JPH06145850A - Hydrogen storage alloy and hydrogen storage electrode - Google Patents

Hydrogen storage alloy and hydrogen storage electrode

Info

Publication number
JPH06145850A
JPH06145850A JP4297508A JP29750892A JPH06145850A JP H06145850 A JPH06145850 A JP H06145850A JP 4297508 A JP4297508 A JP 4297508A JP 29750892 A JP29750892 A JP 29750892A JP H06145850 A JPH06145850 A JP H06145850A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
powder
nickel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4297508A
Other languages
Japanese (ja)
Inventor
Takao Ogura
孝夫 小倉
Yuji Ishii
裕治 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP4297508A priority Critical patent/JPH06145850A/en
Publication of JPH06145850A publication Critical patent/JPH06145850A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a hydrogen storage electrode having a high service capacity and a high discharge voltage by forming a hydrogen storage alloy with the La, Mn, Cu, etc., in a specified ratio and specifying the oxygen content of the alloy powder. CONSTITUTION:This hydrogen storage alloy is expressed by LmNiaCobAlcMd. In the formula, Lm is La-rich Mm the La in the Lm is controlled to 40-70mol%, 1.2<=a<=1.6, 0.1<=b<=0.4, 0.05<=c<=0.1, 0.1<=d<=0.3, and 1.8<=a+b+c+d<=2.4, and M is at least one kind among Mn, Cu, Zn, Ag, In, Sn and Pb. The oxygen content of the alloy powder is adjusted to 0.05 to 0.3wt.%. Consequently, hydrogen is electrochemically occluded and discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的に水素を吸
蔵・放出することが可能な水素吸蔵合金に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen.

【0002】[0002]

【従来の技術】従来、電気化学的に水素を吸蔵・放出す
ることができる水素吸蔵合金は、AB5形と呼ばれるL
aNi5をもとにして、その含有量のLaやNiの一部
を他の元素に置き換えることによって実用的な系が見い
出された。この合金系は、電極としてすぐれており、N
i極と組み合わせてNi−水素電池とした場合、従来か
ら用いられたNi−Cd電池の要領の1.5〜2.0倍
の電池を製作することができ、多くのメリットを有して
いた。しかし、より一層の高容量の電池が望まれるに到
ってAB2形と呼ばれるAサイトがZrやTi等、Bサ
イトがNiやV等からなる合金がたとえば、特開昭64
−60961号公報に開示されている。従来のAB5
の合金容量が約300mAh/gであったのに対し、これら
AB2系の合金では容量の大きいもので350mAh/g以上
のものが得られており、より一層の電池での高容量化が
期待された。
2. Description of the Related Art Heretofore, a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen has been known as AB 5 type L alloy.
Based on aNi 5 , a practical system was found by substituting a part of the contents of La and Ni for other elements. This alloy system is excellent as an electrode and
When the Ni-hydrogen battery is combined with the i-electrode, a battery having 1.5 to 2.0 times the procedure of the conventionally used Ni-Cd battery can be manufactured, which has many advantages. . However, when a battery having a higher capacity is desired, an alloy called AB 2 type in which the A site is composed of Zr, Ti or the like and the B site is composed of Ni or V is disclosed in, for example, JP-A-64
No. 60961. Whereas the conventional AB 5 alloy has a capacity of about 300 mAh / g, these AB 2 alloys have a large capacity of 350 mAh / g or more. Higher capacity was expected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の水素吸蔵合金では、表面の酸化被膜、特にジルコニ
ウムによる酸化被膜がち密で水素を通しにくいことや、
本来の水素吸蔵合金の特性のため、放電時の電圧特性が
悪いという問題点があった。これは、AB2形合金の多
くがAB5形合金に比べて、水素吸蔵曲線のプラトー域
が大きく傾いているため、放電電圧が放電時間と共に大
きく変化してしまうためである。このため、家電製品等
で通常使用されている終止電圧域1.1〜1.0Vまで
の放電容量は従来の合金とほぼ同レベルになってしまう
という問題点があった。本発明の目的は、高容量で、放
電電圧の優れた水素吸蔵電極を提供することである。
However, in the above conventional hydrogen storage alloy, the oxide film on the surface, especially the oxide film of zirconium is dense and difficult to pass hydrogen.
Due to the original characteristics of the hydrogen storage alloy, there was a problem that the voltage characteristics during discharge were poor. This is because most of the AB 2 type alloys have a large inclination of the plateau region of the hydrogen absorption curve as compared with the AB 5 type alloys, so that the discharge voltage changes greatly with the discharge time. For this reason, there has been a problem that the discharge capacity up to the final voltage range of 1.1 to 1.0 V, which is normally used in home electric appliances and the like, becomes almost the same level as that of the conventional alloy. An object of the present invention is to provide a hydrogen storage electrode having a high capacity and an excellent discharge voltage.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、組成式LmNiaCobAlcdにおい
て、Lm中のLa量が40〜70モル%とし、a,b,
c,dの範囲が1.2≦a≦1.6,0.1≦b≦0.
4,0.05≦c≦0.1,0.1≦d≦0.3,1.
8≦a+b+c+d≦2.4であり、組成式中のMがM
n,Cu,Zn,Ag,In,Sn,Pbのうち少なく
とも1種以上からなる水素吸蔵合金の粉末を合金重量に
対して0.05wt%から0.3wt%酸化させることにあ
る。そして、この合金粉末を焼結法で作製した発泡ニッ
ケル基体に充填した水素吸蔵電極であることを特徴とす
るものである。
In order to solve the above problems, the present invention provides a composition formula LmNi a Co b Al c M d in which the amount of La in Lm is 40 to 70 mol%, and a, b,
The ranges of c and d are 1.2 ≦ a ≦ 1.6, 0.1 ≦ b ≦ 0.
4, 0.05 ≦ c ≦ 0.1, 0.1 ≦ d ≦ 0.3, 1.
8 ≦ a + b + c + d ≦ 2.4, and M in the composition formula is M
This is to oxidize the powder of the hydrogen storage alloy composed of at least one of n, Cu, Zn, Ag, In, Sn and Pb by 0.05 wt% to 0.3 wt% with respect to the weight of the alloy. The hydrogen storage electrode is characterized in that a foamed nickel substrate prepared by a sintering method is filled with this alloy powder.

