JPS6077357A - Electrode which can absorb hydrogen - Google Patents

Electrode which can absorb hydrogen

Info

Publication number
JPS6077357A
JPS6077357A JP58185354A JP18535483A JPS6077357A JP S6077357 A JPS6077357 A JP S6077357A JP 58185354 A JP58185354 A JP 58185354A JP 18535483 A JP18535483 A JP 18535483A JP S6077357 A JPS6077357 A JP S6077357A
Authority
JP
Japan
Prior art keywords
electrode
nickel
phase
hydrogen storage
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58185354A
Other languages
Japanese (ja)
Inventor
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Koji Gamo
孝治 蒲生
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58185354A priority Critical patent/JPS6077357A/en
Publication of JPS6077357A publication Critical patent/JPS6077357A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the mechanical strength and the charge-and-discharge cycle life of an electrode which can absorb hydrogen by preventing any separation of the hydrogen-absorbing material from the surface of the electrode and preventing any cracks from developing in the electrode. CONSTITUTION:After titanium of at least 99.5% purity and nickel are weighed in an atomic ratio of 2:1, the mixture is heated and molten in an argon atmosphere in an arc melting furnace to produce a Ti2Ni alloy. An alloy powder 4 obtained by pulverizing this alloy principally consists of the Ti2Ni phase and contains the TiNi phase, the TiNi3 phase and simple metals of the Ti phase and the Ni phase. The alloy powder 4 is packed into a foamy metal 3 made of nickel before pressing is performed, then the pressed body is sintered in vacuum at 920 deg.C for one hour thereby making a sintered electrode. After that, sputter vapordeposition is performed on both surfaces of the plate body of the sintered electrode by using a sputter device until the sintered electrode is coated with thin nickel films 2 of 1,000Angstrom thickness, thereby obtaining an electrode which can absorb hydrogen. In addition to nickel, electrolyte resistant metals such as a stainless steel can be used as a material used to form thin metallic vapordeposition films.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えばアルカリ蓄電池の陰極に用いられる水
素吸蔵電極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in hydrogen storage electrodes used, for example, as cathodes of alkaline storage batteries.

従来例の構成とその問題点 水素吸蔵電極は水素吸蔵材を三次元の網目構造を有する
ニッケルなどの金属多孔体、いわゆる発泡状メタルの内
部に保持させる構造がとられている。
Conventional Structure and Problems The hydrogen storage electrode has a structure in which a hydrogen storage material is held inside a metal porous material such as nickel having a three-dimensional network structure, so-called foamed metal.

一般に発泡状のメタル(以下発泡メタルと記す)を用い
る電極は、三次元の網目の中に水素吸蔵材粉末、あるい
は水素吸蔵合金を形成する単体金属の混合粉末を充填し
て加圧成形し、焼結温度あるいは合金化する温度で熱処
理を行−て製造される。
Generally, electrodes using foamed metal (hereinafter referred to as foamed metal) are made by filling a three-dimensional mesh with hydrogen storage material powder or a mixed powder of a single metal that forms a hydrogen storage alloy and press-forming it. Manufactured by heat treatment at sintering or alloying temperatures.

しかし、発泡メタル中に水素吸蔵材を充填して比較的強
固に電極を製造しても、電解液中で水素の吸蔵、放出を
繰り返している内に、水素吸蔵材の膨張、収縮が繰り返
され、電極構成材料相互の結合力は弱まり、電極表面よ
り徐々て水素吸蔵材の脱落が発生し始め容量低下の原因
となる。さらに、発泡メタルは電極作成時の熱処理によ
り、水素吸蔵材あるいは単体金属の一部と反応し1発泡
メタルが合金化する場合がある。その結果、発泡メタル
本来の骨格強度を消失してもろくなり、充・放電を繰り
返すことにより電極に亀裂を生じたりする。また1発泡
メタルが形成する合金の一部には水素吸蔵材を形成する
ものもある。この様な場合、電極支持体の一部が充・放
電により水素の吸蔵・放出を繰り返すことになり、電極
の強度は更に低下する。例えば、水素吸蔵材としてチタ
ン1二。
However, even if a relatively strong electrode is manufactured by filling a foamed metal with a hydrogen absorbing material, the hydrogen absorbing material will repeatedly expand and contract as it repeatedly absorbs and releases hydrogen in the electrolyte. , the bonding force between the electrode constituent materials weakens, and the hydrogen storage material gradually begins to fall off from the electrode surface, causing a decrease in capacity. Further, due to the heat treatment during electrode production, the foamed metal may react with the hydrogen storage material or a part of the single metal, and one foamed metal may become alloyed. As a result, the foamed metal loses its original skeletal strength and becomes brittle, and repeated charging and discharging can cause cracks in the electrodes. In addition, some of the alloys formed by the metal foam form hydrogen storage materials. In such a case, a portion of the electrode support repeatedly absorbs and releases hydrogen due to charging and discharging, and the strength of the electrode further decreases. For example, titanium 12 is used as a hydrogen storage material.

ケル系合金を用いた場合、発泡メタルの材質がニッケル
であれば、一部分はT 12Ni 、 T iNi等の
金属水素化物を形成する合金を生成し、充・放電により
更に電極の強度は低下すること((なる。以上のような
問題を解決するために、例えば特開昭53−32349
号公報では水素吸蔵電極の表面を多孔性ニッケル焼結層
で被覆することが提案されている。しかし、この多孔性
ニッケル層の厚さは0.6〜3覗であり、単位重量当り
の容量(Ah/f)あるいは単位容積当りの容量(Ah
/cc)が小さくなる。
When using a Kel-based alloy, if the material of the foam metal is nickel, some alloys that form metal hydrides such as T 12Ni and TiNi will be formed, and the strength of the electrode will further decrease due to charging and discharging. ((In order to solve the above problems, for example, Japanese Patent Application Laid-Open No. 53-32349
The publication proposes coating the surface of the hydrogen storage electrode with a porous sintered nickel layer. However, the thickness of this porous nickel layer is 0.6 to 3 mm, and the capacity per unit weight (Ah/f) or the capacity per unit volume (Ah
/cc) becomes smaller.

発明の目的 本発明は、このような従来の問題点を除去するものであ
り、水素吸蔵材の脱落がなく、電極の亀裂や強度低下を
防止し、長期間、充・放電の可能な水素吸蔵電極を提供
するものである。
Purpose of the Invention The present invention eliminates these conventional problems, and provides a hydrogen storage material that does not cause the hydrogen storage material to fall off, prevents cracks in the electrodes and decreases in strength, and can be charged and discharged for a long period of time. It provides electrodes.

発明の構成 本発明は、発泡メタルに水素吸蔵材を充填した水素吸蔵
電極の表面を蒸着により金属薄膜を形成を用い、充・放
電によって、発泡メタル内にある水素吸蔵材の脱落、電
極自体の亀裂、強度の低下などによる容量減少とサイク
ル寿命の低下を防止する。
Structure of the Invention The present invention uses vapor deposition to form a metal thin film on the surface of a hydrogen storage electrode in which a foamed metal is filled with a hydrogen storage material.Charging and discharging prevents the hydrogen storage material in the foamed metal from falling off and the electrode itself. Prevents capacity loss and cycle life reduction due to cracks, strength loss, etc.

実施例の説明 以下本発明をその実施例により説明する。市販の純度9
9.5%以上のチタンとニッケルを原子比で2:lKな
るように秤量し、アーク溶解炉でアルゴン雰囲気中で加
熱溶解させ、Ti2Ni合金を得た。この合金を粉砕し
て、37μm (30メツシユ)以下の合金粉末を得た
。得られた合金粉末は主としてT 12 N i相から
なり、その他には、T1Ni相、TiNi3相、および
Ti相、Ni相の単体金属から成る。
DESCRIPTION OF EMBODIMENTS The present invention will now be described by way of embodiments. Commercially available purity 9
9.5% or more of titanium and nickel were weighed to have an atomic ratio of 2:1K, and heated and melted in an argon atmosphere in an arc melting furnace to obtain a Ti2Ni alloy. This alloy was pulverized to obtain alloy powder of 37 μm (30 meshes) or less. The obtained alloy powder mainly consists of a T 12 N i phase, and also consists of a T1Ni phase, a TiNi3 phase, and single metals of a Ti phase and a Ni phase.

この合金粉末を材質がニッケルである発泡メタル(30
×30順)に充填し、1 、8 t on/ciでプレ
スした後、真空中(10’−’〜10−’Torr) 
テ920℃の温度で約1時間焼結して、焼結電極を得た
This alloy powder is applied to a foamed metal (30 mm) made of nickel.
x 30 order) and pressed at 1,8 ton/ci, in vacuum (10'-' to 10-' Torr)
Sintering was performed at a temperature of 920° C. for about 1 hour to obtain a sintered electrode.

次て、この焼結電極の板状体の両面てスパッタ装置を用
いてニッケル薄膜の厚さが1o○○人になるようにスパ
ッタ蒸着し、ニッケル薄膜で電極の両面を被覆した厚さ
0.95+++mの水素吸蔵電極を得た。この電極をA
とし、比較のためにニッケル薄膜を被覆してない電極を
Bとする。本実施例の電極を第1図に示し、aは正面図
、bは底面図、Cは側面図である。
Next, a thin nickel film was sputter-deposited on both sides of the plate-shaped sintered electrode using a sputtering device so that the thickness of the nickel film was 10 mm, and both sides of the electrode were coated with the thin nickel film to a thickness of 0 mm. A hydrogen storage electrode of 95+++ m was obtained. This electrode is A
For comparison, an electrode not coated with a nickel thin film is designated as B. The electrode of this example is shown in FIG. 1, in which a is a front view, b is a bottom view, and C is a side view.

第1図において、本発明の電極は、水素吸蔵材4を内蔵
した発泡メタル3の表面にニッケル薄膜2を蒸着形成し
、発泡メタル3にリード端子1を固定したものである。
In FIG. 1, the electrode of the present invention has a nickel thin film 2 formed by vapor deposition on the surface of a foamed metal 3 containing a hydrogen storage material 4, and a lead terminal 1 fixed to the foamed metal 3.

これらの電極を陰極とし、公知のニッケル電極を陽極と
してアルカリ蓄電池を構成した。充電は水素吸蔵材17
当たり200 mAで、放電は17当だ950 mAの
条件で行った。充放電を繰り返したときの放電容量の変
化を第2図に示す。なお、放電は酸化水銀電極に対する
陰極電位で一700%V−Jでとし、寿命は初期1〜5
ザイクルの容量のZ以下に低下した時点とした。放電容
量は陰極の水素吸蔵材の単位重量当たりの値で示した。
An alkaline storage battery was constructed using these electrodes as cathodes and a known nickel electrode as an anode. Charging is done using hydrogen storage material 17
The discharge was carried out at 950 mA for 17 cycles. Figure 2 shows the change in discharge capacity when charging and discharging were repeated. The discharge was performed at a cathode potential of -700% V-J with respect to the mercury oxide electrode, and the initial life was 1 to 5.
The time point was defined as the point when the capacitance of the cycle decreased to Z or less. The discharge capacity was expressed as a value per unit weight of the hydrogen storage material of the cathode.

第2図かられかる様に、発泡メタルに水素吸蔵A2を充
填した水素吸蔵電極の板状体の両面をニッケル薄膜で被
覆することにより、初期放電容量はBに比較して低い、
充・放電サイクル数はBの2倍以上向上している。すな
わち、Bは充・放電の繰り返しで水素吸蔵材の膨張・収
縮が繰り返され、電極構成材料相互の結合が弱くなり電
極表面から脱落が認められた。さらに、支持体の発泡メ
タルが水素吸蔵材と合金をつくり、強度が低下して電極
の中央部分に亀裂が生じた。
As shown in Fig. 2, by covering both sides of the plate-like body of the hydrogen storage electrode, which is a foam metal filled with hydrogen storage A2, with a nickel thin film, the initial discharge capacity is lower than that of B.
The number of charge/discharge cycles is more than twice that of B. That is, in B, the hydrogen storage material expanded and contracted repeatedly due to repeated charging and discharging, and the bond between the electrode constituent materials became weaker, and it was observed that they fell off from the electrode surface. Furthermore, the foamed metal of the support formed an alloy with the hydrogen storage material, reducing its strength and causing a crack in the center of the electrode.

これに対し、本発明の電極Aは、電極の両面をニッケル
薄膜で被覆しているので、水素吸蔵材の脱落および電極
の亀裂は発生しない。従って、400サイクル以上充・
放電を繰り返しても、容量低下は殆んど認められず良好
な特性を示している。
In contrast, in the electrode A of the present invention, both surfaces of the electrode are coated with a nickel thin film, so that the hydrogen storage material does not fall off and the electrode does not crack. Therefore, it can be charged for more than 400 cycles.
Even after repeated discharges, almost no decrease in capacity was observed, showing good characteristics.

上記実施例と同様な方法で焼結電極を作り、スパッタ装
置でニスケル薄膜の厚さの異なった水素吸蔵電極を作成
し、同様にアルカリ蓄電池を構成し充・放電試験をした
。この結果を下表に示す。
A sintered electrode was made in the same manner as in the above example, and hydrogen storage electrodes with Niskel thin films of different thicknesses were made using a sputtering device, and an alkaline storage battery was constructed in the same manner and a charge/discharge test was conducted. The results are shown in the table below.

以下余白 表に示した8種類の電極において、電極■、■のニッケ
ル薄膜の厚さでは、被覆の効果はほとんどないことがわ
かった。これは、ニッケル薄膜の厚さが非常に薄く、金
属薄膜を被覆しない場合と同様に、充・放電の繰り返し
で電極に亀裂が生じ、その部分から活物質の脱落が発生
する。電極■から効果が現われ、電極■〜■は400サ
イクルでほとんど変化はなく、ニッケル薄膜の効果があ
ることがわかる。従って、ニッケル薄膜の厚さは、60
0人〜2000人程度が適当で、それより薄いとその効
果は小さく、それより厚いと放電容量密度が小さくなる
。蒸着が薄膜であるため、単位重量当りの容量(Ah/
!i′)、あるいは単位容積当りの容量(Ah/cc)
は殆んと低下せず、高容量、長寿命の電柱が得られる。
In the eight types of electrodes shown in the margin table below, it was found that the thickness of the nickel thin film for electrodes (1) and (2) had almost no coating effect. This is because the thickness of the nickel thin film is very thin, and as in the case where no metal thin film is covered, cracks occur in the electrode due to repeated charging and discharging, and the active material falls off from the cracks. The effect appears from electrode (1), and there is almost no change in electrodes (2) to (2) after 400 cycles, indicating that the nickel thin film has an effect. Therefore, the thickness of the nickel thin film is 60
Approximately 0 to 2,000 people are suitable; if it is thinner than that, the effect will be small, and if it is thicker than that, the discharge capacity density will be small. Since the vapor deposition is a thin film, the capacity per unit weight (Ah/
! i') or capacity per unit volume (Ah/cc)
There is almost no decrease in the amount of electricity, and a utility pole with high capacity and long life can be obtained.

などのアルカリ電解液中で耐食性のある材料が適用でき
る。
Materials that are resistant to corrosion in alkaline electrolytes, such as, can be applied.

発明の効果 以上のように本発明は、発泡メタルに水素吸蔵材を充填
した水素吸蔵電極の表面を蒸着金属薄膜で被覆する事に
より、電極表面からの水素吸蔵相の脱落、電極の亀裂が
なくし、機械的強度の優れた、充・放電ザイクル寿命の
良好な水素吸蔵電極を得るものである。
Effects of the Invention As described above, the present invention eliminates the dropping of the hydrogen storage phase from the electrode surface and the cracking of the electrode by coating the surface of the hydrogen storage electrode, which is a foamed metal filled with a hydrogen storage material, with a vapor-deposited metal thin film. , a hydrogen storage electrode with excellent mechanical strength and a good charge/discharge cycle life is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

電極ば今・1面図、第2図は水素吸蔵電極を用いたアl
\ ルカリ蓄電池の充・放電に伴う放電容量の変化を示す図
である。 2−ニッケル薄膜、3 ・・・発泡メタル、4・ ・水
素吸蔵材。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ((L) (b) (C) 第2図 光 放免サイクル数
The first view of the electrode area, and Figure 2 shows the electrode area using a hydrogen storage electrode.
\ It is a diagram showing changes in discharge capacity due to charging and discharging of a lucali storage battery. 2-nickel thin film, 3...foamed metal, 4...hydrogen storage material. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure ((L) (b) (C) Figure 2 Light release cycle number

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵材を充填した発泡メタルの表面を蒸着金属薄膜
で被覆したことを特徴とする水素吸蔵電極。
A hydrogen storage electrode characterized in that the surface of a foamed metal filled with a hydrogen storage material is coated with a vapor-deposited metal thin film.
JP58185354A 1983-10-04 1983-10-04 Electrode which can absorb hydrogen Pending JPS6077357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58185354A JPS6077357A (en) 1983-10-04 1983-10-04 Electrode which can absorb hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185354A JPS6077357A (en) 1983-10-04 1983-10-04 Electrode which can absorb hydrogen

Publications (1)

Publication Number Publication Date
JPS6077357A true JPS6077357A (en) 1985-05-01

Family

ID=16169316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185354A Pending JPS6077357A (en) 1983-10-04 1983-10-04 Electrode which can absorb hydrogen

Country Status (1)

Country Link
JP (1) JPS6077357A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433848A (en) * 1987-07-29 1989-02-03 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode
WO1998021767A2 (en) * 1996-11-13 1998-05-22 Eltech Systems Corporation Metal foam support member for secondary battery electrode
US8440080B2 (en) * 2006-05-17 2013-05-14 Ozomax Inc. Portable ozone generator and use thereof for purifying water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433848A (en) * 1987-07-29 1989-02-03 Matsushita Electric Ind Co Ltd Manufacture of hydrogen absorbing electrode
WO1998021767A2 (en) * 1996-11-13 1998-05-22 Eltech Systems Corporation Metal foam support member for secondary battery electrode
WO1998021767A3 (en) * 1996-11-13 1998-08-13 Eltech Systems Corp Metal foam support member for secondary battery electrode
US8440080B2 (en) * 2006-05-17 2013-05-14 Ozomax Inc. Portable ozone generator and use thereof for purifying water

Similar Documents

Publication Publication Date Title
JPH03191040A (en) Hydrogen storage alloy electrode
JPS6077357A (en) Electrode which can absorb hydrogen
JPS618848A (en) Nickel-hydrogen storage battery
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPS60212958A (en) Hydrogen absorption electrode
JP3171401B2 (en) Hydride rechargeable battery
JPH084003B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof
JPS5840828B2 (en) Manufacturing method of hydrogen storage electrode
JP3011437B2 (en) Hydrogen storage alloy electrode
JP2999785B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JPH0410175B2 (en)
JPH04187733A (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS61176067A (en) Hydrogen occlusion electrode
JPH0137827B2 (en)
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH0586622B2 (en)
JP3370111B2 (en) Hydrogen storage alloy electrode
JPH05156395A (en) Hydrogen storage alloy excellent in corrosion resistance and negative electrode for secondary battery using it
JP3276677B2 (en) Hydrogen storage alloy electrode
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JPH06279900A (en) Hydrogen storage alloy and electrode using the alloy
JP2962765B2 (en) Sealed alkaline storage battery
JPH0963569A (en) Hydrogen storage alloy electrode and manufacture thereof