JPH01313803A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH01313803A
JPH01313803A JP63145017A JP14501788A JPH01313803A JP H01313803 A JPH01313803 A JP H01313803A JP 63145017 A JP63145017 A JP 63145017A JP 14501788 A JP14501788 A JP 14501788A JP H01313803 A JPH01313803 A JP H01313803A
Authority
JP
Japan
Prior art keywords
particles
conductive paste
conductive
plating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63145017A
Other languages
Japanese (ja)
Inventor
Hiromichi Kogure
木暮 博道
Toshio Sato
敏夫 佐藤
Masahiro Arai
正浩 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63145017A priority Critical patent/JPH01313803A/en
Publication of JPH01313803A publication Critical patent/JPH01313803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit acquisition of plating having its uniform thickness on the surface of a conductor prepared through a process of baking the paste in the title so as to improve the solderability of the plated conductor by having each inorganic particle prepared through a process of forming a plating film on the surface of the particle, contained in the conductive paste. CONSTITUTION:Conductive particles for a conductive paste prepared by dispersing the metallic particles 11 and inorganic particles 13 in a vehicle are formed out of metallic particles 11 and also particles prepared by forming metallic films 14 on respective surfaces of the inorganic particles 13. Accordingly, a plating film 12 may be formed on the surface of each inorganic particle 13 at the same precipitation speed as that of the metallic particle 11. This makes it possible to form the uniform plating film 12 on a conductor film 10 prepared by baking the conductive paste so that the conductive film can be acquired with its satisfactory adhesive property by means of solder.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック素地上に導電性ペーストを塗布し
、焼成された導体主面上に、メツキ膜を析出するのに好
適な導電性ペーストに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a conductive paste suitable for applying a conductive paste onto a ceramic substrate and depositing a plating film on the main surface of a fired conductor. Regarding.

[従来の技術] 従来、セラミック素地上に導体膜を形成するのに使用さ
れる#電性ペーストとしては、AusAgs  Pt%
Pdt  Cu等の貴金属粒子や、N11Z 1%  
A 1等の卑金属粉末等の導電粒子と、ガラスフリット
とを、ビヒクル中に分散させたものが知られている。こ
のような導電性ペーストは、セラミック基板、セラミッ
クコンデンサ、圧電体素子、抵抗体、インダクタ等の電
子部分に、スクリーン印刷、その他の方法等に依って塗
布された後、焼成され、導体膜として形成される。この
導体膜は、前記電子部品の電極或いは、配線導体として
使用されている。
[Prior Art] Conventionally, the #electroconductive paste used to form a conductor film on a ceramic substrate is AusAgs Pt%.
Precious metal particles such as Pdt Cu, N11Z 1%
It is known that conductive particles such as base metal powder such as A1 and glass frit are dispersed in a vehicle. Such conductive paste is applied to electronic parts such as ceramic substrates, ceramic capacitors, piezoelectric elements, resistors, and inductors by screen printing or other methods, and then fired to form a conductive film. be done. This conductor film is used as an electrode or a wiring conductor of the electronic component.

前記導電性ペーストに使用される導電粒子のうち、Au
s  Ags  Pt等の導体材料は、高価であり、価
格の変動が大きいことから、これに代わる導体材料とし
て、卑金属若しくは、比較的安価なCu等の粒子が使用
されている。
Among the conductive particles used in the conductive paste, Au
Since conductive materials such as sAgsPt are expensive and have large price fluctuations, base metals or relatively inexpensive particles such as Cu are used as alternative conductive materials.

卑金属導電粒子を用いた導電性−一ストで形成された電
極は、電極中の導体金属が半田濡れ性が悪く、電極の半
田付は性が悪い。また、比較的安価な銅粒子を用いた導
電ペーストは、導体金属それ自体の半田濡れ性が良いが
、電極の表面が空気中の酸素に依ワて、酸化され易いた
め、そのままの状態で空気中に僅かな時間でも放置する
と、導体表面が酸化されて半田付は性が直ぐ悪(なる。
In conductive electrodes formed using base metal conductive particles, the conductive metal in the electrodes has poor solder wettability, and the electrodes have poor soldering properties. In addition, conductive paste using relatively inexpensive copper particles has good solder wettability of the conductor metal itself, but the surface of the electrode depends on oxygen in the air and is easily oxidized. If the conductor is left inside for even a short time, the conductor surface will oxidize and the soldering properties will quickly deteriorate.