【0005】[0005]

【作用】上記組成および上記の焼結式発泡ニッケルを使
用することにより、放電容量が大きく、放電電圧特性の
優れて水素吸蔵電極とすることができる。まず、Lmと
Ni−Al−Co−Mの比率を上記範囲にすると同時に
Lm中La量を上記範囲にすることにより、単位格子間
の隙が大きくなり、水素原子の移動が容易になるためと
思われる。また、表面のLm中のLaはアルカリ溶液中
で水酸化ランタンになりやすく、ポーラスなニッケルや
コバルトの合金層が形成されるため、表面近傍での水素
の移動が容易になる。酸素含有量が0.05wt%以上
0.3wt%以下の合金では表面層数1000Å程度に酸
化物層が存在する。これらの酸素は主にAlやLmと結
合していると考えられ、アルカリ溶液と反応すると、よ
りポーラスな比表面積の大きいラネーニッケル層を形成
するものと考えられる。また、Ni粉末の焼結法により
発泡ニッケルはメッキ法による発泡ニッケルや、パンチ
ングメタル、繊維の焼結による三次元基体にくらべて、
集電体の表面が凹凸になっているため、集電特性が優れ
ている。上記組成範囲の合金をNi粉末を焼結して作製
した発泡ニッケルに充填することにより優れた水素吸蔵
電極を提供することができる。
By using the above composition and the above-mentioned sintered foamed nickel, a hydrogen storage electrode having a large discharge capacity and excellent discharge voltage characteristics can be obtained. First, by setting the ratio of Lm and Ni-Al-Co-M to the above range and at the same time setting the La amount in Lm to the above range, the gap between the unit lattices becomes large and the movement of hydrogen atoms becomes easy. Seem. Further, La in Lm on the surface easily becomes lanthanum hydroxide in the alkaline solution, and a porous alloy layer of nickel or cobalt is formed, so that hydrogen moves easily near the surface. In an alloy having an oxygen content of 0.05 wt% or more and 0.3 wt% or less, an oxide layer exists in the number of surface layers of about 1000Å. It is considered that these oxygens are mainly bonded to Al and Lm, and when they react with an alkaline solution, they are considered to form a more porous Raney nickel layer having a large specific surface area. In addition, nickel foam by the Ni powder sintering method, compared with nickel foam by the plating method, punching metal, three-dimensional substrate by the fiber sintering,
Since the surface of the current collector is uneven, the current collection characteristics are excellent. An excellent hydrogen storage electrode can be provided by filling the foamed nickel produced by sintering the Ni powder with the alloy having the above composition range.

【0006】[0006]

【実施例】本発明の実施例を説明する。 〈実施例1〉表1に示す組成で、アーク溶解炉を用いて
水素吸蔵合金を作製した。その合金をアルゴン雰囲気で
ステンレス製乳ばちで粉砕し、200メッシュより大き
く440より小さい合金粉末とした。この合金粉末の一
部を100℃水蒸気中に1時間保持することにより、合
金表面を酸化させ、約0.1wt%の酸素を含有した合金
粉末とした。一方、焼結法による発泡ニッケルは、ポリ
ウレタンにニッケル粉末とセルロース系バインダを含む
水溶液に分散させたけん濁液に浸漬し、還元雰囲気で9
00℃に加熱することにより、ポリウレタンを分解する
と同時にニッケル粉末が焼結されることにより得られ
た。
EXAMPLES Examples of the present invention will be described. Example 1 A hydrogen storage alloy having the composition shown in Table 1 was produced using an arc melting furnace. The alloy was crushed in a stainless steel bee in an argon atmosphere to obtain an alloy powder larger than 200 mesh and smaller than 440. By holding a part of this alloy powder in steam at 100 ° C. for 1 hour, the alloy surface was oxidized to obtain an alloy powder containing about 0.1 wt% oxygen. On the other hand, the nickel foam produced by the sintering method is immersed in a suspension liquid obtained by dispersing polyurethane powder in an aqueous solution containing nickel powder and a cellulosic binder, and then immersing it in a reducing atmosphere.
It was obtained by decomposing the polyurethane and simultaneously sintering the nickel powder by heating to 00 ° C.

【0007】水素吸蔵電極は酸化処理を処こした合金粉
末とそうでない合金粉末を用い、2wt%ポリビニルアル
コール水溶液で混練しペースト状とした後、上記方法に
より得られた発泡ニッケルに充填した。これを風乾し、
プレスして、充放電に用いる水素極とした。この水素極
の両側に通常の方式で得られる焼結式Ni極をナイロン
セパレータを介して配し、両側からアクリル板で加圧
し、30%KOH水溶液に浸漬し、充放電した。放電電
流は20mA/gである。その結果が表1に示す放電容量で
ある。この放電容量は終止電圧(F.V)が1.0Vの
ときと0.8Vのときの値を示した。合金No.1はAB5
形の一例である。合金No.2,No.3は従来のAB2形の
一例である。No.1は終止電圧がF.V=0.8Vであ
まり差がなく、放電容量は小さかった。No.2,No.3は
F.V=0.8VではNo.1に比べて、30%程度容量
が大きくなっているが、F.V=1.0Vでは、10%
程度容量が大きくなっているにすぎない。これに対し、
本発明品であるNo.4からNo.15の合金はF.V=0.
8Vのときは従来のAB2形とほぼ同等であるが、F.
V=1.0Vのときは放電容量が約20%大きくなって
いる。一方、酸化処理した合金粉末を用いた水素吸蔵電
極では合金No.1の場合、酸化処理の有無によってあま
り変わらなかった。合金No.2,No.3では逆に放電容量
が低下してしまった。これはジルコニウムやチタンが酸
化し、アルカリ溶液では溶けにくい酸化物層が生成して
しまったためと思われる。ところがNo.4からNo.15の
合金ではF.V=0.8Vのときの容量は酸化処理の有
無によって大きな変化はないが、F.V=1.0では酸
化処理なしのものに比べて、さらに約20%容量が大き
くなった。このように、放電容量が大きい水素吸蔵電極
を得ることができた。
As the hydrogen storage electrode, an alloy powder which was subjected to an oxidation treatment and an alloy powder which was not treated were mixed and kneaded with a 2 wt% polyvinyl alcohol aqueous solution to form a paste, and the nickel foam obtained by the above method was filled. Air dry this,
It was pressed to form a hydrogen electrode used for charging and discharging. Sintered Ni electrodes obtained by an ordinary method were placed on both sides of this hydrogen electrode via nylon separators, pressed from both sides with acrylic plates, immersed in a 30% KOH aqueous solution, and charged and discharged. The discharge current is 20 mA / g. The result is the discharge capacity shown in Table 1. This discharge capacity shows the values when the final voltage (F.V) is 1.0V and 0.8V. Alloy No. 1 is AB 5
It is an example of a shape. Alloys No. 2 and No. 3 are examples of conventional AB 2 type . No. 1 has a final voltage of F.I. There was not much difference at V = 0.8V, and the discharge capacity was small. No. 2 and No. 3 are F. At V = 0.8V, the capacity is about 30% larger than that of No. 1. 10% at V = 1.0V
The capacity is only increasing. In contrast,
The alloys of No. 4 to No. 15 which are the products of the present invention are F. V = 0.
At 8 V, it is almost the same as the conventional AB 2 type ,
When V = 1.0V, the discharge capacity is increased by about 20%. On the other hand, in the case of the alloy No. 1 in the hydrogen storage electrode using the oxidized alloy powder, it did not change much depending on the presence or absence of the oxidation treatment. On the contrary, in alloys No. 2 and No. 3, the discharge capacity decreased. This is probably because zirconium or titanium was oxidized to form an oxide layer that was difficult to dissolve in an alkaline solution. However, in No. 4 to No. 15 alloys, F.I. The capacity at V = 0.8 V does not change significantly with or without oxidation treatment, but At V = 1.0, the capacity was further increased by about 20% as compared with the case without oxidation treatment. Thus, a hydrogen storage electrode having a large discharge capacity could be obtained.

【0008】〈実施例2〉実施例1の酸化処理有の合金
を用いた電極を実施例1の放電電流200mA/gで放電
(F.V=1.0V)した時の放電容量を表2に示し
た。本発明品である合金No.4〜15は約250mAh/gか
ら300mAh/gであり、従来品は220mAh/g以下であ
り、本発明品の効果が顕著であった。特に合金No.4か
らNo.6の組成の水素吸蔵合金を用いた電極では、30
0mAh/g以上の放電容量が得られた。これは水素吸蔵合
金中のわずかな化学量論比の違いや、構成元素影響によ
るものと思われるが、詳細は明らかでない。
Example 2 The discharge capacity when the electrode using the alloy with oxidation treatment of Example 1 was discharged (F.V = 1.0 V) at the discharge current of 200 mA / g of Example 1 is shown in Table 2. It was shown to. The alloys Nos. 4 to 15, which are the products of the present invention, were about 250 mAh / g to 300 mAh / g, and the conventional products were 220 mAh / g or less, and the effect of the products of the present invention was remarkable. In particular, in the case of electrodes using the hydrogen storage alloys with compositions No. 4 to No. 6,
A discharge capacity of 0 mAh / g or more was obtained. This is thought to be due to a slight difference in the stoichiometry in the hydrogen storage alloy and the influence of the constituent elements, but the details are not clear.

【0009】〈実施例3〉No.4の合金の組成を基準と
して、Lm中のLa量のみを変えて実施例1と同様に水
素吸蔵合金を作製した。以下、実験方法は実施例1と同
様である。その結果を図1に示した。La量が40モル
%以下では終止電圧を1.0Vとしたときの放電容量は
40モル%以上としたときに比べて小さい。また、La
量が70モル%以上では、充放電のくり返えしによるサ
イクル寿命特性が劣化してしまうことがわかった。なお
ここでのサイクル寿命は初期容量の60%まで低下した
ときの値を示している。このようにLm中のLa量は4
0モル%以上70モル%以下であることが望ましい。N
o.6とNo.8についても同様な結果が得られ、La量が
上記範囲が有効であった。
<Example 3> A hydrogen storage alloy was produced in the same manner as in Example 1 except that the La content in Lm was changed based on the composition of the No. 4 alloy. Hereinafter, the experimental method is the same as in Example 1. The results are shown in Fig. 1. When the La amount is 40 mol% or less, the discharge capacity when the final voltage is 1.0 V is smaller than when it is 40 mol% or more. Also, La
It was found that when the amount was 70 mol% or more, cycle life characteristics were deteriorated due to repeated charging and discharging. The cycle life here indicates a value when the initial capacity is reduced to 60%. Thus, the amount of La in Lm is 4
It is desirable to be 0 mol% or more and 70 mol% or less. N
Similar results were obtained for No. 6 and No. 8, and the La amount in the above range was effective.

【0010】〈実施例4〉No.4の合金粉末を用いて、
酸化処理の程度を変えて、実施例1と同様に水素吸蔵電
極を作製した。アルゴン雰囲気で粉砕した粉末の酸素量
は0.005wt%であり、これを100℃の水蒸気中に
保持する時間を変えることにより、合金の酸素量を変え
た。図2は酸素量含有量と放電容量の関係を示したもの
である。AはF.V=0.8Vの放電容量、BはF.V
=1.0Vの放電容量を示したものである。酸素含有量
の0.4wt%を越えると、放電容量が急激に低下する。
これは合金粉末の酸化層が厚くなりすぎるためと思われ
る。酸素含有量が0.005wt%のときは、F.V=
1.0Vのとき容量低下が大きい。このようにF.V=
1.0Vでも放電容量の大きい水素吸蔵電極を得るに
は、合金の酸素含有量を0.05wt%以上0.3wt%以
下にする必要がある。
<Example 4> Using No. 4 alloy powder,
A hydrogen storage electrode was produced in the same manner as in Example 1 except that the degree of oxidation treatment was changed. The oxygen content of the powder pulverized in an argon atmosphere was 0.005 wt%, and the oxygen content of the alloy was changed by changing the time of holding this in water vapor at 100 ° C. FIG. 2 shows the relationship between the oxygen content and the discharge capacity. A is F. V = 0.8 V discharge capacity, B = F. V
= 1.0 V discharge capacity. If it exceeds 0.4 wt% of the oxygen content, the discharge capacity sharply decreases.
This is probably because the oxide layer of the alloy powder becomes too thick. When the oxygen content is 0.005 wt%, the F. V =
At 1.0 V, the capacity is greatly reduced. In this way, V =
In order to obtain a hydrogen storage electrode having a large discharge capacity even at 1.0 V, the oxygen content of the alloy must be 0.05 wt% or more and 0.3 wt% or less.

【0011】〈実施例5〉各種の集電基体は次のように
して作製した。ニッケル粉末を焼結した発泡ニッケルは
インコ社製ニッケル粉末をセルロース系水溶液中にけん
濁させて、その中へポリウレタンシートを浸漬し、乾燥
の後、900℃に加熱したポリウレタンを除去すると同
時にニッケル粉末を焼結し、集電基体としたものであ
る。メッキ式発泡ニッケルはポリウレタンにカーボン蒸
着後、ニッキメッキして、その後900℃にすることに
よりポリウレタンを除去した。ニッケル繊維を焼結した
基体は太さ50μm、長さ30mmのニッケル繊維を12
00℃で焼結して基体とした。またパンチングメタルは
市販のニッケルメッキした鉄パンチングメタルを使用し
た。これらの集電基体に、合金No.4の粉末を0.1wt
%酸化させ、2wt%ポリビニルアルコール水溶液で混練
し、発泡ニッケル等の三次元基体に充填し、二次元基体
のパンチングメタルには塗布し、水素吸蔵電極とした。
試験セルは実施例1と同様である。表3に結果を示す。
焼結による発泡ニッケルの場合は他の集電基体の場合に
比べて、特にF.V=1.0Vの放電容量が大きかっ
た。集電基体の表面を観察すると、焼結による発泡ニッ
ケルの表面は凹凸が多く、メッキ法によるものは凹凸が
少なかった。ニッケル繊維の焼結やパンチングメタルで
は凹凸がほとんどなかった。これらのことから、放電特
性の向上の要因として、集電基体の凹凸が関与している
と考えられる。
<Embodiment 5> Various current collecting substrates were manufactured as follows. Foamed nickel powder obtained by sintering nickel powder is prepared by suspending nickel powder manufactured by Inco in a cellulosic aqueous solution, immersing the polyurethane sheet in it, and drying and then removing the polyurethane heated to 900 ° C. Is sintered to obtain a current collecting substrate. The plating type foamed nickel was vapor-deposited with carbon on polyurethane, then nickel-plated, and then heated to 900 ° C. to remove the polyurethane. The substrate obtained by sintering nickel fiber has a thickness of 50 μm and a length of 30 mm.
The substrate was sintered at 00 ° C. The punching metal used was a commercially available nickel-plated iron punching metal. Powder of alloy No. 4 was added to these current collecting substrates in an amount of 0.1 wt.
% Oxidation, kneading with a 2 wt% aqueous solution of polyvinyl alcohol, filling a three-dimensional substrate such as foamed nickel, and coating it on the punching metal of the two-dimensional substrate to obtain a hydrogen storage electrode.
The test cell is the same as in Example 1. The results are shown in Table 3.
In the case of nickel foam by sintering, the F. The discharge capacity of V = 1.0V was large. When the surface of the current collecting substrate was observed, the surface of the nickel foam formed by sintering had many irregularities, and that by the plating method had few irregularities. There were almost no irregularities in the sintered nickel fiber or punched metal. From these, it is considered that the unevenness of the current collecting substrate is involved as a factor for improving the discharge characteristics.

【0012】〈実施例6〉厚さ1mmの焼結により得られ
た発泡ニッケルに合金No.4と1次粒子径の大きさが3
μmのニッケル粉末を混合したスラリーを充填、風乾の
後、プレスして、電極の厚さを0.4mmとした。充放電
は実施例1と同一条件であり、F.V=1.0Vとし
た。表4に、電極の最大容量の95%の容量に達するま
での充放電回数と単位体積あたりの放電容量を示した。
ニッケル粉末の添加量が3wt%以下では、合金の活性化
が遅く、充放電を7回以上くり返さなければ、最大容量
の95%以上の容量にならない。実際に密閉電池とする
時には、活性化が遅いと、ニッケル極と水素吸蔵電極の
バランスがくずれる、水素吸蔵電極からの水素ガスの発
生等の問題となり、大きな欠点となる。ニッケル粉末を
5wt%以上添加した電極では3回あるいは2回の充放電
で最大容量の95%に達する。ところが、ニッケル粉末
の添加量が多いと単位体積あたりの放電容量が低下して
しまう。実際に密閉電池とする場合、合金の単位重量あ
たりの放電容量が大きくても、単位体積あたりの放電容
量が大きくなければ、所定の寸法の中に入れることがで
きない。これらの結果から、ニッケル粉末を5wt%以上
15wt%以下添加することにより、放電容量が大きく、
活性化の早い電極を得られることがわかった。
Example 6 Alloy No. 4 and primary particle size 3 were added to nickel foam obtained by sintering with a thickness of 1 mm.
The slurry was filled with a slurry mixed with nickel powder of μm, air-dried, and then pressed to make the thickness of the electrode 0.4 mm. Charging and discharging were performed under the same conditions as in Example 1, and F.I. It was set to V = 1.0V. Table 4 shows the number of times of charge and discharge until the capacity reaches 95% of the maximum capacity of the electrode and the discharge capacity per unit volume.
When the amount of nickel powder added is 3 wt% or less, the activation of the alloy is slow, and the capacity cannot reach 95% or more of the maximum capacity unless the charge and discharge are repeated 7 times or more. In the case of actually making a sealed battery, if the activation is slow, the balance between the nickel electrode and the hydrogen storage electrode will be lost, and hydrogen gas will be generated from the hydrogen storage electrode, which is a major drawback. An electrode containing 5 wt% or more of nickel powder reaches 95% of the maximum capacity after three or two charge / discharge cycles. However, if the amount of nickel powder added is large, the discharge capacity per unit volume will decrease. In the case of actually making a sealed battery, even if the discharge capacity per unit weight of the alloy is large, if the discharge capacity per unit volume is not large, it cannot be put in the predetermined size. From these results, by adding the nickel powder in the range of 5 wt% or more and 15 wt% or less, the discharge capacity becomes large,
It was found that an electrode with fast activation can be obtained.

【0013】〈実施例7〉1次粒子径が1,2,3,
5,7μmのニッケル粉末を10wt%添加し、実施例6
と同様に電極とした。図3にこのときの単位体積当たり
の放電容量密度を示した。1μmのニッケル粉末を添加
した場合、2,3μmのニッケル粉末の場合に比べて多
くの溶媒量が必要となり、充填したときの体積密度が低
下した。プレスしても、2,3μmのニッケル粉末を添
加したときの値に比べて、約100mAh/ml小さかった。
一方、5.7μmのニッケル粉末では合金間のすきまに
ニッケル粉末が入りきれなかったため、単位体積あたり
の放電容量密度が低下したものと考えられる。2,3μ
m のニッケル粉末の場合は、合金粉末間のすきまに入
り、最密充填構造をとるため、溶媒量も少なくてすみ、
放電容量密度が最大になっていると思われる。
<Example 7> The primary particle diameter is 1, 2, 3,
Example 6 was added with 10 wt% of nickel powder of 5,7 μm.
It was used as an electrode. FIG. 3 shows the discharge capacity density per unit volume at this time. When the nickel powder of 1 μm was added, a larger amount of solvent was required as compared with the case of the nickel powder of 2-3 μm, and the volume density when filled was decreased. Even when pressed, it was about 100 mAh / ml smaller than the value when nickel powder of 2-3 μm was added.
On the other hand, with the 5.7 μm nickel powder, it was considered that the discharge capacity density per unit volume was lowered because the nickel powder could not completely fill the gap between the alloys. 2,3μ
In the case of nickel powder of m, since it enters the gap between the alloy powders and takes the closest packing structure, the amount of solvent can be small,
It seems that the discharge capacity density is maximized.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【発明の効果】上述したように、本発明に係る水素吸蔵
合金および水素吸蔵電極は、組成式LmNiaCobAl
cdにおいて、Lm中のLa量を40〜70モル%と
し、a,b,c,dの範囲を1.2≦a≦1.6,0.
1≦b≦0.4,0.05≦c≦0.1,0.1≦d≦
0.3,1.8≦a+b+c+d≦2.4であり、組成
式中のMがMn,Cu,Zn,In,Sn,Pbのうち
少なくとも1種以上の水素吸蔵合金であり、その合金粉
末の酸素含有量が0.05wt%以上0.3wt%以下であ
って、この水素吸蔵合金粉末をニッケル粉末を焼結した
発泡ニッケルに充填することとしたため、従来の水素吸
蔵電極に比べ、放電容量が大きくて、放電電圧が高いと
いう点で優れている。
As described above, the hydrogen storage alloy and the hydrogen storage electrode according to the present invention have the composition formula LmNi a Co b Al.
In C M d , the amount of La in Lm is 40 to 70 mol%, and the range of a, b, c, d is 1.2 ≦ a ≦ 1.6,0.
1 ≦ b ≦ 0.4, 0.05 ≦ c ≦ 0.1, 0.1 ≦ d ≦
0.3, 1.8 ≦ a + b + c + d ≦ 2.4, and M in the composition formula is at least one hydrogen storage alloy of Mn, Cu, Zn, In, Sn, and Pb, and its alloy powder Since the oxygen content is 0.05 wt% or more and 0.3 wt% or less and the hydrogen storage alloy powder is filled in the nickel foam sintered nickel foam, the discharge capacity is higher than that of the conventional hydrogen storage electrode. It is large and excellent in that the discharge voltage is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電容量と充放電サイクル寿命に及ぼすLm中
のLa量の影響を示す図である。
FIG. 1 is a diagram showing the influence of the amount of La in Lm on discharge capacity and charge / discharge cycle life.

【図2】合金中の酸素含有量と放電容量の関係を示す図
である。
FIG. 2 is a diagram showing a relationship between oxygen content in an alloy and discharge capacity.

【図3】放電容量密度に及ぼすニッケル粉末の1次粒子
形の影響図である。
FIG. 3 is a graph showing the influence of the primary particle shape of nickel powder on the discharge capacity density.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成式LmNiaCobAlcdにおい
て、LmはLaリッチMmを表わしこのLm中のLa量
が40〜70モル%であり、かつa,b,c,dの範囲
が1.2≦a≦1.6,0.1≦b≦0.4,0.05
≦c≦0.1,0.1≦d≦0.3,1.8≦a+b+
c+d≦2.4であり、組成式中のMがMn,Cu,Z
n,Ag,In,Sn,Pbのうち少なくとも1種以上
の水素吸蔵合金であって、その合金粉末の酸素含有量が
0.05wt%以上0.3wt%以下であることを特徴とす
る水素吸蔵合金。
1. In the composition formula LmNi a Co b Al c M d , Lm represents La-rich Mm, the amount of La in this Lm is 40 to 70 mol%, and the range of a, b, c, d is 1.2 ≦ a ≦ 1.6, 0.1 ≦ b ≦ 0.4, 0.05
≦ c ≦ 0.1, 0.1 ≦ d ≦ 0.3, 1.8 ≦ a + b +
c + d ≦ 2.4, and M in the composition formula is Mn, Cu, Z
Hydrogen storage alloy of at least one of n, Ag, In, Sn and Pb, wherein the oxygen content of the alloy powder is 0.05 wt% or more and 0.3 wt% or less alloy.
【請求項2】 1.85≦a+b+c+d≦2.0の範
囲であって、MがMnである請求項1記載の水素吸蔵合
金。
2. The hydrogen storage alloy according to claim 1, wherein the range of 1.85 ≦ a + b + c + d ≦ 2.0 and M is Mn.
【請求項3】 ニッケル粉末の焼結法により得られた発
泡ニッケルに請求項1記載の水素吸蔵合金を充填したこ
とを特徴とする水素吸蔵電極。
3. A hydrogen storage electrode, characterized in that foamed nickel obtained by a sintering method of nickel powder is filled with the hydrogen storage alloy according to claim 1.
【請求項4】 水素吸蔵合金に対して1次粒子径が2μ
m 以上3μm 以下のニッケル粉末を5〜15wt%添加し
たことを特徴とする請求項3記載の水素吸蔵電極。
4. The primary particle size of the hydrogen storage alloy is 2 μm.
The hydrogen storage electrode according to claim 3, wherein 5 to 15 wt% of nickel powder of m or more and 3 μm or less is added.
JP4297508A 1992-11-09 1992-11-09 Hydrogen storage alloy and hydrogen storage electrode Pending JPH06145850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4297508A JPH06145850A (en) 1992-11-09 1992-11-09 Hydrogen storage alloy and hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4297508A JPH06145850A (en) 1992-11-09 1992-11-09 Hydrogen storage alloy and hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH06145850A true JPH06145850A (en) 1994-05-27

Family

ID=17847426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4297508A Pending JPH06145850A (en) 1992-11-09 1992-11-09 Hydrogen storage alloy and hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH06145850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429876A2 (en) * 1989-11-02 1991-06-05 F &amp; A s.n.c., di Franchetti Giuseppe e C. Support shaft for reels with eccentric rig
EP0736919A1 (en) * 1995-04-06 1996-10-09 VARTA Batterie Aktiengesellschaft Alkaline metal oxide, metal hydride battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0429876A2 (en) * 1989-11-02 1991-06-05 F &amp; A s.n.c., di Franchetti Giuseppe e C. Support shaft for reels with eccentric rig
EP0429876B1 (en) * 1989-11-02 1996-03-27 F &amp; A s.n.c., di Franchetti Giuseppe e C. Support shaft for reels with eccentric rig
EP0736919A1 (en) * 1995-04-06 1996-10-09 VARTA Batterie Aktiengesellschaft Alkaline metal oxide, metal hydride battery
CN1087509C (en) * 1995-04-06 2002-07-10 瓦尔达电池股份公司 Alkaline metal oxide/metal hydride battery

Similar Documents

Publication Publication Date Title
US5360687A (en) Hydrogen-occulusion electrode
JP3541090B2 (en) Positive active material for alkaline storage battery and method for producing the same
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH06145850A (en) Hydrogen storage alloy and hydrogen storage electrode
JP2603188B2 (en) Hydrogen storage alloy electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3098940B2 (en) Method for producing hydrogen storage alloy powder for electrode
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JPH084003B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and manufacturing method thereof
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3098948B2 (en) Hydrogen storage alloy-containing composition and electrode using the same
JP3519836B2 (en) Hydrogen storage alloy electrode
JP3043143B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2538610B2 (en) Metal oxide / hydrogen battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JPH0834100B2 (en) Hydrogen storage alloy electrode
JP3796085B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP3362400B2 (en) Nickel-metal hydride storage battery
JP2001266860A (en) Nickel hydrogen storage battery
JPH0517659B2 (en)
JPH09259875A (en) Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery