1, wherein the reduction is carried out at a temperature in the range of 65 to 95 ° C.
JP20174291A 1991-08-12 1991-08-12 Production of nickel fine powder Pending JPH0543921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20174291A JPH0543921A (en) 1991-08-12 1991-08-12 Production of nickel fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20174291A JPH0543921A (en) 1991-08-12 1991-08-12 Production of nickel fine powder

Publications (1)

Publication Number Publication Date
JPH0543921A true JPH0543921A (en) 1993-02-23

Family

ID=16446189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20174291A Pending JPH0543921A (en) 1991-08-12 1991-08-12 Production of nickel fine powder

Country Status (1)

Country Link
JP (1) JPH0543921A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034327A1 (en) * 1999-11-10 2001-05-17 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
JP2002275509A (en) * 2001-03-15 2002-09-25 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
US6585796B2 (en) 2000-05-30 2003-07-01 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component
KR100490678B1 (en) * 2002-11-29 2005-05-24 (주)창성 Method for manufacturing nano-scale nickel powders by wet reducing process
WO2005083138A1 (en) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
JP2005251752A (en) * 2000-09-29 2005-09-15 Jsr Corp Conductive metal particle, conductive compound metal particle, and applied product using them
WO2008001741A1 (en) * 2006-06-27 2008-01-03 Ishihara Sangyo Kaisha, Ltd. Nickel fine particle, method for producing the same, and fluid composition using the same
WO2013151172A1 (en) * 2012-04-06 2013-10-10 東邦チタニウム株式会社 Nickel metal powder and process for producing nickel metal powder
CN104028772A (en) * 2014-02-17 2014-09-10 瑞安市浙工大技术转移中心 Preparation method of nickel nano particles

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632265B1 (en) * 1999-11-10 2003-10-14 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
WO2001034327A1 (en) * 1999-11-10 2001-05-17 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
US6585796B2 (en) 2000-05-30 2003-07-01 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component
JP2005251752A (en) * 2000-09-29 2005-09-15 Jsr Corp Conductive metal particle, conductive compound metal particle, and applied product using them
JP2002275509A (en) * 2001-03-15 2002-09-25 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
KR100490678B1 (en) * 2002-11-29 2005-05-24 (주)창성 Method for manufacturing nano-scale nickel powders by wet reducing process
US7959782B2 (en) 2004-03-01 2011-06-14 Jx Nippon Mining & Metals Corporation Method of manufacturing a Ni-Pt alloy
WO2005083138A1 (en) * 2004-03-01 2005-09-09 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
EP1721997A1 (en) * 2004-03-01 2006-11-15 Nippon Mining & Metals Co., Ltd. Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
EP1721997A4 (en) * 2004-03-01 2009-11-11 Nippon Mining Co Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
JP2010047843A (en) * 2004-03-01 2010-03-04 Nippon Mining & Metals Co Ltd METHOD FOR MANUFACTURING Ni-Pt ALLOY, AND METHOD FOR MANUFACTURING TARGET MADE FROM THE SAME ALLOY
WO2008001741A1 (en) * 2006-06-27 2008-01-03 Ishihara Sangyo Kaisha, Ltd. Nickel fine particle, method for producing the same, and fluid composition using the same
WO2013151172A1 (en) * 2012-04-06 2013-10-10 東邦チタニウム株式会社 Nickel metal powder and process for producing nickel metal powder
CN104379279A (en) * 2012-04-06 2015-02-25 东邦钛株式会社 Nickel metal powder and process for producing nickel metal powder
JPWO2013151172A1 (en) * 2012-04-06 2015-12-17 東邦チタニウム株式会社 Metallic nickel powder and method for producing metallic nickel powder
CN104028772A (en) * 2014-02-17 2014-09-10 瑞安市浙工大技术转移中心 Preparation method of nickel nano particles
CN104028772B (en) * 2014-02-17 2017-06-06 瑞安市浙工大技术转移中心 A kind of preparation method of nickel nano particle

Similar Documents

Publication Publication Date Title
JP4081987B2 (en) Metal powder manufacturing method, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP3957444B2 (en) Nickel powder, manufacturing method thereof, and paste for forming electronic component electrodes
JP3475749B2 (en) Nickel powder and method for producing the same
CN108602129A (en) Nickel powder, the manufacturing method of nickel powder and internal electrode cream and electronic unit using nickel powder
JPH0543921A (en) Production of nickel fine powder
JP6746321B2 (en) Ni powder, method of manufacturing Ni powder, internal electrode paste, and electronic component
JP2004323866A (en) Method for manufacturing nickel powder, and nickel powder
US4714645A (en) Electronic parts and process for the manufacture of the same
JP2017122252A (en) Surface-treated copper powder and production method therefor
JPH06215983A (en) Thermal shock crack resistant multilayer ceramic capacitor terminal composition
JP3474170B2 (en) Nickel powder and conductive paste
JPH0443504A (en) Paste for inner electrode of laminate ceramics capacitor
TW201814727A (en) Lead-free thick film resistor composition, lead-free thick film resistor and production method thereof
JPH0266101A (en) Electric conductive particles and manufacture thereof
JP2001167631A (en) Ultra-fine particle conductor paste, method of preparing the same, and conductor film and laminated ceramic electronic parts using the same
JP2799916B2 (en) Conductive metal-coated ceramic powder
JP2004247632A (en) Conductive paste and layered ceramic capacitor
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JP4453214B2 (en) Method for producing copper powder, copper powder, conductive paste and ceramic electronic component
JP4660940B2 (en) Reduction-resistant dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor using the same
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
WO2009119154A1 (en) Base metal powder, process for producing the base metal powder, conductor paste, and electronic component
JP4229566B2 (en) Surface coating nickel powder
JP2553658B2 (en) Electrode material for electronic parts