このため、これら卑金属や銅等の導電粒子を用いたもの
では、導体粒子の表面に予め、酸化を防止するような金
B膜、例えば、ニッケルメッキや半田メツキ等を施し、
表面の酸化防止と半田付は性の改善を図ることが行われ
ている。
For this reason, when using conductive particles such as these base metals or copper, the surface of the conductor particles is coated with a gold B film to prevent oxidation, such as nickel plating or solder plating, etc.
Efforts are being made to prevent surface oxidation and improve solderability.

更に、前記導電性ペーストを基板に塗布して焼成した時
の導電性ペーストの収縮率を制御する目的、セラミック
基板との接着強度を高める目的、及び焼成された後の導
体の膨張係数を、セラミック基板の膨張係数に近似させ
る目的等のため、これら導電性ペーストに、セラミック
基材と同じ材質の粒子や、セラミック基材の一部を組成
する材料粒子、或いはこれらとは別種の無機M粒子を混
入することが行われる。
Furthermore, the purpose of controlling the shrinkage rate of the conductive paste when the conductive paste is applied to the substrate and fired, the purpose of increasing the adhesive strength with the ceramic substrate, and the expansion coefficient of the conductor after being fired is controlled by the ceramic. For the purpose of approximating the expansion coefficient of the substrate, particles of the same material as the ceramic base material, particles of a material forming a part of the ceramic base material, or inorganic M particles of a different type from these are added to the conductive paste. Mixing is done.

[発明が解決しようとする課題] 前記従来の導電性ペーストのように、その中に前記無機
質粒子を含有させた場合、これを焼成することにより形
成された導体膜の表面には、導電粒子と前記無機質粒子
とがランダムに露出する。
[Problems to be Solved by the Invention] When the inorganic particles are contained in the conventional conductive paste, the surface of the conductive film formed by firing the paste contains the conductive particles and the inorganic particles. The inorganic particles are randomly exposed.

ところが、第2図に模式的に示すように、このような導
体8100表面にメツキ膜を形成しようとすると、導電
粒子11の表面に形成されるメツキ膜I2の形成速度と
、無機質粒子13の表面に形成されるメツキ膜12の形
成速度との間に、大きな差が生じ、導電粒子11の表面
に所望の厚みのメツキ[12が形成されても、無機質粒
子13の表面には充分な厚みのメツキ[12が形成され
ないといったように、メツキM12の厚みに不均一な状
態が生じる。
However, as schematically shown in FIG. 2, when attempting to form a plating film on the surface of such a conductor 8100, the formation rate of the plating film I2 formed on the surface of the conductive particles 11 and the surface of the inorganic particles 13 are There is a large difference between the formation speed of the plating film 12 formed on the surface of the conductive particles 11, and even if a desired thickness of plating 12 is formed on the surface of the conductive particles 11, a sufficient thickness is not formed on the surface of the inorganic particles 13. The thickness of the plating M12 becomes non-uniform, such that the plating [12] is not formed.

このように、メツキ膜が不均一となうた電子部品は、メ
ツキ膜にいわば無数のとンホールが生じた状態となり、
半田に対する密着強度が弱く、半田付は後に電子部品が
脱落してしまうといった問題があった。
In this way, electronic components with non-uniform plating film have, so to speak, countless holes in the plating film.
There was a problem in that the adhesion strength to solder was weak, and electronic components would fall off after soldering.

そこで本発明の目的は、無機質粒子の表面にメツキ膜を
形成した粒子を、導電性ペースト中に含有させる事に依
って、前記従来のa運を解消することが可能な導電性ペ
ーストを提供する事にある。
Therefore, an object of the present invention is to provide a conductive paste that can solve the above-mentioned conventional problem by incorporating particles in which a plating film is formed on the surface of inorganic particles into the conductive paste. It's true.

