JPH0562707A - Stacked type nickel-hydrogen battery - Google Patents

Stacked type nickel-hydrogen battery

Info

Publication number
JPH0562707A
JPH0562707A JP3223900A JP22390091A JPH0562707A JP H0562707 A JPH0562707 A JP H0562707A JP 3223900 A JP3223900 A JP 3223900A JP 22390091 A JP22390091 A JP 22390091A JP H0562707 A JPH0562707 A JP H0562707A
Authority
JP
Japan
Prior art keywords
negative electrode
group
electrode plates
nickel
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3223900A
Other languages
Japanese (ja)
Inventor
Hajime Seri
肇 世利
Hiromu Matsuda
宏夢 松田
Kazuhiro Ota
和宏 太田
Tadao Kimura
忠雄 木村
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3223900A priority Critical patent/JPH0562707A/en
Publication of JPH0562707A publication Critical patent/JPH0562707A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase energy density larger than conventional device by improving a group constitution. CONSTITUTION:Positive electrodes, consisted mainly of a nickel oxide, and negative electrodes, consisted mainly of a hydrogen storage alloy, are alternately stacked, electrode plates at both sides of the group are designed to be negative electrodes. The capacity of the negative electrodes at both sides of the group is designed to range from 44 to 55%. The energy density of a battery can be increased than conventional ones by this constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気自動車などの大容量
を必要とする用途に用いられる積層型ニッケル−水素蓄
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated nickel-hydrogen storage battery used in applications requiring large capacity such as electric vehicles.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池としては、鉛電池とアルカリ電池がある。このうちア
ルカリ蓄電池は高信頼性が期待でき、小形軽量化も可能
であるなどの理由で小型電池は各種ポ−タブル機器用
に、大型電池は産業用として使われてきた。
2. Description of the Related Art Lead batteries and alkaline batteries are widely used as storage batteries for various power sources. Among them, small batteries have been used for various portable devices and large batteries have been used for industrial purposes because they can be expected to have high reliability and can be made compact and lightweight.

【0003】このアルカリ蓄電池の正極は、一部空気極
や酸化銀極なども取り上げられているが、ほとんどの場
合ニッケル極が用いられている。このニッケル極はポケ
ット式から焼結式に替わって特性が向上し、さらに電池
の密閉化が可能になるとともに用途も広がった。
As the positive electrode of this alkaline storage battery, although an air electrode, a silver oxide electrode and the like are partially taken up, a nickel electrode is used in most cases. The characteristics of this nickel electrode have improved from the pocket type to the sintered type, and it has become possible to seal the battery and expand its applications.

【0004】一方、負極としてはカドミウムの他に、亜
鉛、鉄、水素などが対象となっているが、現在のところ
カドミウム極が主体である。ところが、近年、水素を可
逆的に吸蔵・放出しうる水素吸蔵合金電極が注目され、
製法などに多くの提案がされている。この水素吸蔵合金
電極は、理論容量密度がカドミウム極より大きく、亜鉛
極のような変形やデンドライトの形成などもないことか
ら、長寿命・無公害であり、しかも高エネルギー密度を
有するアルカリ蓄電池用負極として期待されている。
On the other hand, as the negative electrode, in addition to cadmium, zinc, iron, hydrogen, etc. are targeted, but at present, the cadmium electrode is mainly used. However, in recent years, a hydrogen storage alloy electrode capable of reversibly storing and releasing hydrogen has attracted attention,
Many proposals have been made for manufacturing methods. This hydrogen storage alloy electrode has a theoretical capacity density larger than that of a cadmium electrode, and does not have the deformation like a zinc electrode or the formation of dendrites. Therefore, it has a long life, no pollution, and a high energy density negative electrode for alkaline storage batteries. Is expected as.

【0005】このような水素吸蔵合金電極を負極に用い
たニッケル−水素蓄電池は円筒密閉タイプのものはすで
に実用化されているが、電池容量が小さいためポータブ
ル電子機器などに用途が限定されている。もっと大きな
容量を必要とするもの、例えば電気自動車用などには積
層タイプの電池が注目を集めている。
A nickel-hydrogen storage battery using such a hydrogen-absorbing alloy electrode as a negative electrode has already been put into practical use in a cylindrical sealed type, but its use is limited to portable electronic devices and the like because of its small battery capacity. .. Stacked type batteries are attracting attention for those requiring a larger capacity, such as those for electric vehicles.

【0006】[0006]

【発明が解決しょうとする課題】しかし、このような従
来の積層型水素吸蔵合金電極の理論容量密度は大きいも
のの、それを負極に用いた積層型ニッケル−水素蓄電池
は、現状では水素吸蔵合金電極の理論容量密度から期待
されるほどのエネルギー密度が得られていない。
However, even though such a conventional laminated hydrogen storage alloy electrode has a large theoretical capacity density, a laminated nickel-hydrogen storage battery using it as a negative electrode is currently used as a hydrogen storage alloy electrode. The energy density expected from the theoretical capacity density of is not obtained.

【0007】本発明はこのような課題を解決するもの
で、群構成を改良することにより、従来よりもエネルギ
ー密度の大きな積層型ニッケル−水素電池を提供するこ
とを目的とするものである。
The present invention solves such a problem, and an object thereof is to provide a laminated nickel-hydrogen battery having a larger energy density than before by improving the group structure.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
るために本発明は、水酸化ニッケルを主体とする正極、
水素吸蔵合金を主体とする負極、セパレーターおよび電
解液とを備え、前記正極板と前記負極板が交互に積層さ
れた群構成であり、その群の両端の極板が負極板である
積層型ニッケル−水素蓄電池にあって、群の両端の負極
板それぞれの容量が、他の負極板の容量の45〜55%
であるようにしたものである。
In order to solve such a problem, the present invention provides a positive electrode containing nickel hydroxide as a main component,
Laminated nickel having a negative electrode mainly composed of a hydrogen storage alloy, a separator and an electrolytic solution, and having a group structure in which the positive electrode plates and the negative electrode plates are alternately laminated, and the electrode plates at both ends of the group are negative electrode plates. -In a hydrogen storage battery, the capacity of each of the negative plates at both ends of the group is 45 to 55% of the capacity of the other negative plates.
It was made to be.

【0009】また、負極板は発泡状ニッケルを芯体に用
いた極板であり、群の両端の負極板が他の負極板と極板
面積が同じで極板厚みが45〜55%であるようにした
ものである。
The negative electrode plate is an electrode plate using foamed nickel as a core, and the negative electrode plates at both ends of the group have the same electrode plate area as other negative electrode plates and the electrode plate thickness is 45 to 55%. It was done like this.

【0010】また、群の両端以外の負極板が発泡状ニッ
ケルを芯体に用いた極板であり、群の両端の負極板が焼
結式あるいはペースト塗着式極板を用いるようにしたも
のである。
Further, the negative electrode plates other than both ends of the group are electrode plates using foamed nickel as a core, and the negative electrode plates at both ends of the group are sintered type or paste coated type electrode plates. Is.

【0011】[0011]

【作用】本発明の積層型ニッケル−水素蓄電池は、群の
両端の負極板のそれぞれの容量が他の負極板の容量の約
1/2であるため、群の両端の負極板の重量を小さくす
ることや極板厚みを薄くすることができる。したがっ
て、本発明の積層型ニッケル−水素蓄電池は、従来の電
池に比べてエネルギー密度を大きくすることができるこ
ととなる。
In the laminated nickel-hydrogen storage battery of the present invention, the capacity of each of the negative electrode plates at both ends of the group is about 1/2 of the capacity of the other negative electrode plates, so that the weight of the negative electrode plates at both ends of the group is reduced. The thickness of the electrode plate can be reduced. Therefore, the laminated nickel-hydrogen storage battery of the present invention can have a higher energy density than the conventional battery.

【0012】[0012]

【実施例】以下に本発明の一実施例の積層型ニッケル−
水素蓄電池について説明する。
EXAMPLE A laminated nickel-metal alloy according to an example of the present invention will be described below.
The hydrogen storage battery will be described.

【0013】縦90mm、横72mmの発泡状ニッケル板に
水酸化ニッケル粉末と金属コバルト粉末を水と混合した
ペーストを充填したものを正極板とし、水素吸蔵合金M
mNi3.55Mn0.4Al0.3Co0.75を3wt%のポリビニ
ルアルコール水溶液と混合したペーストを充填したもの
を負極板とした。セパレーターには厚さ0.15mmのポ
リアミド不織布を、電解液には比重1.30の水酸化カ
リウム水溶液を用いた。
A foamed nickel plate having a length of 90 mm and a width of 72 mm filled with a paste prepared by mixing nickel hydroxide powder and metallic cobalt powder with water is used as a positive electrode plate.
A negative electrode plate was prepared by filling a paste in which mNi 3.55 Mn 0.4 Al 0.3 Co 0.75 was mixed with a 3 wt% polyvinyl alcohol aqueous solution. A 0.15 mm-thick polyamide nonwoven fabric was used as the separator, and an aqueous potassium hydroxide solution having a specific gravity of 1.30 was used as the electrolyte.

【0014】まず、本発明の積層型ニッケル−水素蓄電
池の一例について説明する。正極板10枚、負極板11
枚の構成とし、そのうち負極板2枚は他の負極板の1/
2の容量にするために正負極とも10枚と考えて、極板
群の厚さが電槽の幅の95%になるように正極板および
負極板の厚さを決定した。そして正極板を厚さ0.87m
mに、負極板を厚さ0.72mmにプレスし、それぞれの極
板をセパレーターを袋状にしたものに挿入した。また、
水素吸蔵合金の充填量を上記負極板の容量の1/2にし
た負極板を厚さ0.36mmにプレスし、袋状に形成した
セパレーターに挿入した。このような正極板10枚と、
厚さ0.72mmの負極板9枚と、厚さ0.36mmの負極板
2枚を、両端が厚さ0.36mmの負極板になるように正
負交互に重ね合わせた。この極板群を幅30mm(内寸2
3mm)、長さ83mm、高さ125mmの電槽に挿入し、7
4.9mlの電解液を加えた後、密閉構造とした。電池重
量は783.4g であった。
First, an example of the laminated nickel-hydrogen storage battery of the present invention will be described. 10 positive plates, 11 negative plates
The negative electrode plate is one of the other negative electrode plates.
In order to make the capacity of 2, both positive and negative electrodes were considered to be 10, and the thicknesses of the positive electrode plate and the negative electrode plate were determined so that the thickness of the electrode plate group was 95% of the width of the battery case. And the positive electrode plate is 0.87m thick
The negative electrode plate was pressed to m to a thickness of 0.72 mm, and each of the electrode plates was inserted into a separator having a bag shape. Also,
A negative electrode plate in which the filling amount of the hydrogen storage alloy was ½ of the capacity of the negative electrode plate was pressed to a thickness of 0.36 mm and inserted into a bag-shaped separator. 10 such positive electrode plates,
Nine negative electrode plates having a thickness of 0.72 mm and two negative electrode plates having a thickness of 0.36 mm were alternately laminated so that both ends were negative electrode plates having a thickness of 0.36 mm. Width of this plate group is 30mm
3 mm), length 83 mm, height 125 mm
After adding 4.9 ml of electrolyte, the structure was sealed. The battery weight was 783.4 g.

【0015】つぎに比較例として、正極板10枚、負極
板11枚の構成とし、極板群の厚さが電槽の幅の95%
になるように正極板および負極板の厚さを決定した。そ
して正極板を厚さ0.81mmに、負極板を厚さ0.68mm
にプレスし、それぞれの極板を袋状に形成したセパレー
ター内に挿入した。このような正極板10枚と負極板1
1枚を両端が負極板になるように正負交互に重ね合わせ
た。この極板群を上記と同じ大きさの電槽に挿入し、7
0.2mlの電解液を加えた後、密閉構造とした。この場
合の電池重量は776.0gであった。
Next, as a comparative example, 10 positive plates and 11 negative plates were used, and the thickness of the electrode plate group was 95% of the width of the battery case.
The thicknesses of the positive electrode plate and the negative electrode plate were determined so that The positive electrode plate has a thickness of 0.81 mm and the negative electrode plate has a thickness of 0.68 mm.
Then, each electrode plate was inserted into a separator formed in a bag shape. Ten such positive plates and one negative plate 1
One sheet was positively and negatively stacked alternately so that both ends were negative electrode plates. Insert this plate group into a battery case of the same size as above,
After adding 0.2 ml of electrolyte, a closed structure was obtained. The battery weight in this case was 776.0 g.

【0016】これらの電池を20℃の雰囲気で3Aで1
5時間充電し、1時間放置した後6Aで1.0Vまで放
電した。ついで45℃で48時間エージングした後、再
度20℃の雰囲気で3Aで15時間充電し、1時間放置
した後6Aで1.0Vまで放電した。この2サイクル目
の放電容量を比べた。比較例の電池では32.6Ahで
あったのに対し、本発明の電池では34.8Ahであっ
た。エネルギー密度で比べると、比較例の電池では重量
エネルギー密度が50.4Wh/kg、容積エネルギー密度が
134.5Wh/lであったが、本発明の電池ではそれぞれ
53.3Wh/kg、143.5Wh/lであり、重量エネルギー
密度が5.8%、容積エネルギー密度が6.7%増大し
た。
These batteries were subjected to 1 at 3 A in an atmosphere of 20 ° C.
The battery was charged for 5 hours, left for 1 hour, and then discharged at 6 A to 1.0V. Then, after aging at 45 ° C. for 48 hours, the battery was charged again at 3 ° C. for 15 hours in an atmosphere of 20 ° C., left for 1 hour and then discharged at 6 A to 1.0 V. The discharge capacities of this second cycle were compared. The battery of the comparative example was 32.6 Ah, while the battery of the present invention was 34.8 Ah. Comparing the energy densities, the battery of the comparative example had a weight energy density of 50.4 Wh / kg and the volume energy density of 134.5 Wh / l, but the batteries of the present invention had 53.3 Wh / kg and 143.5 Wh, respectively. The weight energy density was increased by 5.8% and the volumetric energy density was increased by 6.7%.

【0017】積層型で群構成をした場合、群の両端の負
極板に関しては片面しか正極板と面していないため、活
物質の1/2は充放電に関与しないと考えられる。した
がって、群の両端の負極板の容量をそれら以外の負極板
の容量の1/2にしても容量は低下しない。負極板の容
量を1/2にすれば、極板重量が小さくなるため重量エ
ネルギー密度が大きくなる。また、極板厚みを小さくす
ることができるので電槽を薄くすることができ、容積エ
ネルギー密度も大きくなる。
In the case of a laminated type group structure, since only one side of the negative electrode plates at both ends of the group faces the positive electrode plate, it is considered that 1/2 of the active material does not participate in charge / discharge. Therefore, the capacity does not decrease even if the capacity of the negative electrode plates at both ends of the group is set to 1/2 of the capacity of the other negative electrode plates. If the capacity of the negative electrode plate is halved, the weight of the electrode plate is reduced and the weight energy density is increased. Further, since the thickness of the electrode plate can be made small, the battery case can be made thin and the volumetric energy density also becomes large.

【0018】本実施例では同じ大きさの電槽を用いて本
発明の電池と比較例の電池を比べたが、本発明の電池の
方がエネルギー密度が大きいのは上述したことと同じ理
由による。
In this example, the battery of the present invention was compared with the battery of the comparative example by using the same size battery case, but the battery of the present invention has a higher energy density for the same reason as described above. ..

【0019】なお、本実施例では両端の負極板の容量を
他の負極板の1/2に構成した例について説明したが、
45〜55%の負極容量にしても同様の効果が得られ
た。
In this embodiment, an example in which the capacity of the negative electrode plates at both ends is set to 1/2 of that of the other negative electrode plates has been described.
Similar effects were obtained even with a negative electrode capacity of 45 to 55%.

【0020】また、群の両端の負極板を焼結式極板また
はペースト塗着式極板を用いても極板重量が小さくな
り、エネルギー密度を大きくすることができる。
Further, even if the negative electrode plates at both ends of the group are formed by sintering type electrode plates or paste coating type electrode plates, the electrode plate weight can be reduced and the energy density can be increased.

【0021】[0021]

【発明の効果】本発明の積層型ニッケル−水素蓄電池
は、群の両端の負極板の容量が他の負極板の容量の45
〜55%であるため、群の両端の負極板の重量を小さく
することや極板厚みを薄くすることができる。そのた
め、本発明の積層型ニッケル−水素蓄電池は、従来の電
池に比べてエネルギー密度を大きくすることができる。
In the laminated nickel-metal hydride storage battery of the present invention, the capacity of the negative electrode plates at both ends of the group is 45 times that of the other negative electrode plates.
Since it is ˜55%, it is possible to reduce the weight of the negative electrode plates on both ends of the group and to reduce the thickness of the electrode plates. Therefore, the laminated nickel-hydrogen storage battery of the present invention can have a higher energy density than conventional batteries.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 忠雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tadao Kimura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yoshinori Toyoguchi, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水酸化ニッケルを主体とする正極と、水素
吸蔵合金を主体とする負極と、前記正極と負極を隔離す
るセパレーターと、電解液とを備え、前記正極板と前記
負極板が交互に積層された群構成であり、その群の両端
の極板が負極板である積層型ニッケル−水素蓄電池であ
って、群の両端の負極板の容量が、他の負極板の容量の
45〜55%である積層型ニッケル−水素蓄電池。
1. A positive electrode mainly composed of nickel hydroxide, a negative electrode mainly composed of hydrogen storage alloy, a separator separating the positive electrode and the negative electrode, and an electrolytic solution, wherein the positive electrode plate and the negative electrode plate are alternated. A laminated nickel-hydrogen storage battery in which the electrode plates at both ends of the group are negative electrode plates, and the capacity of the negative electrode plates at both ends of the group is 45 to 45% of that of other negative electrode plates. 55% stacked nickel-metal hydride storage battery.
【請求項2】負極板は発泡状ニッケルを芯体に用いた極
板であり、群の両端の負極板が他の負極板と極板面積が
同じで極板厚みが45〜55%である請求項1記載の積
層型ニッケル−水素蓄電池。
2. The negative electrode plate is an electrode plate using foamed nickel as a core, and the negative electrode plates at both ends of the group have the same electrode plate area as the other negative electrode plates and the electrode plate thickness is 45 to 55%. The stacked nickel-hydrogen storage battery according to claim 1.
【請求項3】群の両端以外の負極板が発泡状ニッケルを
芯体に用いた極板であり、群の両端の負極板が焼結式あ
るいはペースト塗着式極板である請求項1記載の積層型
ニッケル−水素蓄電池。
3. A negative electrode plate other than both ends of the group is an electrode plate using foamed nickel as a core, and negative electrode plates at both ends of the group are sintering type or paste coating type electrode plates. Stacked nickel-hydrogen storage battery.
JP3223900A 1991-09-04 1991-09-04 Stacked type nickel-hydrogen battery Pending JPH0562707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223900A JPH0562707A (en) 1991-09-04 1991-09-04 Stacked type nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223900A JPH0562707A (en) 1991-09-04 1991-09-04 Stacked type nickel-hydrogen battery

Publications (1)

Publication Number Publication Date
JPH0562707A true JPH0562707A (en) 1993-03-12

Family

ID=16805470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223900A Pending JPH0562707A (en) 1991-09-04 1991-09-04 Stacked type nickel-hydrogen battery

Country Status (1)

Country Link
JP (1) JPH0562707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103424A (en) * 1997-03-12 2000-08-15 Sanyo Electric Co., Ltd. Rectangular battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103424A (en) * 1997-03-12 2000-08-15 Sanyo Electric Co., Ltd. Rectangular battery

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
KR20020053807A (en) Rechargeable nickel-zinc cells
CA2380954A1 (en) Supercapacitor device with extended capability
JPH0562707A (en) Stacked type nickel-hydrogen battery
JP3049854B2 (en) Sealed battery
JPH0582158A (en) Sealed rectangular alkaline storage battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JPH09265981A (en) Nickel electrode for alkaline storage battery
JPH0737609A (en) Alkaline storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JPS58129789A (en) Flat type nickel-cadmium battery
JPS638587B2 (en)
JP2988974B2 (en) Prismatic nickel-metal hydride storage battery
JPH04109556A (en) Closed-type secondary battery
JP3135239B2 (en) Nickel positive electrode for batteries
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JP3370111B2 (en) Hydrogen storage alloy electrode
JP3136688B2 (en) Nickel-hydrogen storage battery
JP2003173815A (en) Sealed square alkaline storage battery
JPH06124704A (en) Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPS59151776A (en) Sealed alkaline storage battery
JPH0554906A (en) Lamination type nickel-hydrogen storage battery
JPH05290835A (en) Rectangular nickel-hydrogen storage battery