JPH084003B2 - Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof - Google Patents

Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof

Info

Publication number
JPH084003B2
JPH084003B2 JP63201621A JP20162188A JPH084003B2 JP H084003 B2 JPH084003 B2 JP H084003B2 JP 63201621 A JP63201621 A JP 63201621A JP 20162188 A JP20162188 A JP 20162188A JP H084003 B2 JPH084003 B2 JP H084003B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
battery
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63201621A
Other languages
Japanese (ja)
Other versions
JPH0251860A (en
Inventor
健次 井上
孝直 松本
誠司 亀岡
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63201621A priority Critical patent/JPH084003B2/en
Publication of JPH0251860A publication Critical patent/JPH0251860A/en
Publication of JPH084003B2 publication Critical patent/JPH084003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、アルカリ蓄電池の負極として用いられる水
素吸蔵合金電極及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of an alkaline storage battery and a method for producing the same.

(ロ) 従来の技術 従来から使用されている蓄電池としては、例えばニツ
ケル−カドミウム蓄電池、鉛蓄電池などがあるが、近
年、これらの電池より軽量且つ高容量、高エネルギー密
度となる可能性を有する金属−水素アルカリ蓄電池が注
目されている。
(B) Conventional technology As a storage battery that has been conventionally used, for example, nickel-cadmium storage battery, lead storage battery, and the like, but in recent years, a metal having a possibility of being lighter in weight, higher in capacity, and higher in energy density than these batteries. -Attention is being paid to hydrogen alkaline storage batteries.

この金属−水素アルカリ蓄電池は、通常、正極には金
属酸化物を活物質とした電極を用い、一方、負極には水
素を可逆的に吸蔵、放出することのできる水素吸蔵合金
からなる水素吸蔵合金電極を使用することにより、前記
電池が構成される。
This metal-hydrogen alkaline storage battery normally uses an electrode having a metal oxide as an active material for the positive electrode, and a hydrogen storage alloy composed of a hydrogen storage alloy capable of reversibly storing and releasing hydrogen in the negative electrode. The battery is constructed by using electrodes.

このような水素吸蔵合金電極としては、例えば特開昭
61−99277号公報に記載されるようにLaNi5やCaNi5等の
水素を吸蔵する合金粉末を導電材粉末と共に焼結し焼結
多孔体としたものや、水素吸蔵合金粉末と導電剤粉末と
を結着剤によって結合させたもの等が知られている。
An example of such a hydrogen storage alloy electrode is disclosed in
As described in 61-99277, LaNi 5 and CaNi 5 alloy powders that occlude hydrogen such as CaNi 5 are sintered together with a conductive material powder to form a sintered porous body, and a hydrogen storage alloy powder and a conductive agent powder. Those in which the above are bound by a binder are known.

(ハ) 発明が解決しようとする課題 このような水素吸蔵合金電極における電極反応は、水
素吸蔵合金の固相と、電解液の液相が接する2相界面で
進行する。それ故、従来の方法で製造された水素吸蔵合
金電極においては、水素吸蔵合金が電解液と接触しやす
い電極表面のみに電極反応が集中し、電極内部の水素吸
蔵合金の利用率が低くなる。このため、この種電池は、
高率放電時の電池電圧の降下及び電池容量の減少が大き
く、更に高率充電時の水素ガス発生により電池内圧が上
昇するという問題点を有していた。
(C) Problem to be Solved by the Invention The electrode reaction in such a hydrogen storage alloy electrode proceeds at a two-phase interface where the solid phase of the hydrogen storage alloy and the liquid phase of the electrolytic solution are in contact with each other. Therefore, in the hydrogen storage alloy electrode manufactured by the conventional method, the electrode reaction is concentrated only on the electrode surface where the hydrogen storage alloy is likely to come into contact with the electrolytic solution, and the utilization factor of the hydrogen storage alloy inside the electrode is lowered. Therefore, this type of battery
There was a problem that the battery voltage dropped and the battery capacity decreased at a high rate discharge, and the internal pressure of the battery increased due to the generation of hydrogen gas at a high rate charge.

