JPS638587B2 - - Google Patents

Info

Publication number
JPS638587B2
JPS638587B2 JP53114700A JP11470078A JPS638587B2 JP S638587 B2 JPS638587 B2 JP S638587B2 JP 53114700 A JP53114700 A JP 53114700A JP 11470078 A JP11470078 A JP 11470078A JP S638587 B2 JPS638587 B2 JP S638587B2
Authority
JP
Japan
Prior art keywords
silver
iron
storage battery
separator
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53114700A
Other languages
Japanese (ja)
Other versions
JPS5454245A (en
Inventor
Sarubatoore Buzeruri Edowaado
Shiodoa Buraun Jatsuku
Deibitsudo Riipu Jooji
Otsutoo Aizenbaagu Aanorudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of JPS5454245A publication Critical patent/JPS5454245A/en
Publication of JPS638587B2 publication Critical patent/JPS638587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/32Silver accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/30Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は鉄―銀蓄電池に関する。 〔従来の技術〕 金属繊維電流コレクタおよびFe3O4ペースト活
物質からできた負電極を使用する鉄―銀蓄電池は
業界において周知であり、米国特許願シリアルNo.
690444号(ブラウン)に開示されている。前記負
電極を25重量%KOH電解液中で銀電極と組合わ
せると、これらの蓄電池はすぐれた高エネルギー
密度を示すが、鉄電極の容量に制限があるために
電圧の調整が不充分である欠点がある。またこれ
らの蓄電池は完全な設計容量が得られるまでには
数回の充電―放電サイクルを必要とする長い化成
期間が必要であり、この長い化成処理中の鉄電極
からの活物質の脱落が起る。 〔問題点を解決するための手段〕 この発明による鉄―銀蓄電池は容器および蓋を
備え、それらの中に銀を包含する多孔性支持用電
極基板、その上に分散された銀からなる電極活性
物質および前記基板に結合した導電タブを備えた
少くとも1個の正電極と、焼結し相互に連絡し接
触した10ミクロン〜275ミクロンの直径の平均粒
子寸法をもつ鉄活性物質粒子からなる多孔性の充
分に活性化された電極構造と電極板に結合した導
電タブとを備える少くとも1個の負電極、電解液
中に含有される電解質またはイオンによる化学的
侵食に抵抗性をもち且つ銀イオンの拡散に有効で
あるがセパレータ上に銀の導電性フイルムが生成
するのは制限されるプラスチツク材料からなる、
電極間のセパレータ、基本的に1当り2.5〜65
グラムのLiOHを含む10重量%〜5重量%の
KOH水溶液からなる水酸化アルカリ電解液およ
び電極へ電気的接続を行う装置を備える。 〔作用〕 上記諸要素のこの組合わせはすぐれた性能特性
をもち、かつ長くかかる繰返し化成を必要としな
い蓄電池を与える。負電極は焼結した100%活物
質からなり、高度の構造上の一体性をもつから、
長い充放電サイクルに際しても活物質の脱落は起
らない。これらの蓄電池は非常に長期間の可使電
気化学的寿命をもち、少くとも50サイクルないし
500サイクルに亘つて、高価な鉄電極の添加物を
使用しないでも3時間放電率で、設計に応じ78〜
156ワツト・時/Kg(35〜70ワツト・時/ポンド)
および0.16〜0.19ワツト・時/cm3(2.5〜3ワツ
ト・時/立方インチ)のエネルギ密度を与える。 この発明の蓄電池は焼結した金属鉄電極を使用
するが、活性な金属状元素状鉄自体が全電極構造
物を構成する。この電極は硫黄または硫黄塩付活
剤を含まない。活性蓄電池物質は実質上純粋な鉄
粒子である。この物質は安価で商業的に入手でき
る酸化第二鉄(Fe2O3)から容易に製造できる。
Fe2O3は400℃〜1000℃で還元雰囲気中好適には
水素中で15分〜600分で金属状鉄に熱的に還元さ
れる。次いでそれを磨砕するか、或は他の方法で
粉状にして10ミクロン〜275ミクロンの平均粒子
寸法の粉末となす。275ミクロンより大きい粒径
では後で行う還元および焼結工程で問題を生ず
る。 整粒した鉄を次いで平板プレスのような適当な
プレス装置でプレスして取扱うことができる電極
基板構造体となす。この構造体を次いで700℃〜
1000℃で還元雰囲気好適にはH2中で約15分間焼
結する。鉄粒子はそれらの接触点で焼結されて鉄
からなる互に連絡した接触している金属構造物と
なる。 この電極は非常に薄いこと、すなわち約0.625
mm〜約3.75mm(約25ミル〜約150ミル)であるの
が有利である。それは2.5g/cm3〜3.5g/cm3の密
度、50%〜95%の有孔率、および高度の構造上の
一体性をもつ。多孔性の結合した粒子構造は100
%活性物質を含有し、支持構造体を必要としな
い。しかしニツケル、ニツケル被覆した、または
被覆しない鉄エキスバンデツドメタル格子または
他の電流コレクタを電極中に配置できる。電流コ
レクタはしかし表面の緻密化を防止するのに有利
である。この型の電極は重い支持体を使用しなく
てすみ、複雑な、そして時間のかかる電極基板に
ペーストを施用する必要はなく、または他の電極
基板充填技法を必要としない。 この電極は活物質を脱落させないし、また直ち
に放電することができ、活物質構造体1グラム当
り約0.5アンペア・時までの出力を与える。この
電極は使用前に充電―放電サイクルを繰返えす必
要はなく、付活剤浸漬工程または噴霧工程も必要
でなく、しかも非常に単純で、低価格で高出力の
鉄電極である。焼結した電極金属粉末は10ミクロ
ン〜275ミクロンの平均粒子寸法をもち、割れ目
や、こぶ状結節部や溶融球状物はなく、活物質構
造体と電解液との接触が容易である。 正電極板は銀または銀メツキした金属支持体、
一般に薄い穿孔した銀シートまたはエキスバンデ
ツド銀網、メツシユ、ネツト、またはストランド
構造体〔この中に好適には実質上純粋(少くとも
約98%純粋)な銀金属粒子を好適には粉末状で一
般にロール圧縮方法によつて施される〕から造る
ことができる。充填された支持用電極基板は次い
で熱焼結されて50%〜85%の有孔率の実質上純粋
な銀陽極が形成される。この工程中に少量の銀は
酸化されるが、酸化銀を故意に添加することはな
い。 この時点で鉄(負)電極と銀(正)電極とを交
互に配列し、それらの隣接する電極間に耐かせい
性のセパレータを置くことによつて電池を造り、
これらの電池を組合わせてFe―Ag蓄電池を造
る。セパレータは銀電極の近くで60%〜90%の有
孔率から、銀電極から遠ざかるに従つて微孔性構
造への勾配のある有孔率構造を持たねばならな
い。セパレータ層は交互に配置された下記のポリ
プロピレンシートであるのが好ましい。1枚のシ
ートの厚さは0.00625mm(0.25ミル)〜0.05mm(2
ミル)で、それらのシートは直径0.05ミクロンか
ら3ミクロンまでの平均孔径をもつ微孔性のもの
である。他のシートは厚さが0.075mm(3ミル)
〜0.2mm(8ミル)で、60%〜90の有孔率のポリ
プロピレンシートであり、これは直径3ミクロン
〜50ミクロンの平均孔径をもつ不織布であるのが
好ましい。 銀電極板は60%〜90%有孔率のセパレータ間
に、かつそれらに接触して配置される。電極板と
セパレータとのこの組合わせ物を次いで微孔性セ
パレータ間に配置する。短絡が生じないようにす
るために好適には2層のセパレータ、すなわち微
孔性、多孔性、微孔性、多孔性、電極板、多孔
性、微孔性、多孔性、微孔性セパレータの組合わ
せを使用すべきである。 この微孔性―フエルト状多孔性セパレータの組
合わせからなる多重層積層体は蓄電池にとつて必
須のもので、セパレータ上に銀の導電フイルムの
生成による短絡を防止し、銀イオンの拡散を可能
となすのに特に有効である。多重層セパレータの
合計の厚さは0.25mm(10ミル)〜1.5mm(60ミル)
であるべきで、このポリプロピレン積層体セパレ
ータは電解液中の電解質およびヒドロキシルイオ
ンによる作用を受けず、また銀により酸化もされ
ないから蓄電池の電気化学的環境下で安定であ
る。 多孔性層の粗面の織物構造は連続的な、或は嵩
高の銀の蓄積を防止するのに有効である。 100サイクル後に0.75重量%〜1.5重量%の銀が
移行により失われる。ポリプロピレンはこのよう
な移行を阻止しないが、上述の特殊の構造は蓄電
池の性能に有害な結果をもたらすことなしに前記
移行を抑制するのに特に有効である。この蓄電池
の独特の利点をうるのは純粋な焼結した鉄電極、
有用且つ有効なセパレータ系およびリチウム含有
(lithiated)アルカリ水酸化物電解液の組合わせ
によるものである。 最後に電解液を蓄電池に加える。この発明の鉄
―銀蓄電池にすぐれた活性を付与することが判明
した電解液は水酸化アルカリ溶液1当り2.5グ
ラム〜65グラムのLiOHを含有する10重量%〜50
重量%のKOHの水溶液から本質的になるリチウ
ム含有水酸化アルカリ電解液である。好適な電解
液は20重量%〜35重量%KOH水溶液1当り5
グラム〜30グラムのLiOHを含有する。 NaOHまたはKOH単独からなる電解液は許容
できる蓄電池容量または寿命特性を与えないこと
が意外にもこの蓄電池系において見出された。鉄
電極板に高価な付活剤を使用しないでもこの蓄電
池系を商業的に実用可能となす超高性能を付与す
るのは上述のリチウム含有KOHでけである。
LiOHはLi―Fe―O包接化合物を含むように思わ
れる中間反応生成物を鉄粒子表面上に生成すると
思われる。完全にはわからないが、これらの化合
物は明らかに活性蓄電池物質の効力を増大させ、
活性物の電導度を増大させ、充電電流と活性物質
との一層良好な接触を可能となす。 〔実施例〕 以下に例を掲げてこの発明を説明する。 例 1 第1図の透視図に示すような鉄―銀蓄電池を組
立てた。第1図について述べると、この蓄電池は
多数の焼結したFe粒子負電極板11、多数の銀
正電極板12、正電極板および負電極板間の板状
セパレータ13を備える。これらはすべて蓋1
5、通気孔装置16、正電極端子17、負電極端
子18を備えた容器14に収納される。正電極導
電タブ19は電池間接続耳部20に結合され、負
電極導電タブ21は正電極導電タブから180゜離れ
て配置され、電池間接続耳部22に結合している
ことが示されている。これらの導電タブはそれぞ
れの電極板へ電気的接続を行うための手段を与え
る。 リチウム含有KOH水溶液からなるアルカリ性
電解液は容器内の電極板およびセパレータに接触
する。好適には多孔性ポリプロピレンおよび微孔
性ポリプロピレンの多重層構造をもつ板状セパレ
ータは一般に13で示され、説明を明瞭にするた
めに電極板を包囲してはいない。電極板は多孔性
積層体(ply)からなる封筒タイプの構造のセパ
レータ中に滑り込ませて電極板と接触させる。 鉄電極板は商業的に入手し得る、約150〜250ミ
クロンの平均粒子寸法のFe2O3粉末から造られ
る。この粉末をニツケル製浅皿に入れ、水素雰囲
気中で750℃で51分間熱的に還元し、水素ガス中
で51分間放冷する。得られた物質を平均粒子寸法
が250ミクロン以下となるように再整粒し、次い
で2回目の還元を行うために上述のように加熱し
て元素状Feからなる材料となす。 各々鉄粒子約200グラムを含有する多数の電極
板を造つた。導電タブに溶接するための高密度部
分を造るために、両端部に2本の1.0mm(0.040イ
ンチ)のニツケルコイニングした棒を結合した
200mm×200mm×0.3mm(8インチ×8インチ×
0.012インチ)厚のエキスバンデツドニツケルメ
ツシユ電流コレクタの2枚のシート間に鉄粒子を
置いた。得られた複合体を100Kg/cm2(0.625ト
ン/平方インチ)およびそれ以上の圧力で平板プ
レスで圧縮成形し、2組の400cm2(64平方インチ)
の板を造つた。一組の板は2mm〜2.3mm(0.08イ
ンチ〜0.09インチ)の厚さをもち、他方の組は約
1.3mm(0.05インチ)の厚さをもつ。合体した圧
縮された板構造物はこの時点で取扱いは容易であ
る。圧縮後水素ガス中で900℃で11分間焼結し、
次いで水素ガス中で11分間冷却した。 相互連絡した、接触する鉄活物質を含有する上
記により造られた鉄粒子電極を実質上溶融しない
ように焼結した。得られた電極は構造的に堅く、
非常に丈夫であつた。電極は約2.7グラム/cm3
3.5グラム/cm3の密度および70%〜90%の有孔率
をもち、付活剤を含有しない。鉄電極板は充分に
還元され、直ちに放電可能である。これらの電極
板を厚さ2.0mm(0.08インチ)の電極板の場合に
は各々活性物質重量58グラムおよびニツケルコイ
ン棒を含めた合計重量81グラム、厚さ1.3mm
(0.05インチ)の電極板の場合には各々活物質重
量35グラムおよびニツケルコイン棒を含め合計重
量58グラムの、87.5mm×156.3mm(3.5インチ×
6.25インチ)の寸法に切つた。正電極として各々
重量が約75グラムで有孔度が約60%の84.38mm×
150mm×1.2mm(3.375インチ×6インチ×0.048イ
ンチ)の銀電極板を使用した。これらの電極板は
銀からなるメツシユスクリーン支持用基板中にロ
ーラープレスした本質的に純粋な銀粉末からなる
ものであつた。 鉄電極板および銀電極板に導電タブを結合さ
せ、これらを層成し負電極導電タブを正電極導電
タブから180゜離して配置した。第1図に示す蓄電
池は6個の銀電極と交互に配置された厚さ2mm
(0.08インチ)の袋入りされた内側の5個の鉄電
極と厚さ1.3mm(0.05インチ)の袋入りされた外
側の2個の鉄電極とからなる。これらの電極はポ
リプロピレン積層セパレータの袋によつて互に絶
縁されている。積層セパレータは3枚の交互に配
置された0.1〜2ミクロンの平均直径の孔をもつ
厚さ0.025mm(1ミル)の微孔性ポリプロピレン
シートと4枚の交互に配置された4〜30ミクロン
の平均直径の孔をもつ厚さ0.15mm(6ミル)の粗
い、80%有孔度の不織ポリプロピレンシートの層
とからなる。 積層セパレータで分離された鉄電極と銀電極と
の層成体を93.8mm×30mm×225mm(3.75インチ×
1.20インチ×9.00インチ)の寸法の厚さ6.2mm(1/
4インチ)のプラスチツクガラス蓄電池容器に収
納した。蓄電池端子への接続を容易にするために
容器の頂部を通して12.5mm(1/2インチ)外部へ
出るように、かつ容器の底部に深さ4.7mmの電解
液貯槽ができるように切つた。容器を頂部でエポ
キシ樹脂で封止し、減圧試験し、電解液を減圧充
てんした。電解液はKOH1当りLiOH15グラム
を添加した25重量%KOH水溶液366mlであつた。
蓄電池の合計重量は1750グラム(3.86ポンド)で
あつた。 組立てた蓄電池を次に一連の12時間〜15時間の
期間ずつ充電放電サイクルによつて試験して容量
定格およびエネルギ密度定格を定めた。0.9ボル
トのカツトオフ電圧になるまで10アンペアの放電
率(drain rate)を使用した。結果を下記の第1
表に掲げる。
[Industrial Field of Application] This invention relates to iron-silver storage batteries. BACKGROUND OF THE INVENTION Iron-silver storage batteries using metal fiber current collectors and negative electrodes made from Fe 3 O 4 paste active material are well known in the industry and are disclosed in U.S. patent application Ser.
No. 690444 (Brown). When the negative electrode is combined with a silver electrode in a 25 wt% KOH electrolyte, these batteries exhibit excellent high energy density, but the voltage regulation is insufficient due to the limited capacity of the iron electrode. There are drawbacks. Additionally, these batteries require a long formation period requiring several charge-discharge cycles before reaching their full design capacity, and active material may fall off from the iron electrode during this long formation process. Ru. [Means for Solving the Problems] The iron-silver storage battery according to the present invention comprises a container and a lid, a porous supporting electrode substrate containing silver therein, and an electrode active comprising silver dispersed thereon. at least one positive electrode with a conductive tab bonded to the material and said substrate, and porous particles of ferrous active material having an average particle size of 10 microns to 275 microns in diameter in interconnected and contacting contact with a material; at least one negative electrode comprising a fully activated electrode structure and a conductive tab bonded to the electrode plate, resistant to chemical attack by electrolytes or ions contained in the electrolyte and containing silver; consisting of a plastic material that is effective for ion diffusion but restricts the formation of a conductive film of silver on the separator;
Separator between electrodes, basically 2.5 to 65 per unit
10wt% to 5wt% containing g LiOH
It is equipped with an alkali hydroxide electrolyte consisting of an aqueous KOH solution and a device for electrically connecting to the electrodes. OPERATION This combination of the above elements provides a battery with excellent performance characteristics and which does not require lengthy and repeated formations. The negative electrode is made of 100% sintered active material and has a high degree of structural integrity.
The active material does not fall off even during long charge/discharge cycles. These batteries have a very long usable electrochemical life, at least 50 cycles or more.
78 to 78 depending on design at a 3 hour discharge rate for 500 cycles without the use of expensive iron electrode additives.
156 watts/hour/Kg (35-70 watts/hour/lb)
and an energy density of 0.16 to 0.19 watt-hour/cm 3 (2.5-3 watt-hour/cubic inch). Although the storage battery of this invention uses sintered metallic iron electrodes, the active metallic elemental iron itself constitutes the entire electrode structure. This electrode does not contain sulfur or sulfur salt activators. The active battery material is substantially pure iron particles. This material is easily manufactured from cheap and commercially available ferric oxide (Fe 2 O 3 ).
Fe 2 O 3 is thermally reduced to metallic iron at 400° C. to 1000° C. in a reducing atmosphere, preferably in hydrogen, for 15 minutes to 600 minutes. It is then ground or otherwise pulverized into a powder with an average particle size of 10 microns to 275 microns. Particle sizes greater than 275 microns cause problems in subsequent reduction and sintering steps. The sized iron is then pressed using a suitable press device such as a flat plate press to form a handleable electrode substrate structure. This structure is then heated to 700℃~
Sinter for approximately 15 min at 1000 °C in a reducing atmosphere, preferably H2 . The iron particles are sintered at their contact points into interconnected, contacting metal structures of iron. This electrode must be very thin, i.e. approximately 0.625
Advantageously from about 25 mils to about 150 mils. It has a density of 2.5 g/cm 3 to 3.5 g/cm 3 , a porosity of 50% to 95%, and a high degree of structural integrity. Porous bonded particle structure is 100
% active material and does not require a support structure. However, nickel, nickel coated or uncoated iron expanded metal grids or other current collectors can be placed in the electrodes. Current collectors, however, are advantageous in preventing surface densification. This type of electrode does not require heavy supports, complex and time-consuming paste application to electrode substrates, or other electrode substrate filling techniques. This electrode does not shed active material and is capable of rapid discharge, providing an output of up to about 0.5 amp hours per gram of active material structure. The electrode does not require repeated charge-discharge cycles before use, does not require activator dipping or spraying steps, and is a very simple, low cost, high power iron electrode. The sintered electrode metal powder has an average particle size of 10 microns to 275 microns and is free of cracks, nodules, and molten spherules, allowing easy contact between the active material structure and the electrolyte. The positive electrode plate is a silver or silver-plated metal support,
Typically, a thin perforated silver sheet or expanded silver screen, mesh, net, or strand structure containing preferably substantially pure (at least about 98% pure) silver metal particles, preferably in powdered form, is used. [generally applied by a roll compaction method]. The filled supporting electrode substrate is then thermally sintered to form a substantially pure silver anode of 50% to 85% porosity. Although a small amount of silver is oxidized during this process, no silver oxide is intentionally added. At this point, a battery is constructed by alternately arranging iron (negative) electrodes and silver (positive) electrodes and placing a caustic-resistant separator between adjacent electrodes;
These batteries are combined to create a Fe-Ag storage battery. The separator must have a porosity structure with a gradient from 60% to 90% porosity near the silver electrode to a microporous structure as it moves away from the silver electrode. Preferably, the separator layers are alternating polypropylene sheets as described below. The thickness of one sheet is 0.00625 mm (0.25 mil) to 0.05 mm (2
The sheets are microporous with average pore sizes ranging from 0.05 microns to 3 microns in diameter. Other sheets are 0.075mm (3 mil) thick
~0.2 mm (8 mil), 60% to 90 porosity polypropylene sheet, which is preferably a nonwoven fabric with an average pore size of 3 microns to 50 microns in diameter. Silver electrode plates are placed between and in contact with the 60%-90% porosity separators. This combination of electrode plates and separators is then placed between microporous separators. In order to avoid short circuits, preferably two layers of separators are used, namely microporous, porous, microporous, porous, electrode plates, porous, microporous, porous, microporous separators. A combination should be used. This multilayer laminate consisting of a combination of microporous and felt-like porous separators is essential for storage batteries, preventing short circuits due to the formation of a silver conductive film on the separator and allowing silver ions to diffuse. It is particularly effective for Multilayer separator total thickness is 0.25mm (10 mil) ~ 1.5mm (60 mil)
This polypropylene laminate separator is stable in the electrochemical environment of a storage battery because it is not affected by the electrolyte and hydroxyl ions in the electrolyte and is not oxidized by silver. The rough textured structure of the porous layer is effective in preventing continuous or bulk silver buildup. After 100 cycles, 0.75% to 1.5% silver is lost to migration. Although polypropylene does not inhibit such migration, the particular structure described above is particularly effective in inhibiting such migration without deleterious consequences to battery performance. The unique advantage of this battery is the pure sintered iron electrode,
Due to the combination of a useful and effective separator system and a lithiated alkaline hydroxide electrolyte. Finally, add the electrolyte to the battery. The electrolyte which has been found to impart excellent activity to the iron-silver storage battery of this invention contains 10% to 50% by weight of LiOH containing 2.5 to 65 grams of LiOH per alkaline hydroxide solution.
It is a lithium-containing alkaline hydroxide electrolyte consisting essentially of an aqueous solution of % by weight KOH. A suitable electrolyte is 20% to 35% by weight KOH aqueous solution per 5
Contains ~30 grams of LiOH. It has surprisingly been found in this battery system that electrolytes consisting of NaOH or KOH alone do not provide acceptable battery capacity or life characteristics. It is only the above-mentioned lithium-containing KOH that provides the iron electrode plates with the ultrahigh performance that makes this battery system commercially viable without the use of expensive activators.
LiOH appears to generate intermediate reaction products on the iron particle surface that appear to include Li-Fe-O clathrates. Although not completely understood, these compounds apparently increase the potency of active battery materials and
It increases the conductivity of the active material, allowing better contact between the charging current and the active material. [Example] The present invention will be described below with reference to examples. Example 1 An iron-silver storage battery as shown in the perspective view of Figure 1 was assembled. Referring to FIG. 1, the battery comprises a number of sintered Fe particle negative electrode plates 11, a number of silver positive electrode plates 12, and a plate-like separator 13 between the positive and negative electrode plates. These are all lid 1
5. It is housed in a container 14 equipped with a vent device 16, a positive electrode terminal 17, and a negative electrode terminal 18. Positive electrode conductive tab 19 is shown coupled to inter-battery connection ear 20, and negative electrode conductive tab 21 is positioned 180° from the positive electrode conductive tab and coupled to inter-battery connection ear 22. There is. These conductive tabs provide a means for making electrical connections to the respective electrode plates. An alkaline electrolyte consisting of a lithium-containing KOH aqueous solution comes into contact with the electrode plates and separator inside the container. A plate separator, preferably having a multilayer structure of porous polypropylene and microporous polypropylene, is indicated generally at 13 and does not surround the electrode plates for clarity of illustration. The electrode plate is slid into contact with the electrode plate by sliding it into a separator with an envelope-type structure made of porous laminate (PLY). The iron electrode plate is made from commercially available Fe2O3 powder with an average particle size of about 150-250 microns. This powder is placed in a shallow nickel dish, thermally reduced at 750°C for 51 minutes in a hydrogen atmosphere, and allowed to cool in hydrogen gas for 51 minutes. The resulting material is resized to an average particle size of less than 250 microns and then heated as described above for a second reduction to form a material consisting of elemental Fe. A number of electrode plates were made, each containing about 200 grams of iron particles. Two 1.0 mm (0.040 inch) nickel coined rods were joined at each end to create a dense section for welding to the conductive tab.
200mm x 200mm x 0.3mm (8 inches x 8 inches x
The iron particles were placed between two sheets of a 0.012 inch (0.012 inch) thick extracted-banded nickel mesh current collector. The resulting composite was compression molded in a flat plate press at pressures of 100 Kg/cm 2 (0.625 ton/in 2 ) and above, and two sets of 400 cm 2 (64 ton/in 2 )
I made a board. One set of boards has a thickness of 2 mm to 2.3 mm (0.08 inch to 0.09 inch), and the other set has a thickness of approx.
It has a thickness of 1.3 mm (0.05 inch). The combined compacted plate structure is now easy to handle. After compression, sintering in hydrogen gas at 900℃ for 11 minutes,
It was then cooled in hydrogen gas for 11 minutes. The iron particle electrodes prepared above containing interconnected and contacting iron active materials were sintered so as to be substantially unmelted. The resulting electrode is structurally rigid;
It was very durable. Electrode is approximately 2.7 g/cm 3 ~
It has a density of 3.5 grams/cm 3 and a porosity of 70% to 90% and contains no activator. The iron electrode plate is fully reduced and ready for discharge. If these electrode plates are 2.0 mm (0.08 inch) thick, each has an active material weight of 58 grams and a total weight of 81 grams including the nickel coin bar, and a thickness of 1.3 mm.
(0.05 inch) electrode plates, each with an active material weight of 35 grams and a total weight of 58 grams including the Nickel coin rod, 87.5 mm x 156.3 mm (3.5 inch x
6.25 inches). As positive electrodes, each weighs approximately 75 grams and has a porosity of approximately 60%, 84.38mm×
A 150 mm x 1.2 mm (3.375 inch x 6 inch x 0.048 inch) silver electrode plate was used. These electrode plates consisted of essentially pure silver powder roller pressed into a silver mesh screen support substrate. Conductive tabs were bonded to the iron electrode plate and the silver electrode plate, and these were layered, with the negative electrode conductive tab being placed 180° apart from the positive electrode conductive tab. The storage battery shown in Figure 1 has six silver electrodes arranged alternately with a thickness of 2 mm.
(0.08 inch) inner bag of 5 iron electrodes and 1.3 mm (0.05 inch) thick bag of 2 outer iron electrodes. These electrodes are insulated from each other by a polypropylene laminated separator bag. The laminated separator consists of three alternating 0.025 mm (1 mil) thick microporous polypropylene sheets with 0.1 to 2 micron average diameter pores and four alternating 0.025 mm (1 mil) thick microporous polypropylene sheets with 4 to 30 micron average diameter pores. and a layer of coarse, 80% porous, nonwoven polypropylene sheet 0.15 mm (6 mil) thick with average diameter pores. The laminated structure of iron electrode and silver electrode separated by a laminated separator is 93.8 mm x 30 mm x 225 mm (3.75 inch x
Thickness 6.2mm (1/20" x 9.00") dimensions
It was housed in a 4-inch plastic glass storage battery container. A cut was made to allow 1/2 inch (12.5 mm) to exit through the top of the container to facilitate connection to the battery terminals, and to provide a 4.7 mm deep electrolyte reservoir at the bottom of the container. The container was sealed at the top with epoxy resin, vacuum tested, and filled with electrolyte under vacuum. The electrolyte was 366 ml of a 25% by weight KOH aqueous solution to which 15 grams of LiOH was added per 1 KOH.
The total weight of the battery was 1750 grams (3.86 pounds). The assembled batteries were then tested through a series of charge-discharge cycles for 12-15 hour periods to determine capacity and energy density ratings. A drain rate of 10 amps was used to a cutoff voltage of 0.9 volts. Submit the results in the first section below.
Listed in the table.

【表】 これらの容量およびエネルギ密度値は、焼結し
た、付活剤を含まないFe電極;銀電極;多重層
セパレータ;リチウム含有KOH電解液を含む蓄
電池は高性能、長寿命の蓄電池であり、セパレー
タを通して電極が短絡しないことを示す。この蓄
電池はすぐれた電圧特性(変動率)、高充電許容
性、単位重量当りの高エネルギ貯蔵性、安定な性
能特性をもつ長寿命をもつことを示す。サイクル
化成を必要としない。 この蓄電池は60時間率から3時間率にわたる非
常に種々の速度で充電でき、ほとんど一定の容量
となすことができる。全く同様な蓄電池を蓄電池
を試験したが、全サイクル操作中種々の放電率に
よつて安全な容量を示した。第2図は同様なタイ
プの蓄電池の電圧:アンペア・時の曲線を示す。
サイクル操作は27サイクルに対して一定の充電電
流(25アンペアで8時間充電)および放電電流が
維持したが、電池の容量は本質的に一定であつ
た。 この蓄電池は高充電許容性、すなわち容量の損
失なしに長期サイクルに亘つた90%以上の充電許
容性を示す。他の有利な特性は1日当り1%未満
の低放置放電性、30日以上に亘つてフロート充電
できる能力、容量の損失なしに電池を逆さにでき
る能力、および0℃〜95℃の広熱的動作範囲をも
つことである。全く同様な蓄電池を0.9ボルトの
中止電圧まで3時間放電率で100サイクルの間試
験したが、約89ワツト・時/Kg(40ワツト・時/
ポンド)のエネルギ貯蔵密度および電池1cm3(1
立方インチ)当り0.16(2.5)ワツト・時のエネル
ギ貯蔵密度を与えた。 この蓄電池は意図する目的および蓄電池装置に
応じて、単に個々の電極の寸法を変えることによ
つて種々の大きさおよび形状に造ることができ
る。この蓄電池な非常に安定で、信頼性があり、
広動作温度範囲をもち、海中および宇宙環境にお
いて特に有用である。 例 2 比較例として電解液が25重量%のKOH水溶液
で、LiOHを含まない以外は上述の例1のものと
全く同様な鉄―銀蓄電池を造つた。 組立てた蓄電池を次いで一連の8時間継続充電
および3時間継続放電試験サイクルにより試験し
て蓄電池の容量およびエネルギ密度を定めた。
0.9ボルトのカツト・オフ電圧まで50アンペアの
放電率を使用した。結果を第2表に掲げる。
[Table] These capacity and energy density values indicate that a battery containing a sintered, activator-free Fe electrode; a silver electrode; a multilayer separator; and a lithium-containing KOH electrolyte is a high-performance, long-life battery. , indicating that the electrodes are not shorted through the separator. This battery exhibits excellent voltage characteristics (rate of fluctuation), high charge tolerance, high energy storage per unit weight, and long life with stable performance characteristics. Does not require cycle conversion. This battery can be charged at very different rates ranging from a 60 hour rate to a 3 hour rate and can be made to a nearly constant capacity. Identical batteries were tested and showed safe capacity at various discharge rates during full cycle operation. FIG. 2 shows the voltage:amp-hour curve for a similar type of storage battery.
Cycling maintained constant charge current (8 hour charge at 25 amps) and discharge current for 27 cycles, but the capacity of the battery remained essentially constant. This battery exhibits high charge tolerance, ie, more than 90% charge tolerance over extended cycles without loss of capacity. Other advantageous properties include low shelf life of less than 1% per day, the ability to float charge for over 30 days, the ability to invert the battery without loss of capacity, and wide thermal stability from 0°C to 95°C. It has a range of motion. An identical battery tested for 100 cycles at a 3 hour discharge rate to a termination voltage of 0.9 volts yielded approximately 89 watts/kg (40 watts/kg).
energy storage density of 1 cm 3 (1 lb) and battery 1 cm 3 (1
gave an energy storage density of 0.16 (2.5) watt-hours per cubic inch. Depending on the intended purpose and the storage battery arrangement, this accumulator can be constructed in various sizes and shapes simply by varying the dimensions of the individual electrodes. This storage battery is very stable and reliable.
It has a wide operating temperature range, making it particularly useful in underwater and space environments. Example 2 As a comparative example, an iron-silver storage battery was made which was exactly the same as in Example 1 above, except that the electrolyte was a 25% by weight KOH aqueous solution and did not contain LiOH. The assembled battery was then tested through a series of 8 hour continuous charge and 3 hour continuous discharge test cycles to determine the capacity and energy density of the battery.
A discharge rate of 50 amps was used to a cut-off voltage of 0.9 volts. The results are listed in Table 2.

【表】 これらの容量値およびエネルギ密度値はこの発
明の蓄電池における電解液にLiOHを添加した顕
著で非常に有益な結果を示すものである。他の鉄
電極蓄電池系についての実験は電解液にナトリウ
ムを含有させても同様な結果が得られることが期
待されることを示した。 [発明の効果] この発明による蓄電池は、すぐれた電圧特性
(変動率)、高充電許容性、単位重量当りの高エネ
ルギー貯蔵性、安定な性能特性をもち長寿命であ
る。また、サイクル化成を必要としない。さら
に、この蓄電池は非常に安定で、信頼性があり、
広動作温度範囲をもち、海中および宇宙環境にお
いて特に有用である。
Table: These capacity and energy density values demonstrate the significant and highly beneficial results of adding LiOH to the electrolyte in the storage battery of this invention. Experiments with other iron electrode storage battery systems have shown that similar results are expected to be obtained when sodium is included in the electrolyte. [Effects of the Invention] The storage battery according to the present invention has excellent voltage characteristics (rate of fluctuation), high charge tolerance, high energy storage per unit weight, stable performance characteristics, and has a long life. Moreover, no cycle chemical conversion is required. Moreover, this storage battery is very stable and reliable.
It has a wide operating temperature range, making it particularly useful in underwater and space environments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電池の斜視図、第2図はこ
の発明と同様なタイプの蓄電池の電圧対アンペ
ア・時曲線を示す図である。図中: 11…負電極板、12…正電極板、13…セパ
レータ、14…容器、15…蓋、16…通気孔装
置、17…正電極端子、18…負電極端子、19
…正電極導電タブ、20…電池間接続耳部、21
…負導電タブ、22…電池間接続耳部。
FIG. 1 is a perspective view of a battery according to the present invention, and FIG. 2 is a diagram showing a voltage versus ampere-time curve of a storage battery of a similar type to the present invention. In the figure: 11...Negative electrode plate, 12...Positive electrode plate, 13...Separator, 14...Container, 15...Lid, 16...Vent hole device, 17...Positive electrode terminal, 18...Negative electrode terminal, 19
...Positive electrode conductive tab, 20...Battery connection ear, 21
...Negative conductive tab, 22...Battery connection ear.

Claims (1)

【特許請求の範囲】 1 容器と蓋と、その中に少なくとも1個の正電
極板、少なくとも1個の負電極板、電極板間に配
置されたセパレータおよび水酸化アルカリ電解液
を収納し、前記セパレータは電解液中に含有され
る電解質またはイオンによる化学的侵食に耐える
ことができ、且つ銀イオンを拡散させるのに有効
であるがセパレータ上に銀の導電性フイルムの形
成は制限するプラスチツク材料からなる鉄―銀蓄
電池において、上記少なくとも1個の正電極板が
銀を含む多孔性支持用電極基板と該基板上に分散
した銀からなる電極活物質を備え、上記少なくと
も1個の負電極板が10〜275ミクロンの直径の平
均粒子寸法をもつ焼結された元素状鉄活物質粒子
からなる50〜95%の有孔度の多孔性の充分に活性
化された電極構造をなし、電解液がKOH1当た
り2.5グラム〜65グラムのLiOHを含有する10重量
%〜50重量%のKOH水溶液からなることを特徴
とする、鉄―銀蓄電池。 2 負電極板が0.625mm〜3.75mmの厚さをもち、
金属格子電流コレクタを含み、元素状鉄粒子が
Fe2O3の熱還元により造られたものである特許請
求の範囲第1項記載の鉄―銀蓄電池。 3 負電極板が硫黄含有付活剤を含まず割れ目や
こぶ状結節物や溶融した球状物を含まない特許請
求の範囲第1項または第2項記載の鉄―銀蓄電
池。 4 セパレータが0.05ミクロン〜3ミクロンの平
均直径の孔をもつ少なくとも1層の微孔性セパレ
ータポリプロピレンシートと3ミクロン〜50ミク
ロンの平均直径の孔をもち60%〜90%有孔率の少
なくとも1層のポリプロピレンセパレータシート
とからなる特許請求の範囲第1項または第2項ま
たは第3項記載の鉄―銀蓄電池。 5 微孔性セパレータポリプロピレンシートが
0.00625mm〜0.050mmの厚さで、60%〜90%有孔率
のポリプロピレンセパレータシートが0.075mm〜
0.20mmの厚さで、各シートの多数を交互に組合わ
せてセパレータを造り、銀電極板がセパレータ間
に配置され且つそれらと接触して配置される、特
許請求の範囲第4項記載の鉄―銀蓄電池。 6 銀電極活物質が少なくとも98%純粋な銀から
なる、特許請求の範囲第4項または第5項記載の
鉄―銀蓄電池。 7 電解液がKOH1当たり約10グラム〜約30グ
ラムのLiOHを含有する20重量%〜35重量%の
KOH水溶液からなる、特許請求の範囲第1項か
ら第6項までのいずれか1項に記載の鉄―銀蓄電
池。
[Scope of Claims] 1. A container and a lid, in which at least one positive electrode plate, at least one negative electrode plate, a separator disposed between the electrode plates, and an alkaline hydroxide electrolyte are housed; The separator is made from plastic materials that can resist chemical attack by electrolytes or ions contained in the electrolyte and are effective at diffusing silver ions but limit the formation of a conductive film of silver on the separator. In the iron-silver storage battery, the at least one positive electrode plate comprises a porous supporting electrode substrate containing silver and an electrode active material consisting of silver dispersed on the substrate, and the at least one negative electrode plate comprises: A porous, fully activated electrode structure with a porosity of 50-95% consisting of sintered elemental iron active material particles with an average particle size of 10-275 microns in diameter; An iron-silver storage battery, characterized in that it consists of a 10% to 50% by weight KOH aqueous solution containing 2.5 to 65 grams of LiOH per KOH. 2. The negative electrode plate has a thickness of 0.625 mm to 3.75 mm,
Contains a metal lattice current collector, with elemental iron particles
The iron-silver storage battery according to claim 1, which is produced by thermal reduction of Fe 2 O 3 . 3. The iron-silver storage battery according to claim 1 or 2, wherein the negative electrode plate does not contain a sulfur-containing activator and does not contain cracks, nodules, or molten spherules. 4 The separator has at least one layer of microporous separator polypropylene sheet with pores having an average diameter of 0.05 microns to 3 microns and at least one layer of 60% to 90% porosity having pores having an average diameter of 3 microns to 50 microns. The iron-silver storage battery according to claim 1, 2, or 3, comprising a polypropylene separator sheet. 5 Microporous separator polypropylene sheet
0.00625mm~0.050mm thickness and 60%~90% porosity polypropylene separator sheet from 0.075mm
4. Iron according to claim 4, with a thickness of 0.20 mm, in which separators are constructed by combining a large number of each sheet in an alternating manner, and silver electrode plates are arranged between and in contact with the separators. -Silver storage battery. 6. The iron-silver storage battery according to claim 4 or 5, wherein the silver electrode active material consists of at least 98% pure silver. 7 The electrolyte contains about 10 grams to about 30 grams of LiOH per KOH of 20% to 35% by weight.
The iron-silver storage battery according to any one of claims 1 to 6, comprising a KOH aqueous solution.
JP11470078A 1977-09-20 1978-09-20 Ironnsilver battery Granted JPS5454245A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83494277A 1977-09-20 1977-09-20

Publications (2)

Publication Number Publication Date
JPS5454245A JPS5454245A (en) 1979-04-28
JPS638587B2 true JPS638587B2 (en) 1988-02-23

Family

ID=25268175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11470078A Granted JPS5454245A (en) 1977-09-20 1978-09-20 Ironnsilver battery

Country Status (5)

Country Link
JP (1) JPS5454245A (en)
DE (1) DE2839272A1 (en)
FR (1) FR2403654A1 (en)
GB (1) GB1557773A (en)
SE (1) SE447432B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4383015A (en) * 1982-01-08 1983-05-10 Westinghouse Electric Corp. Iron-silver battery having a shunt electrode
GB2195201A (en) * 1986-08-01 1988-03-30 Univ City Batteries having an aqueous alkaline electrolyte
AT399424B (en) * 1992-07-10 1995-05-26 Miba Sintermetall Ag METHOD FOR PRODUCING A SINTER ELECTRODE FOR A GALVANIC ELEMENT
MX2021000733A (en) * 2018-07-27 2021-05-12 Form Energy Inc Negative electrodes for electrochemical cells.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133833A (en) * 1974-09-17 1976-03-23 Matsushita Electric Ind Co Ltd

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1370950A (en) * 1971-12-21 1974-10-16 Agency Ind Science Techn Process for preparing a sintered iron negative plate for an alkaline storage battery
JPS5313776B2 (en) * 1974-05-24 1978-05-12
DE2614773C2 (en) * 1976-04-06 1984-10-18 Varta Batterie Ag, 3000 Hannover Electric accumulator with positive nickel oxide electrodes and negative iron electrodes and method for producing an iron electrode
US4078125A (en) * 1976-05-27 1978-03-07 Westinghouse Electric Corporation Energy density iron-silver battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133833A (en) * 1974-09-17 1976-03-23 Matsushita Electric Ind Co Ltd

Also Published As

Publication number Publication date
SE7809811L (en) 1979-05-10
FR2403654A1 (en) 1979-04-13
FR2403654B1 (en) 1984-02-10
DE2839272A1 (en) 1979-03-29
GB1557773A (en) 1979-12-12
SE447432B (en) 1986-11-10
JPS5454245A (en) 1979-04-28

Similar Documents

Publication Publication Date Title
KR100349755B1 (en) Anode Electrochemical Battery for Stacked Wafer Cell
US5200281A (en) Sintered bipolar battery plates
CA1072177A (en) High energy density iron-silver battery
US4792505A (en) Electrodes made from mixed silver-silver oxides
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
US3592693A (en) Consumable metal anode with dry electrolytic enclosed in envelope
US3409474A (en) Hydrogen storing electrode and process for its manufacture
US4383015A (en) Iron-silver battery having a shunt electrode
AU2014212256B2 (en) Coated iron electrode and method of making same
CN201465812U (en) Chip omniseal non-solid electrolyte tantalum capacitor
JPS638587B2 (en)
JPH09293649A (en) Electric double layered capacitor
US3790409A (en) Storage battery comprising negative plates of a wedge-shaped configuration
JP3049854B2 (en) Sealed battery
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JPH0241864B2 (en)
US3533843A (en) Zinc electrode and method of forming
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
TW202329508A (en) Zinc battery
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JPH0722028A (en) Sealed alkaline zinc storage battery
JP2584075B2 (en) Manufacturing method of nickel-hydrogen storage battery
JP2023039628A (en) Zinc battery negative electrode and zinc battery
KR20200080221A (en) Electrodes with current collector multiple arrays
JPH0562707A (en) Stacked type nickel-hydrogen battery