C疎通を解決するための手段] すなわち1.前記課題を解消する為、本発明において購
じた手段の要旨は、第一に導電性粒子と、無機質粒子と
をビヒクル中に分散させた導電性ペーストに於いて、前
記導電性粒子が金属粒子と、n、機質粒子の表面に金属
被膜を形成した粒子とから成る事を特徴とする導電性ペ
ーストである。さらに第二に、導電性粒子をビヒクル中
に分散させた導電性ペーストに於いて、前記導電性粒子
が金属粒子と、無機質粒子の表面に金属被膜を形成した
導電粒子とから成る事を特徴とする導電性ペーストであ
る。
C Means for resolving communication] That is, 1. In order to solve the above problems, the gist of the means purchased in the present invention is as follows: First, in a conductive paste in which conductive particles and inorganic particles are dispersed in a vehicle, the conductive particles are metal particles. This is a conductive paste characterized by comprising: (1) and (n) particles having a metal coating formed on the surface of the organic particles. Furthermore, a second aspect of the present invention is a conductive paste in which conductive particles are dispersed in a vehicle, wherein the conductive particles are composed of metal particles and conductive particles having a metal coating formed on the surface of inorganic particles. It is a conductive paste.

[作   用コ 前記本発明による導電性ペーストでは、ビヒクル中に導
電粒子として、金属粒子に加え、無機質粒子が混合され
ているので、導電性ペースト中の前記無機質粒子が、導
電性ペーストを焼成した時の導電性ペーストの収縮率を
小さ(し、セラミック基板と導電性ペースト間の応力を
小さくして密希強度を強くする。また、導電性ペースト
中の無機質粒子とセラミック基板等との反応によって接
着強度が高められと共に、焼成された後の導体の膨張係
数が基板の膨張係数に近似するため、焼成後のサーマル
シ四ツクにも耐えられる。
[Function] In the conductive paste according to the present invention, inorganic particles are mixed in the vehicle as conductive particles in addition to metal particles. It reduces the shrinkage rate of the conductive paste (and reduces the stress between the ceramic substrate and the conductive paste, increasing the strength of the conductive paste. Also, due to the reaction between the inorganic particles in the conductive paste and the ceramic substrate, etc.) Since the adhesive strength is increased and the expansion coefficient of the conductor after firing is close to that of the substrate, it can withstand thermal shock after firing.

こうした無機質粒子持育の作用に加え、第1図に模式的
に示すように、前記無機質粒子13の全てまたはその一
部に、金腐膜14が形成されているため、その表面に金
属粒子11と同等の析出速度でメツキ膜12が形成され
る。これによって、導電性ペーストを焼き付けて形成さ
れた前記導体WA10に均一なメツキ膜12を形成する
ことが可能となる。このため、半田による接着性が良好
な導体膜が得られる。
In addition to this effect of sustaining the inorganic particles, as schematically shown in FIG. The plating film 12 is formed at the same deposition rate. This makes it possible to form a uniform plating film 12 on the conductor WA10 formed by baking the conductive paste. Therefore, a conductive film with good solder adhesion can be obtained.

[実  施  例コ 次に、本発明の具体的な実施例について詳細に説明する
[Example] Next, specific examples of the present invention will be described in detail.

(実施例1) 塩化第二錫(SnCIa)  と塩酸(MCI)とを含
む水溶液であるセンシタイザ浴と、塩化パラジウム(P
dC1*)  の水溶液であるアクチベータ浴とに、平
均粒子径が1.0μmのアルミナ(Al2O2)粒子を
、順次浸漬した後、同粒子を濾別した。その後、この粒
子を、純水             1000m l
硫酸ニッケル(N t S 04)    20gクエ
ン酸ソーダ(NascsHsot)30g次亜燐酸ソー
ダ(N a H4F O2)  20gから成り、予め
80℃の温度に保温されたニッケルメッキ洛中に浸漬し
、10分間ゆっくり攪拌した。その後、前記ニッケルメ
ッキ浴とアルミナ粒子とを濾別し、アルミナ粒子を純水
中に分散させ、これを濾別することを数回繰返した。
(Example 1) A sensitizer bath, which is an aqueous solution containing stannic chloride (SnCIa) and hydrochloric acid (MCI), and palladium chloride (P
Alumina (Al2O2) particles having an average particle diameter of 1.0 μm were sequentially immersed in an activator bath that was an aqueous solution of dC1*), and then the particles were filtered. Then, add the particles to 1000ml of pure water.
It consists of 20 g of nickel sulfate (N t S 04), 30 g of sodium citrate (NascsHsot), and 20 g of sodium hypophosphite (N a H4F O2), immersed in a nickel-plated glass preheated to a temperature of 80°C, and slowly stirred for 10 minutes. did. Thereafter, the nickel plating bath and alumina particles were separated by filtration, the alumina particles were dispersed in pure water, and the process of filtration was repeated several times.

その後洗浄し、120℃の温度で1時間乾燥した。こう
してアルミナ粒子の表面に0.3μmのニッケル被膜を
形成した。
Thereafter, it was washed and dried at a temperature of 120° C. for 1 hour. In this way, a 0.3 μm nickel film was formed on the surface of the alumina particles.

次に、別に用意したニッケル金属粒子(平均粒径3μm
)  100重量部に対して、ニッケル皮膜を施した前
記アルミナ粒子を10重量部、エチルセルロースを18
mff1部、ブチルカルピトールを4ffiffi部の
割合で配合し、これを捕潰機で4時間混練し、更にロー
ルミルに依って1時間混練して、本発明による導電性の
ペーストを製作した。
Next, separately prepared nickel metal particles (average particle size 3 μm
) For 100 parts by weight, 10 parts by weight of the alumina particles coated with nickel and 18 parts by weight of ethyl cellulose.
A conductive paste according to the present invention was prepared by blending 1 part of mff and 4 parts of butylcarpitol in a crusher for 4 hours, and further kneading in a roll mill for 1 hour.

これとは別に、チタン酸バリウム系の誘電体セラミック
原料シートに、市販されている導電性ペーストを塗布し
、これを積層して圧着し、所定の大きさに裁断した後焼
成することにより、積層セラミックコンデンサチップを
製作した。
Separately, a commercially available conductive paste is applied to barium titanate-based dielectric ceramic raw material sheets, the layers are laminated and crimped, cut to a predetermined size, and then fired. We manufactured a ceramic capacitor chip.

この積層セラミックコンデンサチップの両端面には、前
記導電性ペーストに依る内部電極の端部が導出されてお
り、ここに前記本発明の導電性ペーストを約50μmの
厚さに塗布し、これを乾燥して非酸化雰囲気中で、95
0℃の温度で1時間焼き付け、ioセラミックコンデン
サチップの外部電極を形成した。
The ends of internal electrodes made of the conductive paste are drawn out from both end faces of this multilayer ceramic capacitor chip, and the conductive paste of the present invention is applied thereto to a thickness of about 50 μm, and then dried. 95 in a non-oxidizing atmosphere.
Baking was performed at a temperature of 0° C. for 1 hour to form external electrodes of the IO ceramic capacitor chip.

このような積層セラミックコンデンサチップを前記ニッ
ケルメッキ浴に80℃の温度で15分間浸漬し、外部電
極の表面にニッケルメッキ改を形成した。
Such a multilayer ceramic capacitor chip was immersed in the nickel plating bath at a temperature of 80° C. for 15 minutes to form a nickel plating layer on the surface of the external electrode.

更に市販の半田メツキ液を用いて、前記積層セラミック
コンデンサチップのニッケル膜上に、室温で陰極電流密
度I A/da” として30分間電解半田メツキを施
し、3μmの厚さに半田メツキ膜を形成した。
Further, using a commercially available solder plating solution, electrolytic solder plating was performed on the nickel film of the multilayer ceramic capacitor chip at room temperature for 30 minutes at a cathode current density of IA/da'' to form a solder plating film with a thickness of 3 μm. did.

この積層セラミックコンデンサチップをプリント配線基
板上の導体に500個半田付けした。
Five hundred pieces of this multilayer ceramic capacitor chip were soldered to conductors on a printed wiring board.

そして、プッシュプルゲージで引張り荷重を読み取りな
がら、第3図に矢印で示す方向に最大5kgの引張り荷
重を加えて、その間に配線基板から積層セラミックコン
デンサチップが剥離するか否か、半田の密着強度試験を
実施した。
Then, while reading the tensile load with a push-pull gauge, apply a maximum tensile load of 5 kg in the direction shown by the arrow in Figure 3. During this time, check whether the multilayer ceramic capacitor chip peels from the wiring board or not, and check the solder adhesion strength. A test was conducted.

第1図において、■は配線基板、2はその上に形成され
た半田付はランド、3は積層セラミックコンデンサ、4
はその外部電極、5は外部電極4を前記半田付はランド
2に同宿している半田、6はプッシュプルゲージのフッ
ク先端部である。
In Figure 1, ■ is a wiring board, 2 is a land for soldering formed on it, 3 is a multilayer ceramic capacitor, 4 is
5 is the external electrode, 5 is the solder that is soldered to the land 2, and 6 is the tip of the hook of the push-pull gauge.

この結果、本実施例に於いて、5Kg以下の荷重で半田
が剥離したものは皆無であった。
As a result, in this example, there was no case where the solder peeled off under a load of 5 kg or less.

(実施例2) 前記実施例1に於いて、アルミナ粒子に施したメレキを
、ニッケルメッキに代えて、純水 1000m l 硫酸銅CCu5Oa) 15g エチルジアミン四酢酸四ナトリウム塩 45gホルマリ
ン(37%濃度)  10m1水酸化ナトリウム(Na
OH)  lOgからなる銅メツキ浴を用い、メツキ浴
温を60℃として銅メツキを施した事と、積層セラミッ
クコンデンサチップの両端面に形成された外部電極に銅
メツキを施した事以外は、同実施例1と同様にして試験
を実施した。その結果、5kg以下の荷重で半田が剥離
したものは皆無であった。
(Example 2) In Example 1, the metal plating applied to the alumina particles was replaced with nickel plating, and 1000 ml of pure water, 15 g of copper sulfate (CCu5Oa), 15 g of tetrasodium salt of ethyldiaminetetraacetic acid, and 45 g of formalin (37% concentration) were used. 10ml sodium hydroxide (Na
The process is the same except that copper plating was performed using a copper plating bath consisting of OH) lOg at a plating bath temperature of 60°C, and that copper plating was performed on the external electrodes formed on both end surfaces of the multilayer ceramic capacitor chip. The test was conducted in the same manner as in Example 1. As a result, there were no cases where the solder peeled off under a load of 5 kg or less.

(実施例3) 実施例1に於いて、無機質粒子を、アルミナ粒子に代え
て、誘電体セラミックチタン酸バリウム系粒子とした事
、及び同粒子に施したメツキをニッケルメッキに代えて
、次のA液とB液とを等量混合した銀メツキ浴に、無機
質粒子を室温で10分間浸漬して銀メツキを施した小以
外は、同実施例Iと同様?こして試験を実施した。
(Example 3) In Example 1, the inorganic particles were replaced with alumina particles by dielectric ceramic barium titanate particles, and the plating applied to the same particles was replaced with nickel plating, and the following Same as Example I, except that the inorganic particles were immersed in a silver plating bath containing equal amounts of liquid A and B for 10 minutes at room temperature to be silver plated. The test was then carried out.

A液組成 純水 60m1 硝酸銀(AgNO3)  3.5g 7ンモニ7水(NH328%)沈澱して再溶解するまで
添加 水酸化ナトリウム 2.5g B液組成 純水 1000m l ブドウ糖(Ce H+□Os)  45部酒石酸(Cs
 He Os )  4 gエチルアルコール(CaH
sOH)   100rn lこの結果、5Kg以下の
荷重で半田が剥離したものは皆無であった。
Liquid A composition pure water 60ml Silver nitrate (AgNO3) 3.5g 7mmoni7 water (NH328%) Added until precipitated and redissolved Sodium hydroxide 2.5g B liquid composition Pure water 1000ml Glucose (Ce H+□Os) 45 Tartaric acid (Cs
He Os) 4 g Ethyl alcohol (CaH
sOH) 100rnl As a result, there were no cases where the solder peeled off under a load of 5 kg or less.

(実施例4) 前記実施例1に於いて、金運粒子をニッケル粒子に代え
て亜鉛粒子を用いた事以外は、同実施例1と同様にして
試験を実施した。その結果、5kg以下の荷重で半田が
ψJ[たちのは皆無であった。
(Example 4) A test was carried out in the same manner as in Example 1 except that zinc particles were used instead of nickel particles as the money particles. As a result, there was no solder that reached ψJ under a load of 5 kg or less.

(実施例5) 実施例1に於いて、無機質粒子を、アルミナ粒子に代え
て、誘電体セラミックチタン酸バリウム系粒子とした事
、これに施すメツキをニッケルメッキに代えて、実施例
2と同じ方法で銅メツキとした小、余病粒子として、ニ
ッケルに代えて、銅粒子を用いた事、及び外部電極上の
ニッケルメッキを銅メツキに変えた事以外は、実施例1
と同様にして試験を実施した。この結果、5Kg以下の
荷重で半田が剥離したものは皆無であった。
(Example 5) Same as Example 2 except that the inorganic particles in Example 1 were replaced with alumina particles by dielectric ceramic barium titanate particles, and the plating applied thereto was replaced with nickel plating. Example 1 except that copper particles were used instead of nickel as the small, residual disease particles plated with copper in the method, and the nickel plating on the external electrode was changed to copper plating.
The test was conducted in the same manner. As a result, there were no cases where the solder peeled off under a load of 5 kg or less.

(実施例6) 前記実施例1に於いて、導電性ペースト中のニッケルメ
ッキを施したアルミナ粒子を、10部から15部に変え
た事、無機質粒子として、ニッケルメッキを施さないア
ルミナ粒子を15重量部加えた事以外は、前記実施例1
と同様にして試験を実施した。この結果、5Kg以下の
荷重で半田が剥離したものは皆無であった。
(Example 6) In Example 1, the amount of nickel-plated alumina particles in the conductive paste was changed from 10 parts to 15 parts, and the amount of alumina particles not nickel-plated as inorganic particles was changed to 15 parts. Example 1 above except that parts by weight were added.
The test was conducted in the same manner. As a result, there were no cases where the solder peeled off under a load of 5 kg or less.

(実施例7) 実施例1に於いて、導電性ペースト中のニッケルを被覆
したアルミナ粒子を、10部から5部に変えた事と、無
機質粒子としてニッケルを被覆しな〜)アルミナ粒子を
10重量部加えた事以外は、実施例1と同様にして試験
を実施した。
(Example 7) In Example 1, the number of alumina particles coated with nickel in the conductive paste was changed from 10 parts to 5 parts, and the number of alumina particles coated with nickel as inorganic particles was changed to 10 parts. The test was conducted in the same manner as in Example 1 except that parts by weight were added.

その結果、5Kg以下の荷重で半田が剥離したものは皆
無であった。
As a result, there were no cases where the solder peeled off under a load of 5 kg or less.

(実施例8) 実施例3に於いて、導電性ペースト中の銅をw1f!l
fシたチタン酸バリウム系の無機質粒子を、10部から
15部に変えた事と、無機質粒子として、銅を被覆しな
いチタン酸バリウム系粒子を5重量加えた事以外は、実
施例3と同様にして試験を実施した。その結果、5Kg
以下の荷重で半田が剥離したものは皆無であった。
(Example 8) In Example 3, the copper in the conductive paste was w1f! l
Same as Example 3, except that the amount of barium titanate-based inorganic particles was changed from 10 parts to 15 parts, and 5 weight of barium titanate-based particles not coated with copper were added as inorganic particles. The test was carried out. As a result, 5Kg
There were no cases where the solder peeled off under the following loads.

(比較例) 実施例1に於いて、導電性ペースト中のアルミナ粒子の
表面にニッケルメッキを施した粒子に代えて、導電性ペ
ーストに前記メツキが施されていないアルミナ粒子を加
えた事以外は、実施例1と同様にして試験を実施した。
(Comparative example) In Example 1, except that alumina particles not plated were added to the conductive paste instead of particles whose surfaces were plated with nickel. The test was conducted in the same manner as in Example 1.

その結果、5Kg以下の荷重で半田が剥離したものは、
500個中1z個あった。
As a result, if the solder peeled off under a load of 5 kg or less,
There were 1z out of 500.

なお、前記各実施例に於いては、無機質粒子としてアル
ミナ、チタン酸バリウムを用いた例を示したが、本発明
において使用される無機質粒子は、これらに限るもので
はない。すなわち、これら無ti質粒子の皿類は、基板
のセラミック組成に依って選択されるべきもので、−船
釣には、セラミック組成に近似した組成が好ましく、そ
の添加量は各々の組成に於いて、適宜法められる。例え
ば、熱膨張係数、硬化収縮率の太きさや半田付は性等を
考慮して決定される。一般には、導電性ペースト全1f
fiに対して1%〜35%程度のmが添加される。
Incidentally, in each of the above Examples, examples were shown in which alumina and barium titanate were used as the inorganic particles, but the inorganic particles used in the present invention are not limited to these. In other words, these plates containing Ti-free particles should be selected depending on the ceramic composition of the substrate. - For boat fishing, a composition close to the ceramic composition is preferable, and the amount added depends on each composition. The law will be passed accordingly. For example, the thermal expansion coefficient, curing shrinkage rate, thickness, and soldering are determined in consideration of properties and the like. Generally, a total of 1f of conductive paste
About 1% to 35% m is added to fi.

導電性ペースト中に混合される全屈粒子は、Zns  
Cus  NL  A1等が一般的であり、無機質粒子
に施されるメツキは、Nis  Cus  Ag等が一
般的である。
The total refraction particles mixed in the conductive paste are Zns
Cus NL A1 etc. are common, and Nis Cus Ag etc. are common for plating applied to inorganic particles.

、  [発明の効果] 以上説明した通り、本発明によれば、導電性ペースト中
に、無機質粒子を含存させているので、導電性ペースト
を塗布し、焼成する時に導電性ペーストと基板との焼成
収縮を調整できるという、無機質粒子本来の効果がその
まま得られる。そしてこれと同時に、前記無機質粒子の
表面に金回被膜を形成したので、導電性ペーストを焼成
して得られた導体の表面に均一な厚みのメツキを施すこ
とができ、これによって半田付は性が改善され、基板と
の密着性が良く、半田付けした後に脱落するような事が
なくなる。
[Effects of the Invention] As explained above, according to the present invention, inorganic particles are contained in the conductive paste, so when the conductive paste is applied and fired, the contact between the conductive paste and the substrate is reduced. The original effect of inorganic particles, which is the ability to adjust firing shrinkage, can be obtained as is. At the same time, since a gold coating was formed on the surface of the inorganic particles, the surface of the conductor obtained by firing the conductive paste could be plated with a uniform thickness, making soldering easy. It has improved adhesion to the board, and there is no chance of it falling off after soldering.

よって、半田付けの信頼性が向上すると言う効果が得ら
れる。
Therefore, the effect of improving the reliability of soldering can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の導電性ペーストを用いて形成された
導体膜上にメツキを施した状態を示す模式図、第2図は
、従来の導電性ペーストを用いて形成された導体膜上に
メツキを施した状態を示す模式図、第3図は、本発明の
実施例及びその比較例における半田付は部分の密着強度
試験の方法を示す説明斜視図である。 IO・・・導体膜 11・・・導電粒子 12・・・メ
ツキ膜 13・・・無i質粒子 14・・・無機質粒子
に施されたメツキ膜
FIG. 1 is a schematic diagram showing a state in which plating is applied to a conductive film formed using the conductive paste of the present invention, and FIG. 2 is a schematic diagram showing a conductive film formed using a conventional conductive paste. FIG. 3 is an explanatory perspective view showing the method of testing the adhesion strength of the soldered parts in the examples of the present invention and the comparative examples thereof. IO... Conductor film 11... Conductive particles 12... Plated film 13... Inorganic particles 14... Plated film applied to inorganic particles

Claims (2)

【特許請求の範囲】[Claims] (1)導電性粒子と無機質粒子とを、ビヒクル中に分散
させた導電性ペーストに於いて、前記導電性粒子が金属
粒子と、無機質粒子の表面に金属被膜を形成した粒子と
から成る事を特徴とする導電性ペースト。
(1) In a conductive paste in which conductive particles and inorganic particles are dispersed in a vehicle, the conductive particles are composed of metal particles and inorganic particles with a metal coating formed on their surfaces. Characteristic conductive paste.
(2)導電性粒子を、ビヒクル中に分散させた導電性ペ
ーストに於いて、前記導電性粒子が金属粒子と、無機質
粒子の表面に金属被膜を形成した粒子とから成る事を特
徴とする導電性ペースト。
(2) A conductive paste in which conductive particles are dispersed in a vehicle, wherein the conductive particles are composed of metal particles and inorganic particles with a metal coating formed on their surfaces. sex paste.
JP63145017A 1988-06-13 1988-06-13 Conductive paste Pending JPH01313803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63145017A JPH01313803A (en) 1988-06-13 1988-06-13 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63145017A JPH01313803A (en) 1988-06-13 1988-06-13 Conductive paste

Publications (1)

Publication Number Publication Date
JPH01313803A true JPH01313803A (en) 1989-12-19

Family

ID=15375507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63145017A Pending JPH01313803A (en) 1988-06-13 1988-06-13 Conductive paste

Country Status (1)

Country Link
JP (1) JPH01313803A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031751A1 (en) * 2011-08-31 2013-03-07 シャープ株式会社 Conductive paste, electrode for semiconductor devices, semiconductor device, and method for manufacturing semiconductor device
JP2013514672A (en) * 2009-12-16 2013-04-25 アプリコット マテリアルズ テクノロジーズ,エル.エル.シー. Capacitor including a three-dimensional electrode having a large surface area and manufacturing method
US8885322B2 (en) 2010-10-12 2014-11-11 Apricot Materials Technologies, LLC Ceramic capacitor and methods of manufacture
JP2015173258A (en) * 2014-02-24 2015-10-01 三ツ星ベルト株式会社 Resistor paste and method of manufacturing the same, and resistor and use application for the same
WO2023100519A1 (en) * 2021-12-02 2023-06-08 Koa株式会社 Resistive material and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514672A (en) * 2009-12-16 2013-04-25 アプリコット マテリアルズ テクノロジーズ,エル.エル.シー. Capacitor including a three-dimensional electrode having a large surface area and manufacturing method
US9343231B2 (en) 2009-12-16 2016-05-17 Liang Chai Methods for manufacture a capacitor with three-dimensional high surface area electrodes
US8885322B2 (en) 2010-10-12 2014-11-11 Apricot Materials Technologies, LLC Ceramic capacitor and methods of manufacture
US10037849B2 (en) 2010-10-12 2018-07-31 Apricot Materials Technologies, LLC Ceramic capacitor and methods of manufacture
WO2013031751A1 (en) * 2011-08-31 2013-03-07 シャープ株式会社 Conductive paste, electrode for semiconductor devices, semiconductor device, and method for manufacturing semiconductor device
JP2015173258A (en) * 2014-02-24 2015-10-01 三ツ星ベルト株式会社 Resistor paste and method of manufacturing the same, and resistor and use application for the same
WO2023100519A1 (en) * 2021-12-02 2023-06-08 Koa株式会社 Resistive material and method for producing same

Similar Documents

Publication Publication Date Title
US6310757B1 (en) Electronic component having external electrodes and method for the manufacture thereof
US4735676A (en) Method for forming electric circuits on a base board
US4806159A (en) Electro-nickel plating activator composition, a method for using and a capacitor made therewith
JP2002334614A (en) Conductive particles
JPH01313803A (en) Conductive paste
US4714645A (en) Electronic parts and process for the manufacture of the same
JP2000357627A (en) Chip type electronic component
JPH01313804A (en) Conductive paste
JPH0616461B2 (en) Chip type porcelain capacitor
US4168519A (en) Capacitor with tin-zinc electrodes
JPH0266101A (en) Electric conductive particles and manufacture thereof
JPS5874030A (en) Electronic part, conductive film composition and method of producing same
JPS58107605A (en) Method of producing chip resistor
JPH01313805A (en) Conductive paste
JPS5879837A (en) Electrically conductive paste composition
JP4453214B2 (en) Method for producing copper powder, copper powder, conductive paste and ceramic electronic component
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JPH0440803B2 (en)
JPH08212827A (en) Conductive powder, its manufacture and conductive paste containing it
JPH07130573A (en) Ceramic powder coated with conductive metal
JP3698098B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JPH02178910A (en) Manufacture of laminate-type ceramic chip capacitor
JPH04170491A (en) Paste for forming thick-film conductor
JP2553658B2 (en) Electrode material for electronic parts
JPS6037562B2 (en) Method of forming thick film conductor