JP4453214B2 - Method for producing copper powder, copper powder, conductive paste and ceramic electronic component - Google Patents

Method for producing copper powder, copper powder, conductive paste and ceramic electronic component Download PDF

Info

Publication number
JP4453214B2
JP4453214B2 JP2001100181A JP2001100181A JP4453214B2 JP 4453214 B2 JP4453214 B2 JP 4453214B2 JP 2001100181 A JP2001100181 A JP 2001100181A JP 2001100181 A JP2001100181 A JP 2001100181A JP 4453214 B2 JP4453214 B2 JP 4453214B2
Authority
JP
Japan
Prior art keywords
copper powder
copper
ceramic
electronic component
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001100181A
Other languages
Japanese (ja)
Other versions
JP2002294310A (en
Inventor
武治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001100181A priority Critical patent/JP4453214B2/en
Publication of JP2002294310A publication Critical patent/JP2002294310A/en
Application granted granted Critical
Publication of JP4453214B2 publication Critical patent/JP4453214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、銅粉末の製造方法、この製造方法によって得られる銅粉末、この銅粉末を含有する導電性ペースト、およびこの導電性ペーストを用いて端子電極を形成したセラミック電子部品に関するものである。
【0002】
【従来の技術】
従来より、セラミック電子部品は、例えばセラミック素体と、端子電極と、を備える構造からなる。端子電極は、例えば銅粉末を含有する導電成分と、有機バインダと、溶剤と、ガラスフリットと、を含有してなる導電性ペーストを、セラミック素体の端面に塗布し、焼付けることによって得られる。また、端子電極の半田耐熱性、半田付き性の向上を図る目的で、端子電極の表面に例えば電解めっき法を用いてめっき皮膜を形成する場合もある。
【0003】
焼付け後の端子電極中における導電成分の焼結状態は、導電成分の粒径により大きく変化することが一般に知られており、この焼結状態が悪化するとセラミック電子部品の電気的特性の劣化や構造欠陥の原因となる。例えば、導電成分を構成する銅粉末の平均粒径が大きい場合、端子電極の焼結状態が不十分となり、電解めっき処理時にめっき液が端子電極内部のポアを伝い、セラミック素体と端子電極の界面、さらにはセラミック素体の内部まで侵入し、セラミック素体と端子電極との接着強度の低下や電極浮き等の問題を生じることが知られている。他方、導電成分を構成する銅粉末の平均粒径が小さい場合、端子電極の焼結が進み過ぎることにより、端子電極中のガラスフリットが端子電極の表面に浮き出し、電解めっき処理時にめっき皮膜が端子電極上に形成されなくなる等の問題が生じることが知られている。
【0004】
これらの問題は、特にセラミック電子部品が小型になるほど顕在化する。端子電極が十分に燒結している、より小型のセラミック電子部品を作製するためには、導電成分として1〜3μm程度の銅粉末を含有する導電性ペーストが好ましいことが、経験的に分かっている。
【0005】
このような導電性ペーストの導電成分として用いられる銅粉末の製造方法としては、例えば溶湯の粉化法,機械的粉砕法,電解法,還元析出法等があり、還元析出法としては、例えば特開昭57-155302号公報に記載の通り、炭酸銅を含む銅含有溶液とヒドラジンあるいはヒドラジン化合物とを混合し、これを加熱することにより銅粉末を製造する方法が挙げられる。
【0006】
【発明が解決しようとする課題】
しかしながら、従来技術によれば、炭酸銅は水に不溶であるため、銅の還元反応は固液反応となり、炭酸銅の表面から銅が析出する。このため、析出する銅粉末の粒径は炭酸銅の形状に大きな影響を受けるという問題点がある。また、上述のように析出する銅粉末の粒径はバラツキが大きいため、微粒化の要求を満足できない問題があった。
【0007】
本発明の目的は、上述の問題点を解消すべくなされたもので、セラミック電子部品の小型化に寄与し得る導電性ペーストを構成するのに好適な銅粉末の製造方法、銅粉末、このような銅粉末を含有してなる導電性ペースト、およびこのような導電性ペーストを用いて端子電極を形成したセラミック電子部品を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の銅粉末の製造方法は、針状結晶を含む炭酸銅または/およびレーザー回折法による測定で中心粒径が30μm以下の粒状でかつ粒子内部にボイドを10%以上持つ炭酸銅と、ヒドラジンまたはヒドラジン化合物からなる還元剤とを混合し、これを加熱することにより、銅粉末を還元析出せしめることを特徴とする。
【0009】
また、本発明の銅粉末の製造方法は、上述した本発明の銅粉末の製造方法であって、還元剤の必要量が、炭酸銅1重量部に対して0.5〜2重量部であることが好ましい。
【0010】
本発明の銅粉末は、上述した本発明の銅粉末の製造方法によって製造されたことを特徴とする。
【0011】
本発明の導電性ペーストは、上述した本発明の銅粉末を含有する導電成分と、有機バインダと、溶剤と、ガラスフリットと、を含有してなることを特徴とする。
【0012】
本発明のセラミック電子部品の一つの形態は、セラミック素体と、セラミック素体に形成された端子電極と、を備え、端子電極は、上述した本発明の導電性ペーストを用いて形成されていることを特徴とする。
【0013】
本発明のセラミック電子部品の他の形態は、複数のセラミック層が積層状態にあるセラミック素体と、それぞれの端縁がセラミック層の何れかの端面に露出するようにセラミック層間に形成された複数の内部電極と、内部電極の端縁と電気的に接続されるように設けられた端子電極と、を備え、端子電極は、上述した本発明の導電性ペーストを用いて形成されていることを特徴とする。
【0014】
【発明の実施の形態】
炭酸銅を還元せしめて銅粉末を製造する方法によれば、銅粉末は炭酸銅の表面から析出する。したがって、炭酸銅の比表面積が大きい方が銅粉末を析出させる面積が多くなる。その結果、単位炭酸銅あたりの析出する銅粉末の数は多くなり、他方、銅粉末1粒子のサイズは小さくなる。針状結晶からなる銅粉末を用いた場合、その比表面積は非常に大きいことから、上述の理由により析出する銅粉末の粒径は小さくなり、目的とする1〜3μm程度の粒径の銅粉末が得られる。
【0015】
炭酸銅が粒状の場合、針状結晶からなる銅粉末に比べて比表面積が小さいため、析出する銅粉末の数が少なくなり、他方、銅粉末1粒子のサイズは大きくなる傾向がある。しかし、粒状の炭酸銅であっても、内部に所定量(10%以上)のボイドを持ち、所定の中心粒径(30μm以下)からなる場合、炭酸銅が溶液と接触する面積が大きくなり、針状結晶からなる銅粉末と同等の効果が得られる。
【0016】
また、炭酸銅の還元には、炭酸銅1重量部に対して0.5〜2重量部のヒドラジンまたはヒドラジン化合物からなる還元剤が好ましい。還元剤の量が炭酸銅1重量部に対して0.5重量部以上であれば、炭酸銅が十分に還元され、得られる銅粉末内部に酸化銅が残留することがない。他方、炭酸銅1重量部に対して2重量部以下であれば、得られる銅粉末の粒径が目的通り1〜3μm程度となり、過大にならず小さく適当となる。
【0017】
本発明の導電性ペーストは、上述した本発明の銅粉末の製造方法によって得られた銅粉末と、有機バインダと、溶剤と、ガラスフリットと、を含有する。
【0018】
有機バインダは、特に限定されないが、例えばアクリル樹脂,エチルセルロース樹脂,アルキド樹脂等、従来より導電性ペーストに含有する有機バインダとして一般的に用いられているものを適宜用いることができる。
【0019】
ガラスフリットは、特に限定されないが、例えばホウケイ酸ガラス,ホウケイ酸バリウムガラス,ホウケイ酸亜鉛ガラス,ホウケイ酸鉛ガラス,ホウケイ酸アルミニウムガラス,またはそれらの複合系ガラス等、従来より導電性ペーストに含有するガラスフリットとして一般的に用いられているものを適宜用いることができる。
【0020】
溶剤は、特に限定されないが、例えばテルピネオール,メチルエチルケトン,エチルカルビトール,オクタノール,ケロシン系溶剤等、従来より導電性ペーストに含有する溶剤として一般的に用いられているものを適宜用いることができる。
【0021】
また、本発明の導電性ペーストにおける各成分の含有割合は、特に限定されないが、例えば本発明の銅粉末70重量%と、有機バインダであるアクリル樹脂70重量部と溶剤であるテルピネオール30重量部を混練してなる有機バインダ25重量%と、ホウケイ酸ガラス5重量%と、を混合し混練してなる。なお、さらに、分散剤,可塑剤,増粘防止剤,増粘剤等の添加剤を適宜調整して含有させても構わない。
【0022】
本発明のセラミック電子部品は、例えばセラミック素体と、セラミック素体上に形成された端子電極と、を備える。本発明のセラミック電子部品の一つの実施形態について、積層セラミックコンデンサを例に挙げ、図1に基づいて詳細に説明する。すなわち、セラミック電子部品1は、セラミック素体2と、内部電極3,3と、端子電極4,4と、めっき膜5,5とから構成される。
【0023】
セラミック素体2は、BaTiO3を主成分とする誘電体材料からなるセラミック層2aが複数積層された生のセラミック素体が焼成されてなる。
【0024】
内部電極3,3は、セラミック素体2内のセラミック層2a間にあって、複数の生のセラミック層2a上に導電性ペーストが印刷され、生のセラミック素体と同時焼成されてなり、内部電極3,3のそれぞれの端縁は、セラミック素体2の何れかの端面に露出するように形成されている。
【0025】
端子電極4,4は、セラミック素体2の端面に露出した内部電極3,3の一端と電気的かつ機械的に接合されるように、上述した本発明の導電性ペーストがセラミック素体2の端面に塗布され焼付けられてなる。
【0026】
めっき膜5,5は、例えば、SnやNi等の無電解めっきや、はんだめっき等からなり、端子電極4,4上に少なくとも1層形成されてなる。
【0027】
なお、本発明のセラミック電子部品のセラミック素体2の材料は、上述の実施形態に限定されることなく、例えばPbZrO3等,その他の誘電体材料,絶縁体,磁性体,圧電体ならびに半導体材料からなっても構わない。また、本発明の積層セラミック電子部品の内部電極3の枚数は、上述の実施形態に限定されることなく、必ずしも備えている必要はなく、また何層形成されていても構わない。また、めっき膜5,5は、必ずしも備えている必要はなく、また何層形成されていても構わない。
【0028】
【実施例】
(実施例1)
まず、表1の試料1に示す針状結晶からなる炭酸銅200gを、30℃の純水2300mL中に分散させて試料1の金属溶液を得る。次いで、還元剤としてのヒドラジン200gと純水300mLを混合して作製したヒドラジン水溶液を、13mL/minの一定速度にて試料1の金属溶液中に投入して試料1の懸濁液を作製し、この懸濁液を90分で90℃になるように徐々に加熱し、さらに90℃の状態で60分間保持して還元反応させることにより、試料1の還元生成物を得た。次いで、この還元生成物を洗浄、沈降分離を数回繰り返して、アセトンにて洗浄後、真空乾燥機にて乾燥させ、その後、媒体粉砕機にて粉砕処理を行ない、試料1の銅粉末を得た。
【0029】
次いで、表1の試料2〜7に示す粒状の炭酸銅16kgを、30℃の純水200L中に分散させて試料2〜7の金属溶液を得る。次いで、還元剤としてのヒドラジン16kgと純水300mLを混合して作製したヒドラジン水溶液を、1.1L/minの一定速度にて試料2〜7の金属溶液中に投入して試料2〜7の懸濁液を作製し、この懸濁液を90分で100℃になるように徐々に加熱し、さらに100℃の状態で60分保存して還元反応させることにより、試料2〜7の還元生成物を得た。次いで、還元生成物を試料1と同様の処理を施して、試料2〜7の銅粉末を得た。なお、炭酸銅のボイド(%)は、炭酸銅の中心断面積100%におけるボイドの面積%の平均値とした。
【0030】
そこで、試料1〜7の銅粉末の中心粒径をレーザー回折法により測定し、これを表1にまとめ、本発明の範囲内の試料については評価を○とし、本発明の範囲外の試料については評価を×とした。
【0031】
また、試料4の炭酸銅の外観の顕微鏡写真を図2に、同じく断面の顕微鏡写真を図3に、試料4の銅粉末の外観の顕微鏡写真を図4に、それぞれ示した。同様に、試料7の炭酸銅の外観の顕微鏡写真を図5に、同じく断面の顕微鏡写真を図6に、試料7の銅粉末の外観の顕微鏡写真を図7に、それぞれ示した。
【0032】
【表1】

Figure 0004453214
【0033】
表1から明らかであるように、針状結晶からなる炭酸銅を還元した試料1の銅粉末は、中心粒径が1.2μmで3.0μm以下であったため、本発明の範囲内となった。
【0034】
また、粒状の銅粉末のうち、中心粒径が30μm以下の粒状でかつ粒子内部にボイドを10%以上持つ炭酸銅を還元した試料2,4の銅粉末は、中心粒径がそれぞれ2.2μm,2.6μmで3.0μm以下であったため、本発明の範囲内となった。
【0035】
これに対して、中心粒径が30μm以下の粒状であるが、粒子内部にボイドを7%しか持たない炭酸銅、ボイドを5%しか持たない炭酸銅、ボイドを持たない炭酸銅を還元した試料3,5,7の銅粉末は、中心粒径がそれぞれ3.2μm,3.3μm,3.7μmで3.0μを超えたため、本発明の範囲外となった。
【0036】
また、粒子内部にボイドを10%以上持つが、中心粒径が30μmを超える炭酸銅を還元した試料7の銅粉末は、中心粒径が7.4μmで3.0μmを大きく超えたため、本発明の範囲外となった。
【0037】
また、図2ならびに図5の炭酸銅の外観の顕微鏡写真に示したように、粒径の異なる炭酸銅を用いた場合、図3ならびに図6の炭酸銅の断面の顕微鏡写真に示したような粒子内部のボイドの割合によって、還元して得られる銅粉末は、図4ならびに図7の外観の顕微鏡写真に示したように、粒径ならびに形状が大きく異なることが分かる。
(実施例2)
