JPH0241864B2 - - Google Patents

Info

Publication number
JPH0241864B2
JPH0241864B2 JP59070236A JP7023684A JPH0241864B2 JP H0241864 B2 JPH0241864 B2 JP H0241864B2 JP 59070236 A JP59070236 A JP 59070236A JP 7023684 A JP7023684 A JP 7023684A JP H0241864 B2 JPH0241864 B2 JP H0241864B2
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
alloy
hydrogen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59070236A
Other languages
Japanese (ja)
Other versions
JPS60212958A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59070236A priority Critical patent/JPS60212958A/en
Publication of JPS60212958A publication Critical patent/JPS60212958A/en
Publication of JPH0241864B2 publication Critical patent/JPH0241864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、負極に貯蔵されている水素と正極
との電気化学的反応により電気エネルギーを発生
する蓄電池における負極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a negative electrode in a storage battery that generates electrical energy through an electrochemical reaction between hydrogen stored in the negative electrode and a positive electrode.

従来例の構成とその問題点 この種の水素吸蔵電極の性能は、その活性物質
である水素を吸蔵する合金そのものの、水素ガス
放出圧の温度特性に著しく依存し、その合金に固
有の理論放電容量を得るためには、ある限られた
温度域でしか使用することが出来ないという欠点
があつた。例えば、LaNi5の最最適使用温度域
は、常温より幾分低い温度であり、CaNi5のそれ
は、LaNi5より高い領域である。
Configuration of conventional examples and their problems The performance of this type of hydrogen storage electrode depends significantly on the temperature characteristics of the hydrogen gas release pressure of the alloy itself that stores hydrogen, which is the active substance, and the theoretical discharge characteristic unique to that alloy. In order to obtain capacity, it had the disadvantage that it could only be used within a certain limited temperature range. For example, the optimum operating temperature range for LaNi 5 is a temperature somewhat lower than room temperature, and that for CaNi 5 is in a higher range than for LaNi 5 .

発明の目的 この発明は、従来のものより、はるかに広範囲
の温度域において、ほぼ一定の放電容量を得るこ
とが出来る使用可能温度域の広いアルカリ蓄電池
用水素吸蔵電極を提供することを目的とする。
Purpose of the Invention The purpose of the present invention is to provide a hydrogen storage electrode for an alkaline storage battery that can be used over a wide temperature range and can obtain a substantially constant discharge capacity over a much wider temperature range than conventional ones. .

発明の構成 本発明の水素吸蔵電極は、相互に異なる水素解
離平衡圧を有し、そのため最大放電容量を示す温
度域が異なる水素吸蔵合金を複数個、例えば板状
活物質支持体の両側から層状に重ねて組み合わ
せ、相互の層間の接触電気抵抗を出来るだけ少な
くするよう強固に一体化したもので、結果的に、
水素吸蔵電極として、広範囲の温度領域で、水素
原子の合金表面での解離活性化エネルギーの一定
化を図つたものである。
Structure of the Invention The hydrogen storage electrode of the present invention includes a plurality of hydrogen storage alloys having mutually different hydrogen dissociation equilibrium pressures and different temperature ranges exhibiting maximum discharge capacities, for example, in layers from both sides of a plate-shaped active material support. They are stacked on top of each other and are tightly integrated to minimize the electrical contact resistance between the layers.As a result,
As a hydrogen storage electrode, the dissociation activation energy of hydrogen atoms on the alloy surface is made constant over a wide temperature range.

実施例の説明 市販の粒状ランタン(純度99.5%以上)と、市
販の球状ニツケル(純度99.5%以上)を、原子比
で、ランタン対ニツケルが1:5になる様に秤量
し、水冷銅るつぼに収め、アルゴン雰囲気中でア
ーク溶解し、均質なボタン状LaNi5を製造した。
また市販の粒状カルシウム(純度99.3%以上)
と、市販の球状ニツケル(純度99.5%以上)を原
子比で、カルシウム対ニツケル比が1:5になる
様秤量し、カーボンるつぼに収め、アルゴン雰囲
気中で、40kHzの高周波で溶解し製造した。
Description of Examples Commercially available granular lanthanum (purity 99.5% or higher) and commercially available spherical nickel (purity 99.5% or higher) were weighed so that the atomic ratio of lanthanum to nickel was 1:5, and the mixture was placed in a water-cooled copper crucible. A homogeneous button-shaped LaNi 5 was produced by arc melting in an argon atmosphere.
Also, commercially available granular calcium (purity 99.3% or more)
Commercially available spherical nickel (purity 99.5% or higher) was weighed so that the atomic ratio of calcium to nickel was 1:5, placed in a carbon crucible, and melted under 40kHz high frequency in an argon atmosphere.

このようにして得られた合金を、アルゴン気流
中のドライボツクス内で、粉砕して約40μm以下
の合金粉末とした。次に、LaNi5約6gを、活物
質支持体である発泡ニツケル板の一方の面より加
圧充てんし、次いで、CaNi5約4gを他方の面か
ら加圧充てんし、これを約200Kg/cm2の圧力で加
圧後、真空電気炉にて、真空度10-5〜10-6Torr、
焼結温度950℃、焼結時間2時間の条件で焼結し
て合金粉末の焼結多孔体とした。なお、ここで使
用した発泡メタルは、大きさ5cm×5cm、厚さ
2.0mmである。
The alloy thus obtained was ground into an alloy powder of about 40 μm or less in a dry box in an argon stream. Next, about 6 g of LaNi 5 was pressurized and filled from one side of the foamed nickel plate serving as the active material support, and then about 4 g of CaNi 5 was pressurized from the other side, and this was applied at a rate of about 200 kg/cm. After pressurizing at a pressure of 2 , in a vacuum electric furnace to a vacuum degree of 10 -5 to 10 -6 Torr,
It was sintered at a sintering temperature of 950°C and a sintering time of 2 hours to obtain a sintered porous body of alloy powder. The foam metal used here has a size of 5 cm x 5 cm and a thickness of
It is 2.0mm.

上記の電極をaとする。比較例として、同様の
条件で、水素吸蔵合金としてLaNi5単独を用いて
製造した電極をb、CaNi5単独を用いた電極cと
する。
The above electrode is designated as a. As a comparative example, electrode b was manufactured using LaNi 5 alone as the hydrogen storage alloy under the same conditions, and electrode c was manufactured using CaNi 5 alone.

次にこれらの各電極を負極とし、公知の酸化ニ
ツケル電極を正極として、それぞれアルカリ電解
質中に浸漬して、電池を構成した。第1図は各水
素吸蔵電極の放電容量(Ah/g)の温度特性図
である。この図から明らかなように、本発明によ
る負極を用いた電池は、従来の電池と比較して、
放電容量の温度依存性が少なく、そのため広範囲
の温度域で使用することができる。また、第1図
において、電極aの放電容量は、各温度において
従来のbとcの中間値をとるのではなく、中間値
よりも高い値を示している。これは、単体合金の
場合は解離しにくかつた合金中の水素原子が、他
方の解離しやすい合金の影響により放電しやすく
なつて、容量が増大したためと考えられる。
Next, each of these electrodes was used as a negative electrode, and a known nickel oxide electrode was used as a positive electrode, and each electrode was immersed in an alkaline electrolyte to construct a battery. FIG. 1 is a temperature characteristic diagram of the discharge capacity (Ah/g) of each hydrogen storage electrode. As is clear from this figure, compared to conventional batteries, the battery using the negative electrode according to the present invention has
The temperature dependence of discharge capacity is small, so it can be used in a wide temperature range. Further, in FIG. 1, the discharge capacity of electrode a does not take the intermediate value between b and c as in the conventional case at each temperature, but shows a value higher than the intermediate value. This is thought to be because the hydrogen atoms in the alloy, which were difficult to dissociate in the case of a single alloy, became easier to discharge due to the influence of the other alloy, which was more likely to dissociate, resulting in an increase in capacity.

なお、複数の組成物の単なる合金粒子の混合物
では、各粒子間で、膨張の違いによるひび割れが
各部で起こり、割れが生じて、電極の寿命が極端
に短くなる。また接触電気抵抗が増大し、分極が
大きくなつて、放電電位が下がり、電極性能は本
願に比べて、著しく悪くなつた。
In addition, in a simple mixture of alloy particles of a plurality of compositions, cracks occur in various parts due to differences in expansion between each particle, resulting in cracking and extremely shortening the life of the electrode. Furthermore, the electrical contact resistance increased, the polarization increased, the discharge potential decreased, and the electrode performance was significantly worse than that of the present invention.

なお、実施例で述べた燃結法による電極形成法
の代わりに、ペースト法、すなわち、合金微粉末
に約10重量%の弗素樹脂を混合し、ニツケル製発
泡メタルに充てんし、加圧後、アルゴンガス気流
中で、弗素樹脂の融点より少し高い約300℃で約
1時間熱処理する方法によつて形成した電極で
は、第1図の特性に比べてCaNi5電極の放電容量
が若干向上し、その分CaNi5とLaNi5を用いた電
極も容量が若干伸びたが、使用可能な温度域の拡
大効果は全く同様であつた。
In addition, instead of the electrode formation method using the sintering method described in the example, a paste method was used, that is, a fine alloy powder was mixed with about 10% by weight of fluororesin, the mixture was filled into a nickel foam metal, and after pressurizing, For electrodes formed by a method of heat treatment for about 1 hour at about 300°C, which is slightly higher than the melting point of fluororesin, in an argon gas stream, the discharge capacity of the CaNi 5 electrode was slightly improved compared to the characteristics shown in Figure 1. The capacitance of the electrodes using CaNi 5 and LaNi 5 increased slightly, but the effect of expanding the usable temperature range was exactly the same.

第2図は、一体化多層構造に形成した水素吸蔵
電極の一例の模式図を示している。1は第1の水
素吸蔵合金粉末燃結体、2は第2の水素吸蔵合金
粉末燃結体であり、これらはニツケル製発泡メタ
ルの骨格3とともに強固に一体化し結合してい
る。また二種類の合金の境界面は、明瞭に定まつ
ているのではなく、一方の合金組成から極めて
徐々に他方の合金組成へと変化している。
FIG. 2 shows a schematic diagram of an example of a hydrogen storage electrode formed in an integrated multilayer structure. 1 is a first hydrogen-absorbing alloy powder sintered body, and 2 is a second hydrogen-absorbing alloy powder sintered body, which are firmly integrated and bonded together with a skeleton 3 of nickel foam metal. Furthermore, the interface between the two types of alloys is not clearly defined, but rather gradually changes from one alloy composition to the other alloy composition.

このように、複数個の水素吸蔵合金を、多層構
造体として一体化することによつて、各々単体の
特性を損なうことなく、放電容量の温度依存性を
改善し、使用温度域の拡大化を図れるのである。
この特性は、単にもとになる各単体合金の特性の
平均値だけからでは得られない効果が現われた結
果であり、その理由は、電解液濃度、成分、その
他の充放電条件などが定まつた時、その周囲温度
の条件下で、充放電のしやすさと水素吸蔵放出特
性との間に因果関係があり、数種類の合金を一体
化した場合、条件に合致した充・放電しやすい合
金を水素の出入口とするため、条件が合致しない
他の合金さえも、理論水素吸蔵能を損なうことな
く、充放電の容易化の方向に機能していくからと
考えられる。
In this way, by integrating multiple hydrogen storage alloys into a multilayer structure, we can improve the temperature dependence of discharge capacity and expand the operating temperature range without impairing the characteristics of each element. It can be achieved.
This property is the result of an effect that cannot be obtained simply from the average value of the properties of each base alloy, and the reason is that the electrolyte concentration, components, and other charge/discharge conditions are determined. Under the ambient temperature conditions, there is a causal relationship between the ease of charging and discharging and the hydrogen storage and desorption properties, and when several types of alloys are integrated, it is possible to find an alloy that is easy to charge and discharge that meets the conditions. This is thought to be because even other alloys that do not meet the conditions function as hydrogen inlets and outlets, making charging and discharging easier without impairing the theoretical hydrogen storage capacity.

ここで、一体化多層構造を形成する際の焼結法
における加圧圧力(100〜300Kg/cm2)や温度
(900〜1200℃)あるいはペースト法における合成
樹脂の量(10〜20%)や熱処理温度(200〜350
℃)は、水素吸蔵合金の種類や充てん量によつ
て、最適な値を定めることができる。
Here, the pressure (100-300Kg/ cm2 ) and temperature (900-1200℃) in the sintering method when forming an integrated multilayer structure, the amount of synthetic resin (10-20%) in the paste method, etc. Heat treatment temperature (200~350
℃) can be determined to an optimal value depending on the type of hydrogen storage alloy and the amount of filling.

また、本発明の水素吸蔵電極を用いた電池の充
放電サイクル寿命特性を調べた結果、従来のもの
より約10%寿命が向上することがわかつた。これ
は、単体合金では水素吸蔵・放出による電極の膨
張・収縮によつて生じる粒子間の結合・破壊に方
向性があり、そのため、サイクル数の増大に伴つ
て電極の物理的強度が減少し、電気抵抗が増大す
るのに対し、本発明電極の場合は、特性の異なる
合金間で相互に応力歪みを緩和する方向に作用し
たためと思われる。
Furthermore, as a result of examining the charge/discharge cycle life characteristics of a battery using the hydrogen storage electrode of the present invention, it was found that the life span was improved by about 10% compared to conventional batteries. This is because in single alloys, bonding and destruction between particles caused by expansion and contraction of the electrode due to hydrogen absorption and release are directional, and as a result, the physical strength of the electrode decreases as the number of cycles increases. This seems to be because, in contrast to the increase in electrical resistance, in the case of the electrode of the present invention, alloys with different characteristics acted in a direction to mutually relieve stress and strain.

発明の効果 以上のように、本発明は、単一の合金のみを使
用した水素吸蔵電極では不可能であつた温度領域
までも使用可能に改善した、広範囲使用温度型の
電池を提供することができる。
Effects of the Invention As described above, the present invention can provide a battery that can be used over a wide range of temperatures and can be used in a temperature range that is not possible with hydrogen storage electrodes using only a single alloy. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種水素吸蔵電極の放電容量の温度依
存特性図、第2図は、一体化多層構造電極の模式
図である。 1,2……相互に特性の異なる水素吸蔵合金粉
末焼結体、3……発泡メタルの骨格。
FIG. 1 is a temperature-dependent characteristic diagram of discharge capacity of various hydrogen storage electrodes, and FIG. 2 is a schematic diagram of an integrated multilayer structure electrode. 1, 2...Hydrogen storage alloy powder sintered body having mutually different properties, 3...Structure of foamed metal.

Claims (1)

【特許請求の範囲】[Claims] 1 相互に異なる水素解離平衡圧を有する複数の
水素吸蔵合金を電極支持体に平行に層状に重ねた
多層構造体に構成した水素吸蔵電極。
1. A hydrogen storage electrode configured into a multilayer structure in which a plurality of hydrogen storage alloys having mutually different hydrogen dissociation equilibrium pressures are layered in parallel to an electrode support.
JP59070236A 1984-04-09 1984-04-09 Hydrogen absorption electrode Granted JPS60212958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070236A JPS60212958A (en) 1984-04-09 1984-04-09 Hydrogen absorption electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070236A JPS60212958A (en) 1984-04-09 1984-04-09 Hydrogen absorption electrode

Publications (2)

Publication Number Publication Date
JPS60212958A JPS60212958A (en) 1985-10-25
JPH0241864B2 true JPH0241864B2 (en) 1990-09-19

Family

ID=13425726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070236A Granted JPS60212958A (en) 1984-04-09 1984-04-09 Hydrogen absorption electrode

Country Status (1)

Country Link
JP (1) JPS60212958A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630251B2 (en) * 1985-11-01 1994-04-20 三洋電機株式会社 Nickel-hydrogen secondary battery
JPH0687415B2 (en) * 1987-01-16 1994-11-02 三洋電機株式会社 Hydrogen storage electrode
US5250369A (en) * 1989-02-23 1993-10-05 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery
US5034289A (en) * 1989-02-23 1991-07-23 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method of producing negative electrode thereof
US5346781A (en) * 1989-02-23 1994-09-13 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234A (en) * 1974-08-19 1976-04-17 Philips Nv

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145234A (en) * 1974-08-19 1976-04-17 Philips Nv

Also Published As

Publication number Publication date
JPS60212958A (en) 1985-10-25

Similar Documents

Publication Publication Date Title
US5464654A (en) Hydrogen-occlusion electrode and a method of manufacturing the electrode
JPH0241864B2 (en)
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS5846827B2 (en) Manufacturing method of hydrogen storage electrode
JPH0212765A (en) Manufacture of hydrogen storage electrode
JPH02236955A (en) Nickel oxide-hydrogen alkaline storage battery
JPS638587B2 (en)
EP0777284B1 (en) Hydrogen absorbing alloy electrodes
JPH0456427B2 (en)
JP2631324B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3369824B2 (en) Hydrogen storage alloy electrode
JPS63195960A (en) Sealed alkaline storage battery
JPS6357913B2 (en)
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPS6077357A (en) Electrode which can absorb hydrogen
JPS60140657A (en) Production of hydrogen-occluding electrode
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP3369825B2 (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS6112344B2 (en)
JPH02183964A (en) Manufacture of hydrogen storage electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term