本発明はかかる点に鑑みてなされたものであって、電
極内部の水素吸蔵合金をも電極反応に関与させ、水素吸
蔵合金電極の利用率の向上を計り、特に高率充放電に優
れた水素吸蔵合金電極を提供しようとするものである。
The present invention has been made in view of such a point, the hydrogen storage alloy inside the electrode is also involved in the electrode reaction, and the utilization rate of the hydrogen storage alloy electrode is improved, and hydrogen particularly excellent in high-rate charging and discharging is provided. It is intended to provide a storage alloy electrode.

(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用水素吸蔵合金は、水素吸蔵
合金表面にCa、Mg、Al、Be、Zn、Ti、Si、Sn、Cuのうち
から選ばれた少なくとも1つの金属の酸化物を付着した
ことを特徴とするものである。
(D) Means for Solving the Problems The hydrogen storage alloy for alkaline storage batteries of the present invention has at least one selected from Ca, Mg, Al, Be, Zn, Ti, Si, Sn and Cu on the surface of the hydrogen storage alloy. It is characterized in that an oxide of one metal is attached.

また本発明のアルカリ蓄電池用水素吸蔵合金の製造方
法は、水素吸蔵合金表面に、Ca、Mg、Al、Be、Zn、Ti、
Si、Sn、Cuのうちから選ばれた少なくとも1つの金属を
付着させた後、酸化雰囲気中で熱処理することにより、
前記金属の酸化物を生成させることを特徴とするもので
あり、又、水素吸蔵合金と、Ca、Mg、Al、Be、Zn、Ti、
Si、Sn、Cuのうちから選ばれた少なくとも1つの金属の
酸化物とを混合し、不活性雰囲気中で焼結処理を行うこ
とにより、前記水素吸蔵合金表面に前記金属の酸化物を
付着させるようにしても良い。
The method for producing a hydrogen storage alloy for alkaline storage batteries of the present invention, the surface of the hydrogen storage alloy, Ca, Mg, Al, Be, Zn, Ti,
After depositing at least one metal selected from Si, Sn, and Cu, by heat-treating in an oxidizing atmosphere,
It is characterized in that it forms an oxide of the metal, and also with a hydrogen storage alloy, Ca, Mg, Al, Be, Zn, Ti,
By admixing at least one metal oxide selected from Si, Sn, and Cu and performing a sintering treatment in an inert atmosphere, the metal oxide is attached to the surface of the hydrogen storage alloy. You may do it.

(ホ) 作用 Ca、Mg、Al、Be、Zn、Ti、Si、Sn、Cuのうちから選ば
れた少なくとも1つの金属の酸化物は、親水性酸化物で
あり、電解液との親和性に優れているため、かかる親水
性酸化物を水素吸蔵合金表面に付着することで、水素吸
蔵合金がぬれ易くなり、常に電解液を保持するようにな
る。その結果、かかる水素吸蔵合金を用いた水素吸蔵合
金電極は、電極内部迄電解液が浸入し、電極内部の水素
吸蔵合金表面が、常に電解液と接する状態となってい
る。
(E) Action The oxide of at least one metal selected from Ca, Mg, Al, Be, Zn, Ti, Si, Sn, and Cu is a hydrophilic oxide, and has an affinity with the electrolytic solution. Since it is excellent, by attaching such a hydrophilic oxide to the surface of the hydrogen storage alloy, the hydrogen storage alloy is easily wetted, and the electrolyte solution is always held. As a result, in the hydrogen storage alloy electrode using such a hydrogen storage alloy, the electrolytic solution penetrates into the electrode, and the surface of the hydrogen storage alloy inside the electrode is always in contact with the electrolytic solution.

このため電極反応は、電極全体で行なわれ、実質的な
電極反応面積が増大し、水素吸蔵合金の利用率が向上す
る。
For this reason, the electrode reaction is carried out in the entire electrode, the substantial electrode reaction area is increased, and the utilization rate of the hydrogen storage alloy is improved.

そしてこの結果、特に高率放電時には、全体の水素吸
蔵合金が利用されるので、電池高圧の降下及び電池容量
の減少が抑制される。更に、高率充電時には充電高率の
低下が小さく、充電時水素吸蔵合金電極からの水素ガス
の発生が抑制され、電池内圧の上昇が極めて小さなる。
As a result, especially at the time of high rate discharge, the entire hydrogen storage alloy is used, so that the drop in battery high voltage and the decrease in battery capacity are suppressed. Furthermore, during high rate charging, the decrease in charging rate is small, generation of hydrogen gas from the hydrogen storage alloy electrode during charging is suppressed, and the rise in battery internal pressure is extremely small.

(ヘ) 実 施 例 〔本発明〕 水素吸蔵合金としてLaNi5を用い、機械的に150μm以
下に粉砕した後、スパツタ法により、第1表に示す金属
を、前記合金表面に厚み10〜5Åで付着させた。その
後、空気中で100〜120℃に加熱し、前記付着金属を酸化
させた。尚、この時の加熱温度は、付着金属が酸化する
温度であって、水素吸蔵合金が酸化しない温度とする必
要がある。第1図は得られた合金の模式図である。
(F) Example [Invention] LaNi 5 was used as a hydrogen storage alloy, and after mechanically pulverizing it to 150 μm or less, the metals shown in Table 1 were formed on the alloy surface with a thickness of 10 to 5 Å by a spatter method. Attached. Then, it heated at 100-120 degreeC in air, and the said adhering metal was oxidized. The heating temperature at this time is a temperature at which the adhered metal oxidizes and the hydrogen storage alloy does not oxidize. FIG. 1 is a schematic diagram of the obtained alloy.

このように、付着金属の酸化物即ち親水性酸化物で修
飾された水素吸蔵合金粉末の重量に対して、1〜5重量
%のポリテトラフルオロエチレン粉末を添加して、混合
機で均一に混合すると共に、ポリテトラフルオロエチレ
ンを繊維化し、次いで水を加えてペースト状とする。こ
のペーストを、ニツケルメツキを施したパンチングメタ
ルからなる集電体に貼り付け、加圧、圧着することによ
り、水素吸蔵合金電極を作製した。
As described above, 1 to 5% by weight of polytetrafluoroethylene powder is added to the weight of the hydrogen storage alloy powder modified with the oxide of the adhering metal, that is, the hydrophilic oxide, and the mixture is uniformly mixed with a mixer. At the same time, polytetrafluoroethylene is made into fibers, and then water is added to form a paste. This paste was attached to a current collector made of punched metal with nickel plating, and pressure and pressure were applied to produce a hydrogen storage alloy electrode.

このようにして得た水素吸蔵合金電極と、容量1.2Ah
の焼結式ニツケル極とをナイロン不織布を介して捲回し
て渦巻電極体を構成し、電池缶に挿入した。次いで30%
KOH水溶液を前記電極缶に注液し、封口を行い、公称容
量1.2Ahの密閉型アルカリ蓄電池を作製し、本発明電池
A〜Hとした。
The hydrogen storage alloy electrode thus obtained and the capacity of 1.2 Ah
The sintered nickel electrode of (1) was wound with a nylon non-woven fabric to form a spiral electrode body, and the spirally wound electrode body was inserted into a battery can. Then 30%
A KOH aqueous solution was poured into the electrode can and sealed, and sealed alkaline storage batteries having a nominal capacity of 1.2 Ah were produced, and batteries A to H of the present invention were prepared.

〔比較例1〕 前記水素吸蔵合金LaNi5に、スパツタ法によりCa金属
を付着させるが、その後の熱処理を行なわない(Ca金属
を酸化させない)他は、本発明電池と同様にして比較電
池Iを作製した。
[Comparative Example 1] Comparative battery I was prepared in the same manner as the battery of the present invention, except that Ca metal was adhered to the hydrogen storage alloy LaNi 5 by the sputtering method, but the subsequent heat treatment was not performed (Ca metal was not oxidized). It was made.

〔比較例2〕 LaNi5を機械的に150μm以下に粉砕し、この水素吸蔵
合金粉末の重量に対し2重量%の酸化カルシウム粉末を
添加、混合した混合粉末を用いた。それ以外は、前記本
発明電池と同様にして、比較電池Jを作成した。
Comparative Example 2 LaNi 5 was mechanically pulverized to 150 μm or less, and 2% by weight of calcium oxide powder was added and mixed with respect to the weight of the hydrogen storage alloy powder. A comparative battery J was prepared in the same manner as the battery of the present invention except for the above.

〔実験1〕 本発明電池A〜H及び比較電池Iを用いて、充電電流
値1Cで1.5時間充電後、放電電流値5Cで電池電圧が1.0V
に達する迄放電を行い、各電池の放電特性を調べた。こ
の結果を、第2図に示す。この結果より、本発明電池A
〜Hは、比較電池Iに比べ、電池の放電電圧が10〜20mV
高く、電池容量が10〜15%増加している。これは水素吸
蔵合金表面を、親水性酸化物で修飾することにより、電
極内部迄電解液が浸入し、前記合金表面のぬれが向上し
て電極反応面積が増大し、水素吸蔵合金電極の利用率が
向上したことに基づく。
[Experiment 1] Using the batteries A to H of the present invention and the comparative battery I, after charging at a charging current value of 1 C for 1.5 hours, a discharging current value of 5 C and a battery voltage of 1.0 V
Discharging was performed until the temperature reached, and the discharge characteristics of each battery were examined. The results are shown in FIG. From this result, the battery A of the present invention
-H has a discharge voltage of 10 to 20 mV compared to Comparative Battery I
High, the battery capacity has increased by 10-15%. This is because by modifying the surface of the hydrogen storage alloy with a hydrophilic oxide, the electrolyte penetrates into the electrode, the wettability of the alloy surface is improved and the electrode reaction area is increased, and the utilization rate of the hydrogen storage alloy electrode is increased. Is based on the improvement.

尚、比較電池Iにおいて用いた水素吸蔵合金表面にCa
金属を付着させているが、Ag、Al、Be、Zn、Ti、Si、S
n、Cuの1種の金属を付着させた場合であっても、比較
電池Iと同様の特性を示した。
The surface of the hydrogen storage alloy used in Comparative Battery I was Ca.
Metal is attached, but Ag, Al, Be, Zn, Ti, Si, S
The characteristics similar to those of Comparative Battery I were exhibited even when one kind of metal, n or Cu, was attached.

〔実験2〕 本発明電池Aと、比較電池I、Jを用いて充電電流値
0.5C、1C、2C、5Cで、電池公称容量の150%充電後、放
電電流値1Cで放電を行った。そして比較電池Iの、充電
電流値0.5Cで充電した時の電池容量を100%として、各
々電池の容量を示した。この結果を、第3図に示す。
[Experiment 2] Charge current value using the battery A of the present invention and comparative batteries I and J
After charging 150% of the battery's nominal capacity at 0.5C, 1C, 2C, and 5C, discharging was performed at a discharge current value of 1C. The battery capacities of the comparative batteries I when charged at a charging current value of 0.5 C were taken as 100%, and the respective battery capacities were shown. The results are shown in FIG.

この結果より、本発明電池Aは、比較電池I、Jに比
べ、電池容量が増大していることがわかる。この傾向
は、特に高率充電時において顕著であり、本発明電池A
は急速充電に好適するものである。
From this result, it is understood that the battery A of the present invention has a larger battery capacity than the comparative batteries I and J. This tendency is particularly remarkable at the time of high rate charging, and the battery A of the present invention
Is suitable for rapid charging.

一方、比較電池Jにおいては、親水性酸化物を水素吸
蔵合金粉末と単に混合しているので、親水性酸化物と水
素吸蔵合金粉末との接触が悪く、十分にその添加効果を
発揮しえない。
On the other hand, in Comparative Battery J, since the hydrophilic oxide is simply mixed with the hydrogen storage alloy powder, the contact between the hydrophilic oxide and the hydrogen storage alloy powder is poor and the effect of addition thereof cannot be sufficiently exhibited. .

これに対し、本発明電池Aにおいては、親水性酸化物
が水素吸蔵合金粉末の表面に付着し、一体化しているの
で、前記親水性酸化物が保持した電解液の液相と前記合
金の固相が接する2相界面が広範囲に亘って生じ、電極
反応面積を増大させ、水素吸蔵合金電極の利用率を向上
させると考えられる。
On the other hand, in Battery A of the present invention, since the hydrophilic oxide adheres to and is integrated with the surface of the hydrogen storage alloy powder, the liquid phase of the electrolytic solution held by the hydrophilic oxide and the solid state of the alloy. It is considered that a two-phase interface where the phases are in contact with each other is generated over a wide range, the electrode reaction area is increased, and the utilization rate of the hydrogen storage alloy electrode is improved.

親水性酸化物を生じる付着金属として本発明電池Aに
おいてはCaを用いたが、Mg、Al、Be、Zn、Ti、Si、Sn、
Cu等を用いても、実験2において同様の傾向が伺えた。
Although Ca was used in the battery A of the present invention as an adherent metal that produces a hydrophilic oxide, Mg, Al, Be, Zn, Ti, Si, Sn,
The same tendency was observed in Experiment 2 even when Cu or the like was used.

本実施例では、水素吸蔵合金への付着金属の付着方法
としてスパツタ法を用いたが、蒸着法等を用いても良
い。
In this embodiment, the sputter method was used as the method of attaching the adhered metal to the hydrogen storage alloy, but a vapor deposition method or the like may be used.

又、水素吸蔵合金に親水性酸化物を付着させるには、
添加せる親水性酸化物粉末をできるだけ細かく粉砕する
のが好ましく、焼結温度は、水素吸蔵合金が溶融する迄
の温度とする必要がある。
Also, to attach a hydrophilic oxide to the hydrogen storage alloy,
The hydrophilic oxide powder to be added is preferably pulverized as finely as possible, and the sintering temperature needs to be a temperature at which the hydrogen storage alloy is melted.

(ト) 発明の効果 本発明によれば、水素吸蔵合金のぬれを良くし、電極
内部まで電解液を浸透させることにより水素吸蔵合金電
極を利用率を向上させ、電池容量の増大を計ることがで
きる。又、かかる水素吸蔵合金電極を用いた電池と急速
充電特性、高率放電特性の向上が計られるので、その工
業的価値は極めて大きい。
(G) Effect of the Invention According to the present invention, it is possible to improve wettability of a hydrogen storage alloy and improve the utilization factor of the hydrogen storage alloy electrode by infiltrating an electrolytic solution into the electrode, thereby increasing the battery capacity. it can. Further, the battery using such a hydrogen storage alloy electrode can be improved in rapid charge characteristics and high rate discharge characteristics, so that its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明水素吸蔵合金電極に用いた合金の模式
図、第2図は電池の放電特性比較図、第3図は充電電流
を変化させた時の電池の放電容量を示す図である。 1……水素吸蔵合金、2……親水性酸化物、 A,B,C,D,E,F,G,H……本発明電池、 I,J……比較電池。
FIG. 1 is a schematic diagram of an alloy used for the hydrogen storage alloy electrode of the present invention, FIG. 2 is a comparison diagram of discharge characteristics of a battery, and FIG. 3 is a diagram showing discharge capacity of a battery when charging current is changed. . 1 ... Hydrogen storage alloy, 2 ... Hydrophilic oxide, A, B, C, D, E, F, G, H ... Inventive battery, I, J ... Comparative battery.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金表面に、Ca、Mg、Al、Be、Z
n、Ti、Si、Sn、Cuのうちから選ばれた少なくとも1つ
の金属の酸化物を付着したことを特徴とするアルカリ蓄
電池用水素吸蔵合金電極。
1. Ca, Mg, Al, Be, Z on the surface of the hydrogen storage alloy.
A hydrogen storage alloy electrode for an alkaline storage battery, characterized in that an oxide of at least one metal selected from n, Ti, Si, Sn, and Cu is attached.
【請求項2】水素吸蔵合金表面に、Ca、Mg、Al、Be、Z
n、Ti、Si、Sn、Cuのうちから選ばれた少なくとも1つ
の金属を付着させた後、酸化雰囲気中で熱処理すること
により、前記金属の酸化物を生成させることを特徴とす
るアルカリ蓄電池用水素吸蔵合金電極の製造方法。
2. Ca, Mg, Al, Be, Z on the surface of the hydrogen storage alloy.
For an alkaline storage battery, characterized in that after depositing at least one metal selected from n, Ti, Si, Sn, and Cu, it is heat-treated in an oxidizing atmosphere to generate an oxide of the metal. Manufacturing method of hydrogen storage alloy electrode.
【請求項3】水素吸蔵合金と、Ca、Mg、Al、Be、Zn、T
i、Si、Sn、Cuのうちから選ばれた少なくとも1つの金
属の酸化物とを混合し、不活性雰囲気中で焼結処理を行
うことにより、前記水素吸蔵合金表面に前記金属の酸化
物を付着させることを特徴とするアルカリ蓄電池用水素
吸蔵合金の製造方法。
3. A hydrogen storage alloy and Ca, Mg, Al, Be, Zn, T
By mixing at least one metal oxide selected from i, Si, Sn, and Cu and performing sintering treatment in an inert atmosphere, the hydrogen storage alloy surface is coated with the metal oxide. A method for producing a hydrogen storage alloy for an alkaline storage battery, which comprises depositing the same.
JP63201621A 1988-08-11 1988-08-11 Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof Expired - Lifetime JPH084003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63201621A JPH084003B2 (en) 1988-08-11 1988-08-11 Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63201621A JPH084003B2 (en) 1988-08-11 1988-08-11 Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0251860A JPH0251860A (en) 1990-02-21
JPH084003B2 true JPH084003B2 (en) 1996-01-17

Family

ID=16444099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201621A Expired - Lifetime JPH084003B2 (en) 1988-08-11 1988-08-11 Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH084003B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3318141B2 (en) * 1994-04-04 2002-08-26 松下電器産業株式会社 Method for producing hydrogen storage alloy electrode
DE69736393T2 (en) 1996-06-26 2007-08-09 Sanyo Electric Co., Ltd., Moriguchi Process for producing a hydrogen-absorbing alloy electrode
JP5354970B2 (en) * 2008-06-17 2013-11-27 三洋電機株式会社 Hydrogen storage alloy and alkaline storage battery
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery
JP5994810B2 (en) * 2014-04-24 2016-09-21 トヨタ自動車株式会社 Hydrogen storage alloy particles

Also Published As

Publication number Publication date
JPH0251860A (en) 1990-02-21

Similar Documents

Publication Publication Date Title
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH03191040A (en) Hydrogen storage alloy electrode
JPH084003B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JPH09312157A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH05343058A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3113345B2 (en) Hydrogen storage alloy electrode
JP3528333B2 (en) Nickel hydride battery and method of manufacturing the same
JP3043143B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3573934B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JPS61176067A (en) Hydrogen occlusion electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3945944B2 (en) Hydrogen storage alloy particles for sealed alkaline storage batteries
JP3118812B2 (en) Alkaline storage battery
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH06145850A (en) Hydrogen storage alloy and hydrogen storage electrode
JPH0586622B2 (en)
JP4601754B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPH01132048A (en) Manufacture of hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JP3695979B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 13