実施例1の試料2に示した粒状の炭酸銅200gを、30℃の純水2300mL中に分散させ、これに還元剤としてのヒドラジンをそれぞれ50,100,200,400,500gと純水30Lを混合して作製したヒドラジン水溶液を、13mL/minの一定速度にて投入して試料2a〜2eの懸濁液を作製し、この懸濁液を90分で90℃になるように徐々に加熱し、さらに90℃の状態で60分保存して還元反応させることにより、試料2a〜2eの還元生成物を得た。次いで、還元生成物を実施例1の試料1と同様の処理を施して、試料2a〜2eの銅粉末を得た。
【0038】
そこで、試料2a〜2eの銅粉末の中心粒径をレーザー回折法により測定し、さらに生成相をX線回折法により測定し、これらを表2にまとめ、本発明の範囲内の試料については評価を○とし、本発明の範囲外の試料については評価を×とした。
【0039】
【表2】
Figure 0004453214
【0040】
表2から明らかであるように、炭酸銅1重量部に対する還元剤量が0.5〜2.0重量部の範囲内である試料2b〜2dの銅粉末は、中心粒径が2.1〜2.8μmで、生成相中に酸化銅が見られず優れたため、本発明の範囲内となった。
【0041】
これに対して、炭酸銅1重量部に対する還元剤量が0.5重量部を下回る試料2aの銅粉末は、中心粒径2.5μmであったが、還元材料が不十分であったために炭酸銅が100%還元されず生成相中に酸化銅が存在したため、本発明の範囲外となった。
【0042】
また、炭酸銅1重量部に対する還元剤量が2.0重量部を上回る試料2eの銅粉末は、炭酸銅は十分に還元されて生成相中に酸化銅が見られなかったが、中心粒径が4.5μmで大きく劣ったため、本発明の範囲外となった。
(実施例3)
実施例3では、セラミック電子部品の一つの実施形態として、積層セラミックコンデンサを作成する。まず、実施例1の試料1〜7と、実施例2の試料2b,2d,2eで得た銅粉末と、比較例として中心粒径が0.8μmの試料8の銅粉末を準備し、それぞれ銅粉末70重量%と、有機バインダであるアクリル樹脂70重量部と溶剤であるテルピネオール30重量部を混練してなる有機バインダ25重量%と、ホウケイ酸ガラス5重量%と、を配合し混練して、試料1〜7,2b,2d,2e,8の導電性ペーストを作製した。
【0043】
次いで、BaTiO3を主成分とする生のセラミック層を準備し、所定枚数の生のセラミック層の表面上に一方の端縁が生のセラミック層の何れかの端面側に露出するように、内部電極となるべき電極膜を印刷し、これら複数の生のセラミック層を所定枚数積層し圧着して、複数の生のセラミック素体を準備した。次いで、これを1300℃で還元雰囲気で焼成して、複数のセラミック素体を得た。
【0044】
次いで、生のセラミック素体の両端面に試料1〜7,2b,2d,2e,8の導電性ペーストを、内部電極に電気的に接合するように浸漬塗布し、150℃で10分間乾燥させた後、大気中で850℃×2分ピークの条件で焼付けして、一対の端子電極を形成した。次いで、この一対の端子電極上にNiめっき膜を電解めっき処理により形成し、さらにNiめっき膜上にSnめっき膜を電解めっき処理により形成して、試料1〜7,2b,2d,2e,8の積層セラミックコンデンサを得た。
【0045】
そこで、試料1〜7,2b,2d,2e,8の積層セラミックコンデンサについて、めっき付き性ならびに、内部電極との接合性について評価を行い、これらを表3にまとめた。
【0046】
なお、めっき付き性については、めっきの付いた積層セラミックコンデンサの端子電極近傍を顕微鏡で観察し、めっき皮膜が端子電極全体に形成されている試料については○を、めっき皮膜が端子電極の一部あるいは全体に渡って形成されていない試料については×を付した。
【0047】
また、内部電極との接合性については、積層状態にある内部電極の断面が露出するよう、長さ方向に積層セラミックコンデンサを切断し、端子電極の断面を顕微鏡で観察し、内部電極と端子電極が連続している試料については○を、不連続である試料については×を付した。
【0048】
【表3】
Figure 0004453214
【0049】
表3から明らかであるように、めっき付き性は銅粉末の中心粒径が1μm以上であれば優れることが分かる。すなわち、中心粒径が0.8μmの比較例の銅粉末を用いた試料8の積層セラミックコンデンサは、端子電極の焼結が進み過ぎることにより、端子電極中のガラスフリットが端子電極の表面に浮き出したため、めっき皮膜が端子電極上に形成されなかったと考えられる。
【0050】
また、内部電極との接合性は銅粉末の中心粒径が0.8〜3μmの範囲であれば優れることが分かる。すなわち、中心粒径がそれぞれ1.2μm,2.2μm,2.6μm,2.4μm,2.8μmである銅粉末を用いた試料1,2,4,2b,2d,8の積層セラミックコンデンサは、何れも内部電極との接合性が優れたが、中心粒径がそれぞれ3,2μm,3.3μm,3.7μm,7.4μm,4.5μmである銅粉末を用いた試料3,5,6,7,2eの積層セラミックコンデンサは、内部電極との接合性が劣る結果となった。
【0051】
以上の結果から、銅粉末の中心粒径が1〜3μmであれば、めっき付き性ならびに内部電極との接合性の両方の特性を満足する端子電極を備えるセラミック電子部品が得られることがわかる。
【0052】
【発明の効果】
以上のように本発明の銅粉末の製造方法は、針状結晶を含む炭酸銅または/およびレーザー回折法による測定で中心粒径が30μm以下の粒状でかつ粒子内部にボイドを10%以上持つ炭酸銅と、ヒドラジンまたはヒドラジン化合物からなる還元剤とを混合し、これを加熱することにより、銅粉末を還元析出せしめることを特徴とすることで、セラミック電子部品の小型化に寄与し得る導電性ペーストを構成するのに好適な銅粉末、このような銅粉末を含有してなる導電性ペースト、およびこのような導電性ペーストを用いて端子電極を形成したセラミック電子部品を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る一つの実施形態である、セラミック電子部品の断面図である。
【図2】本発明に係る一つの実施形態である、実施例1における試料4の炭酸銅の外観の顕微鏡写真である。
【図3】本発明に係る一つの実施形態である、実施例1における試料4の炭酸銅の断面の顕微鏡写真である。
【図4】本発明に係る一つの実施形態である、実施例1における試料4の銅粉末の外観の顕微鏡写真である。
【図5】比較例である、実施例1における試料7の炭酸銅の外観の顕微鏡写真である。
【図6】比較例である、実施例1における試料7の炭酸銅の断面の顕微鏡写真である。
【図7】比較例である、実施例1における試料7の銅粉末の外観の顕微鏡写真である。
【符号の説明】
1 セラミック電子部品
2 セラミック素体
2 セラミック層
3 内部電極
4 端子電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing copper powder, a copper powder obtained by this production method, a conductive paste containing this copper powder, and a ceramic electronic component in which terminal electrodes are formed using this conductive paste.
[0002]
[Prior art]
Conventionally, a ceramic electronic component has a structure including, for example, a ceramic body and a terminal electrode. The terminal electrode is obtained, for example, by applying and baking a conductive paste containing a conductive component containing copper powder, an organic binder, a solvent, and glass frit on the end face of the ceramic body. . Further, for the purpose of improving the solder heat resistance and solderability of the terminal electrode, a plating film may be formed on the surface of the terminal electrode by using, for example, an electrolytic plating method.
[0003]
It is generally known that the sintered state of the conductive component in the terminal electrode after baking changes greatly depending on the particle size of the conductive component. When this sintered state deteriorates, the electrical characteristics of ceramic electronic components deteriorate and the structure Causes defects. For example, when the average particle diameter of the copper powder constituting the conductive component is large, the terminal electrode is not sufficiently sintered, and the plating solution travels through the pores inside the terminal electrode during the electroplating process. It is known that it penetrates to the interface and further to the inside of the ceramic body and causes problems such as a decrease in the adhesive strength between the ceramic body and the terminal electrode and electrode floating. On the other hand, when the average particle diameter of the copper powder constituting the conductive component is small, the glass electrode frit in the terminal electrode is raised on the surface of the terminal electrode due to the excessive sintering of the terminal electrode, and the plating film becomes the terminal during the electrolytic plating process. It is known that problems such as failure to form on the electrode occur.
[0004]
These problems become more apparent as ceramic electronic components become smaller. It has been empirically known that a conductive paste containing about 1 to 3 μm of copper powder as a conductive component is preferable in order to produce a smaller ceramic electronic component in which terminal electrodes are sufficiently sintered. .
[0005]
Examples of the method for producing copper powder used as the conductive component of such a conductive paste include a molten metal pulverization method, a mechanical pulverization method, an electrolysis method, a reduction precipitation method, and the like. As described in Japanese Laid-Open Patent Publication No. 57-155302, there is a method in which a copper-containing solution containing copper carbonate and hydrazine or a hydrazine compound are mixed and heated to produce a copper powder.
[0006]
[Problems to be solved by the invention]
However, according to the prior art, since copper carbonate is insoluble in water, the reduction reaction of copper becomes a solid-liquid reaction, and copper is deposited from the surface of copper carbonate. For this reason, there exists a problem that the particle size of the copper powder to precipitate has a big influence on the shape of copper carbonate. Moreover, since the particle size of the copper powder which precipitates as mentioned above has large dispersion | variation, there existed a problem which cannot satisfy the request | requirement of atomization.
[0007]
An object of the present invention is to solve the above-mentioned problems, and a copper powder manufacturing method suitable for constituting a conductive paste that can contribute to miniaturization of ceramic electronic components, a copper powder, and the like Another object of the present invention is to provide a conductive paste containing a copper powder and a ceramic electronic component in which terminal electrodes are formed using such a conductive paste.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a copper powder of the present invention comprises a copper carbonate containing needle-like crystals and / or particles having a center particle size of 30 μm or less as measured by a laser diffraction method and 10 voids inside the particles. % Of copper carbonate and a reducing agent made of hydrazine or a hydrazine compound are mixed and heated to reduce the copper powder so that the copper powder is reduced and precipitated.
[0009]
Moreover, the manufacturing method of the copper powder of this invention is a manufacturing method of the copper powder of this invention mentioned above, Comprising: The required amount of a reducing agent is 0.5-2 weight part with respect to 1 weight part of copper carbonate. It is preferable.
[0010]
The copper powder of the present invention is manufactured by the above-described method for manufacturing a copper powder of the present invention.
[0011]
The conductive paste of the present invention comprises a conductive component containing the above-described copper powder of the present invention, an organic binder, a solvent, and glass frit.
[0012]
One form of the ceramic electronic component of the present invention includes a ceramic body and a terminal electrode formed on the ceramic body, and the terminal electrode is formed using the above-described conductive paste of the present invention. It is characterized by that.
[0013]
According to another aspect of the ceramic electronic component of the present invention, a ceramic element body in which a plurality of ceramic layers are laminated and a plurality of ceramic layers formed between the ceramic layers so that each edge is exposed at any end surface of the ceramic layer. And a terminal electrode provided so as to be electrically connected to the edge of the internal electrode, the terminal electrode being formed using the above-described conductive paste of the present invention. Features.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
According to the method for producing copper powder by reducing copper carbonate, the copper powder is deposited from the surface of the copper carbonate. Therefore, the larger the specific surface area of copper carbonate, the larger the area for depositing copper powder. As a result, the number of copper powders deposited per unit copper carbonate increases, while the size of one copper powder particle decreases. When copper powder made of acicular crystals is used, the specific surface area is very large, so the particle size of the deposited copper powder is reduced for the above reasons, and the intended copper powder with a particle size of about 1 to 3 μm. Is obtained.
[0015]
When the copper carbonate is granular, the specific surface area is smaller than that of the copper powder made of acicular crystals, so that the number of precipitated copper powders is decreased, and on the other hand, the size of one particle of the copper powder tends to be increased. However, even if it is granular copper carbonate, when it has a predetermined amount (10% or more) of voids inside and has a predetermined center particle size (30 μm or less), the area where the copper carbonate comes into contact with the solution becomes large, An effect equivalent to that of copper powder made of needle crystals is obtained.
[0016]
For reducing copper carbonate, a reducing agent comprising 0.5 to 2 parts by weight of hydrazine or a hydrazine compound is preferable with respect to 1 part by weight of copper carbonate. When the amount of the reducing agent is 0.5 parts by weight or more with respect to 1 part by weight of copper carbonate, the copper carbonate is sufficiently reduced and copper oxide does not remain inside the obtained copper powder. On the other hand, if it is 2 parts by weight or less with respect to 1 part by weight of copper carbonate, the particle size of the obtained copper powder will be about 1 to 3 μm as intended, and it will be small and appropriate.
[0017]
The electrically conductive paste of this invention contains the copper powder obtained by the manufacturing method of the copper powder of this invention mentioned above, an organic binder, a solvent, and glass frit.
[0018]
Although an organic binder is not specifically limited, What was generally used as an organic binder conventionally contained in an electrically conductive paste, such as an acrylic resin, an ethyl cellulose resin, an alkyd resin, can be used suitably, for example.
[0019]
Although glass frit is not particularly limited, it is conventionally contained in conductive paste such as borosilicate glass, barium borosilicate glass, zinc borosilicate glass, lead borosilicate glass, aluminum borosilicate glass, or a composite glass thereof. What is generally used as a glass frit can be used suitably.
[0020]
The solvent is not particularly limited. For example, terpineol, methyl ethyl ketone, ethyl carbitol, octanol, and kerosene solvent, which have been conventionally used as a solvent contained in a conductive paste, can be appropriately used.
[0021]
Further, the content of each component in the conductive paste of the present invention is not particularly limited. For example, 70% by weight of the copper powder of the present invention, 70 parts by weight of an acrylic resin as an organic binder, and 30 parts by weight of terpineol as a solvent. 25% by weight of organic binder obtained by kneading and 5% by weight of borosilicate glass are mixed and kneaded. Furthermore, additives such as dispersants, plasticizers, thickeners and thickeners may be appropriately adjusted and contained.
[0022]
The ceramic electronic component of the present invention includes, for example, a ceramic body and terminal electrodes formed on the ceramic body. One embodiment of the ceramic electronic component of the present invention will be described in detail with reference to FIG. 1, taking a multilayer ceramic capacitor as an example. That is, the ceramic electronic component 1 includes a ceramic body 2, internal electrodes 3 and 3, terminal electrodes 4 and 4, and plating films 5 and 5.
[0023]
The ceramic body 2 is formed by firing a raw ceramic body in which a plurality of ceramic layers 2a made of a dielectric material mainly composed of BaTiO 3 are stacked.
[0024]
The internal electrodes 3, 3 are located between the ceramic layers 2 a in the ceramic body 2, and a conductive paste is printed on the plurality of raw ceramic layers 2 a and co-fired with the raw ceramic bodies. , 3 are formed so as to be exposed at any end face of the ceramic body 2.
[0025]
The above-described conductive paste of the present invention is formed on the ceramic body 2 so that the terminal electrodes 4 and 4 are electrically and mechanically joined to one end of the internal electrodes 3 and 3 exposed on the end face of the ceramic body 2. It is applied to the end face and baked.
[0026]
The plating films 5 and 5 are made of, for example, electroless plating such as Sn or Ni, solder plating, or the like, and are formed on at least one layer on the terminal electrodes 4 and 4.
[0027]
The material of the ceramic body 2 of the ceramic electronic component of the present invention is not limited to the above-described embodiment, but other dielectric materials such as PbZrO 3 , insulators, magnetic bodies, piezoelectric bodies, and semiconductor materials, for example. It does not matter. Further, the number of the internal electrodes 3 of the multilayer ceramic electronic component of the present invention is not limited to the above-described embodiment, and is not necessarily provided, and any number of layers may be formed. The plating films 5 and 5 are not necessarily provided, and any number of layers may be formed.
[0028]
【Example】
Example 1
First, 200 g of copper carbonate composed of needle-like crystals shown in Sample 1 of Table 1 is dispersed in 2300 mL of pure water at 30 ° C. to obtain a metal solution of Sample 1. Next, a hydrazine aqueous solution prepared by mixing 200 g of hydrazine as a reducing agent and 300 mL of pure water was charged into the metal solution of sample 1 at a constant rate of 13 mL / min to prepare a suspension of sample 1. This suspension was gradually heated to 90 ° C. in 90 minutes, and further reduced and held at 90 ° C. for 60 minutes to obtain a reduction product of Sample 1. Next, this reduction product is washed and settled and separated several times, washed with acetone, dried in a vacuum dryer, and then pulverized in a medium pulverizer to obtain a copper powder of Sample 1 It was.
[0029]
Next, 16 kg of granular copper carbonate shown in Samples 2 to 7 in Table 1 is dispersed in 200 L of pure water at 30 ° C. to obtain metal solutions of Samples 2 to 7. Next, a hydrazine aqueous solution prepared by mixing 16 kg of hydrazine as a reducing agent and 300 mL of pure water was introduced into the metal solutions of Samples 2-7 at a constant speed of 1.1 L / min, and the suspensions of Samples 2-7 were suspended. A suspended liquid is prepared, and this suspension is gradually heated to 100 ° C. in 90 minutes, and further stored at 100 ° C. for 60 minutes to cause a reduction reaction, whereby the reduction products of Samples 2 to 7 are obtained. Got. Next, the reduction product was subjected to the same treatment as Sample 1 to obtain Samples 2 to 7 of copper powder. In addition, the void (%) of copper carbonate was made into the average value of the area% of the void in 100% of central cross-sectional areas of copper carbonate.
[0030]
Therefore, the center particle diameters of the copper powders of Samples 1 to 7 were measured by a laser diffraction method, and the results are summarized in Table 1. For samples within the scope of the present invention, the evaluation was ○, and for samples outside the scope of the present invention. Was evaluated as x.
[0031]
Further, a microphotograph of the appearance of copper carbonate of Sample 4 is shown in FIG. 2, a micrograph of the cross section is shown in FIG. 3, and a microphotograph of the appearance of copper powder of Sample 4 is shown in FIG. Similarly, a microphotograph of the appearance of copper carbonate of sample 7 is shown in FIG. 5, a micrograph of the same cross section is shown in FIG. 6, and a microphotograph of the appearance of copper powder of sample 7 is shown in FIG.
[0032]
[Table 1]
Figure 0004453214
[0033]
As is clear from Table 1, the copper powder of Sample 1 obtained by reducing copper carbonate consisting of needle-like crystals was within the scope of the present invention because the center particle size was 1.2 μm and 3.0 μm or less. .
[0034]
Further, among the granular copper powders, the copper powders of Samples 2 and 4 obtained by reducing copper carbonate having a particle diameter of 30 μm or less and having a void inside the particle of 10% or more have a center particle diameter of 2.2 μm. 2.6 [mu] m and 3.0 [mu] m or less, it was within the scope of the present invention.
[0035]
On the other hand, a sample having a center particle size of 30 μm or less, but reduced to copper carbonate having only 7% voids, copper carbonate having only 5% voids, and copper carbonate having no voids. The copper powders 3, 5, and 7 were out of the scope of the present invention because the center particle diameters were 3.2 μm, 3.3 μm, and 3.7 μm, respectively, exceeding 3.0 μm.
[0036]
Further, the copper powder of Sample 7 having a void inside the particle of 10% or more, but reduced copper carbonate having a center particle size exceeding 30 μm, has a center particle size of 7.4 μm and greatly exceeds 3.0 μm. It was out of range.
[0037]
As shown in the micrographs of the appearance of copper carbonate in FIGS. 2 and 5, when copper carbonate having a different particle size is used, as shown in the micrographs of the cross sections of copper carbonate in FIGS. 3 and 6. It can be seen that the copper powder obtained by reduction varies greatly in particle size and shape depending on the ratio of voids inside the particles, as shown in the micrographs of the external appearance of FIGS.
(Example 2)
200 g of granular copper carbonate shown in Sample 2 of Example 1 was dispersed in 2300 mL of pure water at 30 ° C., and 50, 100, 200, 400, 500 g of hydrazine as a reducing agent and 30 L of pure water were added thereto. The aqueous hydrazine solution prepared by mixing was added at a constant rate of 13 mL / min to prepare suspensions of samples 2a to 2e, and this suspension was gradually heated to 90 ° C. in 90 minutes. Furthermore, the reduction products of Samples 2a to 2e were obtained by storing and reducing the reaction at 90 ° C. for 60 minutes. Next, the reduction product was subjected to the same treatment as Sample 1 of Example 1 to obtain copper powders of Samples 2a to 2e.
[0038]
Therefore, the center particle diameters of the copper powders of Samples 2a to 2e are measured by the laser diffraction method, and the generated phase is further measured by the X-ray diffraction method. These are summarized in Table 2, and the samples within the scope of the present invention are evaluated. Was evaluated as ◯, and the evaluation of the samples outside the scope of the present invention was evaluated as x.
[0039]
[Table 2]
Figure 0004453214
[0040]
As is clear from Table 2, the copper powders of Samples 2b to 2d in which the amount of reducing agent relative to 1 part by weight of copper carbonate is in the range of 0.5 to 2.0 parts by weight have a center particle size of 2.1 to At 2.8 μm, copper oxide was not found in the produced phase, which was excellent, and thus was within the scope of the present invention.
[0041]
In contrast, the copper powder of sample 2a with a reducing agent amount of less than 0.5 parts by weight with respect to 1 part by weight of copper carbonate had a center particle size of 2.5 μm, but carbonic acid was not enough because the reducing material was insufficient. Since copper was not 100% reduced and copper oxide was present in the product phase, it was outside the scope of the present invention.
[0042]
Moreover, the copper powder of the sample 2e in which the amount of the reducing agent with respect to 1 part by weight of copper carbonate exceeds 2.0 parts by weight is such that copper carbonate is sufficiently reduced and copper oxide is not found in the generated phase. However, it was out of the scope of the present invention.
(Example 3)
In Example 3, a multilayer ceramic capacitor is produced as one embodiment of the ceramic electronic component. First, the copper powder obtained in Samples 1 to 7 of Example 1 and Samples 2b, 2d, and 2e of Example 2, and the copper powder of Sample 8 having a center particle size of 0.8 μm as a comparative example were prepared. 70% by weight of copper powder, 25% by weight of an organic binder obtained by kneading 70 parts by weight of an acrylic resin as an organic binder and 30 parts by weight of terpineol as a solvent, and 5% by weight of borosilicate glass were mixed and kneaded. Samples 1 to 7, 2b, 2d, 2e, and 8 were prepared as conductive pastes.
[0043]
Next, a raw ceramic layer mainly composed of BaTiO 3 is prepared, and one end edge of the raw ceramic layer on the surface of the predetermined number of raw ceramic layers is exposed to one end face side of the raw ceramic layer. An electrode film to be an electrode was printed, and a plurality of raw ceramic layers were laminated and pressed together to prepare a plurality of raw ceramic bodies. Next, this was fired at 1300 ° C. in a reducing atmosphere to obtain a plurality of ceramic bodies.
[0044]
Next, the conductive pastes of Samples 1 to 7, 2b, 2d, 2e, and 8 are dip-coated on both ends of the raw ceramic body so as to be electrically joined to the internal electrodes, and dried at 150 ° C. for 10 minutes. After that, it was baked in the atmosphere under the condition of 850 ° C. × 2 minutes peak to form a pair of terminal electrodes. Next, an Ni plating film is formed on the pair of terminal electrodes by electrolytic plating, and an Sn plating film is further formed on the Ni plating film by electrolytic plating. Samples 1 to 7, 2b, 2d, 2e, 8 A multilayer ceramic capacitor was obtained.
[0045]
Therefore, the multilayer ceramic capacitors of Samples 1 to 7, 2b, 2d, 2e, and 8 were evaluated for plating property and bondability with internal electrodes, and these are summarized in Table 3.
[0046]
In addition, regarding the plating property, the vicinity of the terminal electrode of the multilayer ceramic capacitor with plating is observed with a microscope, and ○ is displayed for a sample in which the plating film is formed on the entire terminal electrode, and the plating film is a part of the terminal electrode. Alternatively, x was given to a sample that was not formed throughout.
[0047]
As for the bonding property with the internal electrode, the multilayer ceramic capacitor is cut in the length direction so that the cross section of the internal electrode in the laminated state is exposed, and the cross section of the terminal electrode is observed with a microscope. Is marked with ○ for samples with a continuous, and with × for samples with a discontinuous.
[0048]
[Table 3]
Figure 0004453214
[0049]
As is apparent from Table 3, the plating property is excellent when the center particle diameter of the copper powder is 1 μm or more. That is, in the multilayer ceramic capacitor of Sample 8 using the copper powder of the comparative example having a center particle size of 0.8 μm, the glass frit in the terminal electrode is raised on the surface of the terminal electrode due to the excessive sintering of the terminal electrode. Therefore, it is considered that the plating film was not formed on the terminal electrode.
[0050]
Moreover, it turns out that the joining property with an internal electrode is excellent if the center particle diameter of the copper powder is in the range of 0.8 to 3 μm. That is, the multilayer ceramic capacitors of Samples 1, 2, 4, 2b, 2d, and 8 using copper powder having center particle sizes of 1.2 μm, 2.2 μm, 2.6 μm, 2.4 μm, and 2.8 μm, respectively, Samples 3, 5 and 5 using copper powder having excellent center-particle diameters of 3, 2 μm, 3.3 μm, 3.7 μm, 7.4 μm, and 4.5 μm, respectively. The multilayer ceramic capacitors of 6, 7, and 2e resulted in poor bondability with the internal electrodes.
[0051]
From the above results, it can be seen that when the center particle size of the copper powder is 1 to 3 μm, a ceramic electronic component having a terminal electrode satisfying both properties of plating property and bondability with an internal electrode can be obtained.
[0052]
【The invention's effect】
As described above, the copper powder production method of the present invention is a carbonic acid containing needle-like crystals or / and carbonic acid having a particle size with a center particle size of 30 μm or less as measured by a laser diffraction method and having 10% or more voids inside the particles. Conductive paste that can contribute to miniaturization of ceramic electronic components by mixing copper and a reducing agent comprising hydrazine or a hydrazine compound and heating the mixture to reduce and precipitate copper powder. It is possible to provide a copper powder suitable for forming a conductive paste, a conductive paste containing such a copper powder, and a ceramic electronic component in which terminal electrodes are formed using such a conductive paste.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a ceramic electronic component according to an embodiment of the present invention.
FIG. 2 is a photomicrograph of the appearance of copper carbonate of Sample 4 in Example 1, which is an embodiment according to the present invention.
FIG. 3 is a micrograph of a cross section of copper carbonate of Sample 4 in Example 1, which is an embodiment according to the present invention.
FIG. 4 is a photomicrograph of the appearance of copper powder of Sample 4 in Example 1, which is an embodiment according to the present invention.
FIG. 5 is a photomicrograph of the appearance of copper carbonate of Sample 7 in Example 1, which is a comparative example.
6 is a photomicrograph of a cross section of copper carbonate of Sample 7 in Example 1, which is a comparative example. FIG.
7 is a photomicrograph of the appearance of copper powder of Sample 7 in Example 1, which is a comparative example. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic electronic component 2 Ceramic body 2 Ceramic layer 3 Internal electrode 4 Terminal electrode

Claims (6)

針状結晶を含む炭酸銅または/およびレーザー回折法による測定で中心粒径が30μm以下の粒状でかつ粒子内部にボイドを10%以上持つ炭酸銅と、ヒドラジンまたはヒドラジン化合物からなる還元剤とを混合し、これを加熱することにより、銅粉末を還元析出せしめることを特徴とする、銅粉末の製造方法。Mixing copper carbonate containing needle-like crystals and / or copper carbonate with a center particle size of 30 μm or less as measured by the laser diffraction method and having voids inside the particles of 10% or more and a reducing agent composed of hydrazine or a hydrazine compound And the manufacturing method of copper powder characterized by carrying out reduction precipitation of copper powder by heating this. 前記還元剤の必要量は、前記炭酸銅1重量部に対して0.5〜2重量部であることを特徴とする、請求項1に記載の銅粉末の製造方法。The method for producing a copper powder according to claim 1, wherein the required amount of the reducing agent is 0.5 to 2 parts by weight with respect to 1 part by weight of the copper carbonate. 請求項1または2に記載の製造方法によって製造されたことを特徴とする、銅粉末。A copper powder produced by the production method according to claim 1. 請求項3に記載の銅粉末を含有する導電成分と、有機バインダと、溶剤と、ガラスフリットと、を含有してなることを特徴とする、導電性ペースト。A conductive paste comprising a conductive component containing the copper powder according to claim 3, an organic binder, a solvent, and glass frit. セラミック素体と、セラミック素体に形成された端子電極と、を備えるセラミック電子部品であって、
前記端子電極は、請求項4に記載の導電性ペーストを用いて形成されていることを特徴とする、セラミック電子部品。
A ceramic electronic component comprising a ceramic body and a terminal electrode formed on the ceramic body,
The said terminal electrode is formed using the electrically conductive paste of Claim 4, The ceramic electronic component characterized by the above-mentioned.
複数のセラミック層が積層状態にあるセラミック素体と、それぞれの端縁が前記セラミック層の何れかの端面に露出するように前記セラミック層間に形成された複数の内部電極と、前記内部電極の端縁と電気的に接続されるように設けられた端子電極と、を備えるセラミック電子部品であって、
前記端子電極は、請求項4に記載の導電性ペーストを用いて形成されていることを特徴とする、セラミック電子部品。
A ceramic body in which a plurality of ceramic layers are laminated, a plurality of internal electrodes formed between the ceramic layers such that each edge is exposed at any end surface of the ceramic layer, and ends of the internal electrodes A ceramic electronic component comprising a terminal electrode provided to be electrically connected to an edge,
The said terminal electrode is formed using the electrically conductive paste of Claim 4, The ceramic electronic component characterized by the above-mentioned.
JP2001100181A 2001-03-30 2001-03-30 Method for producing copper powder, copper powder, conductive paste and ceramic electronic component Expired - Fee Related JP4453214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100181A JP4453214B2 (en) 2001-03-30 2001-03-30 Method for producing copper powder, copper powder, conductive paste and ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100181A JP4453214B2 (en) 2001-03-30 2001-03-30 Method for producing copper powder, copper powder, conductive paste and ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2002294310A JP2002294310A (en) 2002-10-09
JP4453214B2 true JP4453214B2 (en) 2010-04-21

Family

ID=18953649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100181A Expired - Fee Related JP4453214B2 (en) 2001-03-30 2001-03-30 Method for producing copper powder, copper powder, conductive paste and ceramic electronic component

Country Status (1)

Country Link
JP (1) JP4453214B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886350B2 (en) * 2005-04-26 2012-02-29 積水化学工業株式会社 Polyvinyl acetal resin composition
CN105336387A (en) * 2014-07-31 2016-02-17 比亚迪股份有限公司 Conductive copper paste for laser and preparation method of conductive copper paste
CN107116229A (en) * 2016-02-25 2017-09-01 新材料与产业技术北京研究院 A kind of copper nanoparticle and preparation method thereof
KR102152910B1 (en) * 2017-12-28 2020-09-08 한국세라믹기술원 Manufacturing Methods of Basic Copper Carbonate Using Copper Sulfate

Also Published As

Publication number Publication date
JP2002294310A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
WO2010021202A1 (en) Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
KR20210071496A (en) Multi-layer ceramic electronic component
TW200920857A (en) Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser
JP3744439B2 (en) Conductive paste and multilayer ceramic electronic components
KR20200064350A (en) Method for manufacturing conductive ink composition for internal electrode of multilayer ceramic capacitor and method for manufacturing internal electrode of multilayer ceramic capacitor using the same
KR101434024B1 (en) Metal powder, electronic device and method of producing the same
JP4106813B2 (en) Chip-type electronic components
JP4453214B2 (en) Method for producing copper powder, copper powder, conductive paste and ceramic electronic component
JP5206246B2 (en) Nickel powder and method for producing the same
JP4816202B2 (en) Conductive paste and method for manufacturing ceramic electronic component
JP2002275511A (en) Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
JP3855792B2 (en) Multilayer ceramic electronic components
JP2002008938A (en) Laminated electronic component and method of manufacturing the same
JPH0543921A (en) Production of nickel fine powder
US20120169447A1 (en) Nanocomposite powder for inner electrode of multilayer ceramic electronic device and fabricating method thereof
JPH10154633A (en) Ceramic electronic part and its manufacturing method
JP2001167631A (en) Ultra-fine particle conductor paste, method of preparing the same, and conductor film and laminated ceramic electronic parts using the same
JP7046679B2 (en) External electrodes of ceramic laminate
JP4893786B2 (en) Conductive paste
JPH10214520A (en) Conductive paste
JP6799931B2 (en) Nickel fine particle-containing composition and its manufacturing method, internal electrodes and laminated ceramic capacitors
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JP3744710B2 (en) Multilayer ceramic capacitor
JP2022510291A (en) Manufacturing method of silver powder with adjustable shrinkage
JP3922001B2 (en) Copper powder manufacturing method, copper powder, conductive paste, and multilayer ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees