JPH05343058A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents

Hydrogen storage alloy electrode and manufacture thereof

Info

Publication number
JPH05343058A
JPH05343058A JP4150885A JP15088592A JPH05343058A JP H05343058 A JPH05343058 A JP H05343058A JP 4150885 A JP4150885 A JP 4150885A JP 15088592 A JP15088592 A JP 15088592A JP H05343058 A JPH05343058 A JP H05343058A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alkali
battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4150885A
Other languages
Japanese (ja)
Other versions
JP3326197B2 (en
Inventor
Mamoru Kimoto
衛 木本
Masao Takee
正夫 武江
Fusago Mizutaki
房吾 水瀧
Koji Nishio
晃治 西尾
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15088592A priority Critical patent/JP3326197B2/en
Publication of JPH05343058A publication Critical patent/JPH05343058A/en
Application granted granted Critical
Publication of JP3326197B2 publication Critical patent/JP3326197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture a hydrogen storage alloy electrode whose initial characteristic is improved while maintaining an excellent cycle characteristic by covering a part of the hydrogen storage alloy surface with alkali - soluble metal, and covering the other exposure part with alkali - insoluble metal. CONSTITUTION:In a hydrogen storage alloy electrode containing hydrogen storage alloy 21 to store or release hydrogen reversibly, a part of the alloy 21 powder surface is covered with alkali soluble metal such as Al or the oxide 22. This covering can be carried out, for example, by a mechanical alloying treatement. Next, the other exposure part of the alloy 21 is covered with alkali - insoluble metal 23 such as Ni by an electroless plating and so on. Since an alkali treatment is carried out on this covered alloy 21, the alkali - soluble metal metal 22 is dissolved, and a reacted surface is formed. Since alloy 21 powder obtained in this way is molded in an electrode, an initial characteristic can be improved while maintaining a conventional cycle characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属−水素アルカリ蓄
電池に用いられる水素吸蔵合金電極,及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used in a metal-hydrogen alkaline storage battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来からよく用いられている蓄電池とし
ては、ニッケル−カドミウム蓄電池のようなアルカリ蓄
電池や,鉛蓄電池等がある。しかし、近年、これらの蓄
電池よりも軽量で、且つ、高容量となる可能性があると
いうことで、特に常圧で負極活物質である水素を可逆的
に吸蔵,放出する水素吸蔵合金を備えた電極を負極に用
い、水酸化ニッケル等の金属酸化物を正極活物質とする
電極を正極に用いた金属−水素アルカリ蓄電池が注目さ
れている。この電池の水素吸蔵合金電極での充放電反応
は、化1のように表される。
2. Description of the Related Art Conventionally used storage batteries include alkaline storage batteries such as nickel-cadmium storage batteries and lead storage batteries. However, in recent years, it has been possible to provide a hydrogen storage alloy that reversibly stores and releases hydrogen, which is the negative electrode active material, especially under normal pressure because it is lighter in weight and has a higher capacity than these storage batteries. Attention has been paid to a metal-hydrogen alkaline storage battery in which an electrode is used as a negative electrode and an electrode having a metal oxide such as nickel hydroxide as a positive electrode active material is used as a positive electrode. The charging / discharging reaction at the hydrogen storage alloy electrode of this battery is represented by Chemical formula 1.

【0003】[0003]

【化1】 [Chemical 1]

【0004】〔上記式中、Mは水素吸蔵合金を,MHは
水素が吸蔵された状態の水素吸蔵合金を示す。〕即ち、
充電は電解液中の水分子が合金表面上で水素原子とな
り、合金中に吸蔵される吸蔵反応によって行われる。一
方、放電は水素吸蔵合金が電気化学的に水素を放出する
放出反応によって行われる。そして、この放出反応は、
電極内部に蓄えられた原子状の水素が水素吸蔵合金の周
囲に存在するOH- と反応することで進行する。しかし
ながら、水素吸蔵合金は空気中の酸素と容易に反応する
ため、サイクルを重ねるにつれて合金表面に酸化膜が存
在することになる。その結果、合金表面での上記充放電
反応が阻害されるため、サイクル特性が低下するという
課題を有する。
[In the above formula, M represents a hydrogen storage alloy, and MH represents a hydrogen storage alloy in which hydrogen is stored. ] That is,
Charging is performed by an occlusion reaction in which water molecules in the electrolytic solution become hydrogen atoms on the surface of the alloy and are occluded in the alloy. On the other hand, the discharge is performed by a release reaction in which the hydrogen storage alloy electrochemically releases hydrogen. And this release reaction is
The atomic hydrogen stored inside the electrode proceeds by reacting with OH existing around the hydrogen storage alloy. However, since the hydrogen storage alloy easily reacts with oxygen in the air, an oxide film exists on the alloy surface as the cycle is repeated. As a result, the charging / discharging reaction on the alloy surface is hindered, and there is a problem that cycle characteristics deteriorate.

【0005】そこで、合金表面にニッケルメッキを施
し、合金表面をニッケルで被覆することによって合金表
面の酸化を防止してサイクル特性の向上を図る方法が提
案されている。
Therefore, a method has been proposed in which the alloy surface is plated with nickel and the alloy surface is coated with nickel to prevent oxidation of the alloy surface and improve cycle characteristics.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記方法に
よれば、合金表面が完全にニッケルメッキで被覆されて
しまうため、サイクル初期における合金表面での充放電
反応が阻害される。したがって、初期容量が小さく、満
足のいく初期特性を得ることができないという課題を有
していた。
However, according to the above method, since the alloy surface is completely covered with nickel plating, the charge / discharge reaction on the alloy surface at the initial stage of the cycle is hindered. Therefore, there is a problem that the initial capacity is small and a satisfactory initial characteristic cannot be obtained.

【0007】本発明は上記課題に鑑みてなされたもので
あり、従来と同等のサイクル特性を維持しながら、初期
特性を向上させることができる水素吸蔵合金電極,及び
その製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a hydrogen storage alloy electrode capable of improving the initial characteristics while maintaining the cycle characteristics equivalent to those of the prior art, and a manufacturing method thereof. To aim.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するため、以下のことを特徴とする。 水素を可逆的に吸蔵,放出する水素吸蔵合金を含む
水素吸蔵合金電極において、上記合金表面の一部にはア
ルカリに可溶な金属又はその酸化物が被覆され、且つ、
他の表面部にはアルカリに溶出しにくい金属が被覆され
ていることを特徴とする。 水素吸蔵合金の表面の一部に、アルカリに可溶な金
属又はその酸化物を被覆させる第1ステップと、その他
の水素吸蔵合金の露出部に、アルカリに溶出しにくい金
属を被覆させる第2ステップとを有することを特徴とす
る。
The present invention is characterized by the following in order to solve the above problems. In a hydrogen storage alloy electrode containing a hydrogen storage alloy that reversibly stores and releases hydrogen, a part of the alloy surface is coated with a metal soluble in alkali or an oxide thereof, and
The other surface portion is coated with a metal that is difficult to elute into alkali. The first step of coating a part of the surface of the hydrogen storage alloy with an alkali-soluble metal or its oxide, and the second step of coating the exposed portion of the other hydrogen storage alloy with a metal that is difficult to elute into an alkali. And having.

【0009】[0009]

【作用】上記の如く、水素吸蔵合金の表面の一部には
アルカリ可溶金属(又は金属酸化物)が、他の合金表面
部にはアルカリに溶解しにくい金属が、それぞれ被覆さ
れた電極を用いて電池を作製した場合には、電池内のア
ルカリ電解液によっで前記アルカリ可溶金属(又は金属
酸化物)が溶解するので、合金表面の一部には露出面
(即ち、反応面)が存在することになる。一方、他の合
金表面部にはアルカリに溶解しにくい金属が溶解せずに
被覆されたまま存在している。したがって、従来のよう
に、合金表面がメッキで完全に被覆されることがない。
その結果、合金表面の一部に存在する反応面での充放電
反応がサイクル初期の段階から速やかに進行するので初
期容量が向上し、更に充放電サイクルを繰り返した場合
でもアルカリに溶解しにくい金属によって合金の酸化が
防止できるので、従来と同等のサイクル特性を維持する
こともできる。
As described above, the electrode coated with the alkali-soluble metal (or metal oxide) on a part of the surface of the hydrogen storage alloy and the metal hardly soluble in alkali on the surface of the other alloy should be covered. When a battery is made using the above, the alkali-soluble metal (or metal oxide) is dissolved by the alkaline electrolyte in the battery, so the exposed surface (that is, the reaction surface) is part of the alloy surface. Will exist. On the other hand, on the surface of the other alloy, a metal that is difficult to dissolve in alkali is present without being dissolved and still coated. Therefore, unlike the prior art, the alloy surface is not completely covered with plating.
As a result, the charge / discharge reaction on the reaction surface existing on a part of the alloy surface rapidly progresses from the initial stage of the cycle, so the initial capacity is improved, and even if the charge / discharge cycle is repeated, a metal that is difficult to dissolve in alkali As a result, the alloy can be prevented from being oxidized, so that it is possible to maintain the same cycle characteristics as the conventional one.

【0010】[0010]

【実施例】【Example】

〔実施例1〕図1は本発明の一実施例に係る水素吸蔵合
金電極を用いた円筒型ニッケル−水素アルカリ蓄電池の
断面図であり、焼結式ニッケルから成る正極1と,水素
吸蔵合金(MmNi3.1 Co0.9 Al0.2 Mn0.5 )を
含む負極2と、これら正負両極1・2間に介挿されたセ
パレータ3とから成る電極群4は渦巻状に巻回されてい
る。この電極群4は負極端子兼用の外装罐6内に配置さ
れており、この外装罐6の上部開口にはパッキング7を
介して封口体8が装着されており、この封口体8の内部
にはコイルスプリング9が設けられている。このコイル
スプリング9は電池内部の内圧が異常上昇したときに矢
印A方向に押圧されて内部のガスが大気中に放出される
ように構成されている。また、上記封口体8と前記正極
1とは正極用導電タブ10にて接続されている。
[Embodiment 1] FIG. 1 is a cross-sectional view of a cylindrical nickel-hydrogen alkaline storage battery using a hydrogen storage alloy electrode according to an embodiment of the present invention. A positive electrode 1 made of sintered nickel and a hydrogen storage alloy ( An electrode group 4 composed of a negative electrode 2 containing MmNi 3.1 Co 0.9 Al 0.2 Mn 0.5 ) and a separator 3 interposed between the positive and negative electrodes 1 and 2 is spirally wound. The electrode group 4 is arranged in an outer casing 6 which also serves as a negative electrode terminal, and a sealing body 8 is attached to an upper opening of the outer casing 6 via a packing 7 and inside the sealing body 8. A coil spring 9 is provided. The coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery is abnormally increased, and the gas inside is released into the atmosphere. Further, the sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0011】ここで、上記構造の円筒型ニッケル−水素
アルカリ蓄電池を、以下のようにして作製した。先ず、
市販のMm(ミッシュメタルであって、希土類元素の混
合物),Ni,Co,Al,及びMnを元素比で1:3.
1:0.9:0.2:0.5の割合となるようにそれぞれ秤量
した後、アルゴン不活性雰囲気のアーク炉内で溶解して
溶湯を作成した。次に、上記溶湯を冷却することによ
り、MmNi3.1 Co0.9 Al0.2Mn0.5 で示される
水素吸蔵合金鋳塊を作成した。続いて、この水素吸蔵合
金鋳塊の粒径が100μm以下となるように機械的に粗
粉砕して水素吸蔵合金粉末を作製した後、図2に示すよ
うに、メカニカルアロイング処理,無電解メッキ,
アルカリ処理の3つの処理を施した。 メカニカルアロイング処理 上記水素吸蔵合金粉末21と1重量%の酸化アルミニウ
ム(Al2 3 )とをボールミル内に充填し、更にボー
ルミル内にアルゴンガスを封入し、室温下、回転数80
rpmで20時間攪拌した。この結果、図2に示すよう
に、水素吸蔵合金粉末21の表面の一部に酸化アルミニ
ウム22が被覆されることになる。 無電解メッキ 上記メカニカルアロイング処理を施した水素吸蔵合金粉
末21に、更にNi(5重量%)の無電解メッキを施し
た。この結果、図2に示すように、水素吸蔵合金粉末2
1の表面の一部に酸化アルミニウム22が、水素吸蔵合
金粉末21の露出部に酸化アルミニウム22がそれぞれ
被覆されることになる。 アルカリ処理 上記無電解メッキ処理後の水素吸蔵合金粉末21を30
重量%のKOH溶液(60℃)に1時間浸積した。この
結果、水素吸蔵合金粉末21の一部に被覆していた酸化
アルミニウム22がKOH溶液によって溶解し、水素吸
蔵合金粉末21の表面の一部には、図2に示すように、
反応面24が存在することになる。
Here, the cylindrical nickel-hydrogen alkaline storage battery having the above structure was manufactured as follows. First,
Commercially available Mm (mixture of rare earth elements, which is a misch metal), Ni, Co, Al, and Mn in an element ratio of 1: 3.
Each was weighed so as to have a ratio of 1: 0.9: 0.2: 0.5, and then melted in an arc furnace in an argon inert atmosphere to prepare a molten metal. Next, the molten metal was cooled to prepare a hydrogen storage alloy ingot represented by MmNi 3.1 Co 0.9 Al 0.2 Mn 0.5 . Subsequently, the hydrogen storage alloy ingot is mechanically coarsely pulverized so that the particle size of the hydrogen storage alloy ingot is 100 μm or less to produce a hydrogen storage alloy powder, and then mechanical alloying treatment and electroless plating are performed as shown in FIG. ,
Three treatments of alkali treatment were performed. Mechanical alloying treatment The above hydrogen storage alloy powder 21 and 1% by weight of aluminum oxide (Al 2 O 3 ) were filled in a ball mill, and argon gas was sealed in the ball mill.
Stir at rpm for 20 hours. As a result, as shown in FIG. 2, a part of the surface of the hydrogen storage alloy powder 21 is covered with the aluminum oxide 22. Electroless Plating The hydrogen storage alloy powder 21 subjected to the mechanical alloying treatment was further electroless plated with Ni (5 wt%). As a result, as shown in FIG. 2, the hydrogen storage alloy powder 2
A part of the surface of 1 is covered with aluminum oxide 22, and the exposed part of the hydrogen storage alloy powder 21 is covered with aluminum oxide 22. Alkali treatment 30 times the hydrogen storage alloy powder 21 after the electroless plating treatment
It was immersed in a KOH solution at 60% by weight (60 ° C.) for 1 hour. As a result, the aluminum oxide 22 covering a part of the hydrogen storage alloy powder 21 is dissolved by the KOH solution, and a part of the surface of the hydrogen storage alloy powder 21 is, as shown in FIG.
The reaction surface 24 will be present.

【0012】しかる後、上記3つの処理がなされた水素
吸蔵合金粉末21に結着剤としてのポリエチレンオキサ
イドを1重量%添加し、これらを均一に混合することに
よりペーストを作成した。この後、このペーストを、ニ
ッケルメッキが施されたパンチングメタル芯体の両面に
塗着し、室温で乾燥させ、更に所定の寸法に切断するこ
とより負極2を作製した。
Thereafter, 1% by weight of polyethylene oxide as a binder was added to the hydrogen storage alloy powder 21 which had been subjected to the above three treatments, and these were uniformly mixed to prepare a paste. After that, this paste was applied to both surfaces of a nickel-plated punching metal core, dried at room temperature, and further cut into a predetermined size to prepare a negative electrode 2.

【0013】次に、耐アルカリ性を有する不織布から成
るセパレータ3を介して上記負極2と,公知の焼結式ニ
ッケル正極1とから成る電極群4を作成した後、この電
極群4を電池缶6内に挿入した。次いで、この電池缶6
内に30重量%のKOH水溶液を注液した後、更に電池
缶6を封口して、公称容量1000mAhの円筒型ニッ
ケル−水素アルカリ蓄電池を作製した。
Next, an electrode group 4 composed of the negative electrode 2 and a known sintered nickel positive electrode 1 is formed through a separator 3 made of a non-woven fabric having alkali resistance, and then the electrode group 4 is formed into a battery can 6. Inserted inside. Then, this battery can 6
After pouring a 30% by weight KOH aqueous solution into the inside, the battery can 6 was further sealed to prepare a cylindrical nickel-hydrogen alkaline storage battery having a nominal capacity of 1000 mAh.

【0014】このようにして作製した電池を以下、(A
1 )電池と称する。 〔実施例2〜6〕Al2 3 の代わりに、Al,ZrO
2 ,Zr,SiO2 ,Siをそれぞれ用いてメカニカル
アロイング処理を行った負極を用いる他は、上記実施例
1と同様にして電池を作製した。
The battery produced in this manner is described below in (A
1 ) Called battery. Examples 2 to 6 Al, ZrO instead of Al 2 O 3
A battery was produced in the same manner as in Example 1 except that the negative electrode that was mechanically alloyed with 2 , Zr, SiO 2 , and Si was used.

【0015】このように作製した電池を以下、それぞれ
(A2 )電池〜(A6 )電池と称する。 〔実施例7〜11〕Niの代わりに、Cu,Pt,A
u,Pd,Agをそれぞれ用いて無電解メッキを施した
負極を用いる他は、上記実施例1と同様にして電池を作
製した。
The batteries thus produced are hereinafter referred to as (A 2 ) battery to (A 6 ) battery, respectively. [Examples 7 to 11] Cu, Pt, A instead of Ni
A battery was prepared in the same manner as in Example 1 except that the negative electrode that was electrolessly plated with u, Pd, and Ag was used.

【0016】このように作製した電池を以下、それぞれ
(A7 )電池〜(A11)電池と称する。 〔実施例12〜15〕メカニカルアロイング処理におけ
るAl2 3 の添加量を、0.5wt%,2wt%,5wt%,
10wt%とそれぞれ変化させた負極を用いる他は、上記
実施例1と同様にして電池を作製した。
The batteries thus produced are hereinafter referred to as (A 7 ) battery to (A 11 ) battery, respectively. [Examples 12 to 15] The amounts of Al 2 O 3 added in the mechanical alloying treatment were 0.5 wt%, 2 wt%, 5 wt%,
A battery was prepared in the same manner as in Example 1 except that the negative electrode was changed to 10 wt%.

【0017】このように作製した電池を以下、それぞれ
(A12)電池〜(A15)電池と称する。 〔実施例16〜19〕無電解メッキにおけるNiの添加
量を、2.5wt%,10wt%,15wt%,20wt%とそれ
ぞれ変化させた負極を用いる他は、上記実施例1と同様
にして電池を作製した。
The batteries thus produced are hereinafter referred to as (A 12 ) battery to (A 15 ) battery, respectively. [Examples 16 to 19] Batteries were prepared in the same manner as in Example 1 except that negative electrodes were used in which the amounts of Ni added in electroless plating were changed to 2.5 wt%, 10 wt%, 15 wt% and 20 wt%, respectively. Was produced.

【0018】このように作製した電池を以下、それぞれ
(A16)電池〜(A19)電池と称する。 〔実施例20〕アルカリ処理を行わない負極を用いる他
は、上記実施例1と同様にして電池を作製した。
The batteries thus produced are hereinafter referred to as (A 16 ) battery to (A 19 ) battery, respectively. [Example 20] A battery was produced in the same manner as in Example 1 except that the negative electrode not subjected to the alkali treatment was used.

【0019】このように作製した電池を以下、(A20
電池と称する。 〔比較例1〕メカニカルアロイング処理,及びアルカリ
処理を行わない負極を用いる他は、上記実施例1と同様
にして電池を作製した。このように作製した電池を以
下、(X1 )電池と称する。 〔比較例2〕無電解メッキを行わない負極を用いる他
は、上記実施例1と同様にして電池を作製した。
The battery thus produced is referred to below as (A 20 )
It is called a battery. [Comparative Example 1] A battery was prepared in the same manner as in Example 1 except that a negative electrode that was not subjected to mechanical alloying treatment or alkali treatment was used. The battery thus manufactured is hereinafter referred to as (X 1 ) battery. [Comparative Example 2] A battery was produced in the same manner as in Example 1 except that the negative electrode not subjected to electroless plating was used.

【0020】このように作製した電池を以下、(X2
電池と称する。 〔比較例3〕メカニカルアロイング処理,無電解メッ
キ,及びアルカリ処理のいずれの処理も行わない負極を
用いる他は、上記実施例1と同様にして電池を作製し
た。このように作製した電池を以下、(X3 )電池と称
する。 〔実験1〕上記本発明の(A1 )電池〜(A20)電池,
及び比較例の(X1 )電池〜(X 3 )電池を用いて初期
容量を調べたので、その結果を下記表1に示す。尚、実
験は電池を電流0.2Cで6時間充電した後、同じく電流
0.2Cで電池電圧が1.0Vに達するまで放電を行うとい
う条件である。 〔実験2〕上記本発明の(A1 )電池〜(A20)電池,
及び比較例の(X1 )電池〜(X 3 )電池を用いてサイ
クル寿命(初期容量の50%に減少する時期)を調べた
ので、その結果を上記初期容量と共に下記表1に示す。
尚、実験は電池を電流1Cで1.2時間充電した後、同じ
く電流1Cで電池電圧が1.0Vに達するまで放電を行う
という条件である。 〔実験1及び実験2のまとめ〕
The battery thus produced is described below as (X2)
It is called a battery. [Comparative Example 3] Mechanical alloying treatment, electroless message
Negative electrode that does not undergo either treatment or alkali treatment
A battery was prepared in the same manner as in Example 1 except that it was used.
It was The battery thus produced is referred to below as (X3) Battery
To do. [Experiment 1] (A of the present invention1) Battery ~ (A20)battery,
And the comparative example (X1) Battery ~ (X 3) Initial with batteries
The capacity was examined, and the results are shown in Table 1 below. Incidentally, the real
The test was carried out by charging the battery at a current of 0.2 C for 6 hours
Discharge until the battery voltage reaches 1.0V at 0.2C.
Conditions. [Experiment 2] (A of the present invention1) Battery ~ (A20)battery,
And the comparative example (X1) Battery ~ (X 3) Use batteries to
We examined the clew life (the time when it decreases to 50% of the initial capacity).
Therefore, the results are shown in Table 1 below together with the initial capacity.
The experiment is the same after charging the battery for 1.2 hours at a current of 1C.
Discharge at a current of 1C until the battery voltage reaches 1.0V.
That is the condition. [Summary of Experiment 1 and Experiment 2]

【0021】[0021]

【表1】 [Table 1]

【0022】上記表1から明らかなように、比較例の
(X1 )電池はサイクル寿命は向上するものの初期容量
が低下していることが認められる。これは、水素吸蔵合
金粉末の表面が完全にニッケルメッキで被覆されている
ため、サイクル初期の段階での充放電反応が阻害される
ためと思われる。また、比較例の(X2 )電池は初期容
量は向上するもののサイクル寿命が低下していることが
認められる。これは、充放電サイクルを繰り返す過程
で、水素吸蔵合金粉末が酸化することによるためと思わ
れる。更に、比較例の(X3 )電池は初期容量,及びサ
イクル寿命が低下していることが認められる。これは、
サイクル初期の段階での充放電反応が阻害されるため,
及び充放電サイクルを繰り返す過程で水素吸蔵合金粉末
が酸化することによるためと思われる。
As is apparent from Table 1 above, it is recognized that the (X 1 ) battery of the comparative example has an improved cycle life but a reduced initial capacity. It is considered that this is because the surface of the hydrogen storage alloy powder was completely covered with nickel plating, and the charge / discharge reaction in the early stage of the cycle was hindered. Further, it is recognized that the (X 2 ) battery of the comparative example has an improved initial capacity but a reduced cycle life. It is considered that this is because the hydrogen storage alloy powder is oxidized in the process of repeating the charge / discharge cycle. Further, it is recognized that the (X 3 ) battery of Comparative Example has a reduced initial capacity and cycle life. this is,
Since the charge / discharge reaction at the early stage of the cycle is hindered,
It is considered that this is because the hydrogen storage alloy powder is oxidized during the process of repeating the charge / discharge cycle.

【0023】これらに対して、本発明の(A1 )電池〜
(A20)電池は、水素吸蔵合金粉末の表面の一部に存在
する反応面での充放電反応がサイクル初期の段階から速
やかに進行するので初期容量が向上する。また、充放電
サイクルを繰り返した場合でもアルカリに溶解しにくい
金属によって水素吸蔵合金粉末の酸化が防止されるた
め、比較例の(X1 )電池と略同等のサイクル寿命を得
ることができる。 〔その他の事項〕 上記実施例においては、アルカリに溶出しにくい金
属としてNi,Cu,Pt,Au,Pd,Ag等を用い
たが、本発明はこれらに何ら限定されるものではない。 アルカリ可溶金属(又は金属酸化物)としてAl
(Al2 3 ),Zr(ZrO2 ),Si(SiO2
等を用いたが、本発明はこれらに何ら限定されるもので
はない。 アルカリ可溶金属(又は金属酸化物)と,アルカリ
溶解しにくい金属とを別の工程で被覆したが、同一の工
程(例えば、メカニカルアロイング処理)によって被覆
させることも勿論可能である。 メカニカルアロイング処理,及び無電解メッキを行
った後、アルカリ処理を行ったが、アルカリ未処理の電
極を用いて電池を作製した場合でも、水素吸蔵合金粉末
の表面に被覆されたアルカリ可溶金属(又は金属酸化
物)が電池内のアルカリ電解液によって溶出することに
なる。したがって、アルカリ処理を行わなかった場合で
も、アルカリ処理を行った場合と同様に水素吸蔵合金粉
末の表面に反応面が露出し、初期容量が向上するので、
アルカリ処理は必ずしも行う必要はない。 希土類系の水素吸蔵合金としてMmNi3.1 Co
0.9 Al0.2 Mn0.5 を用いたが、本発明はこれに何ら
限定されるものではなく、例えば、Ti−Mn系,Ti
−Fe系,Ti−Zr系,Mg−Ni系,Zr−Mn系
等の水素吸蔵合金を用いても上記実施例と同様の効果を
奏する。
In contrast to these, the (A 1 ) battery of the present invention
In the (A 20 ) battery, the charge / discharge reaction on the reaction surface existing on a part of the surface of the hydrogen storage alloy powder rapidly proceeds from the initial stage of the cycle, so that the initial capacity is improved. Further, even if the charge / discharge cycle is repeated, the hydrogen-occlusion alloy powder is prevented from being oxidized by the metal that is difficult to dissolve in the alkali, so that a cycle life substantially equal to that of the (X 1 ) battery of the comparative example can be obtained. [Other Matters] In the above examples, Ni, Cu, Pt, Au, Pd, Ag, etc. were used as the metal that is difficult to elute in the alkali, but the present invention is not limited to these. Al as alkali-soluble metal (or metal oxide)
(Al 2 O 3 ), Zr (ZrO 2 ), Si (SiO 2 ).
However, the present invention is not limited to these. Alkali-soluble metal (or metal oxide) and alkali
Although the metal that is difficult to dissolve is coated in a separate step, it is of course possible to coat it in the same step (for example, mechanical alloying treatment). Alkali treatment was performed after mechanical alloying and electroless plating, but even when a battery was made using electrodes that were not treated with alkali, the alkali-soluble metal coated on the surface of the hydrogen storage alloy powder (Or metal oxide) will be eluted by the alkaline electrolyte in the battery. Therefore, even when the alkali treatment is not performed, the reaction surface is exposed on the surface of the hydrogen storage alloy powder as in the case where the alkali treatment is performed, and the initial capacity is improved,
Alkaline treatment is not always necessary. MmNi 3.1 Co as a rare earth hydrogen storage alloy
Although 0.9 Al 0.2 Mn 0.5 was used, the present invention is not limited to this. For example, Ti--Mn system, Ti
Even if a hydrogen storage alloy such as -Fe-based, Ti-Zr-based, Mg-Ni-based, Zr-Mn-based is used, the same effect as in the above-described embodiment can be obtained.

【0024】[0024]

【発明の効果】以上の本発明によれば、水素吸蔵合金表
面の一部に存在する反応面での充放電反応がサイクル初
期の段階から速やかに進行するので初期容量が向上し、
更に充放電サイクルを繰り返した場合でもアルカリに溶
解しにくい金属によって合金の酸化が防止できるので、
サイクル特性も向上するといった優れた効果を奏する。
As described above, according to the present invention, since the charge / discharge reaction on the reaction surface existing on a part of the surface of the hydrogen storage alloy rapidly proceeds from the initial stage of the cycle, the initial capacity is improved,
Furthermore, even if the charge / discharge cycle is repeated, the oxidation of the alloy can be prevented by the metal that is difficult to dissolve in alkali,
It has an excellent effect of improving cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る水素吸蔵合金電極を用
いた円筒型ニッケル−水素アルカリ蓄電池の部分断面斜
視図である。
FIG. 1 is a partial cross-sectional perspective view of a cylindrical nickel-hydrogen alkaline storage battery using a hydrogen storage alloy electrode according to an embodiment of the present invention.

【図2】本発明の一実施例に係る水素吸蔵合金電極の製
造工程を示す図である。
FIG. 2 is a diagram showing a manufacturing process of a hydrogen storage alloy electrode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

21 水素吸蔵合金粉末 22 酸化アルミニウム 23 ニッケルメッキ 21 Hydrogen Storage Alloy Powder 22 Aluminum Oxide 23 Nickel Plating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 古川 修弘 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18 Keiyo Hondori, Moriguchi City Sanyo Electric Co., Ltd. Within

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素を可逆的に吸蔵,放出する水素吸
蔵合金を含む水素吸蔵合金電極において、 上記合金表面の一部にはアルカリに可溶な金属又はその
酸化物が被覆され、且つ、他の表面部にはアルカリに溶
出しにくい金属が被覆されていることを特徴とする水素
吸蔵合金電極。
1. A hydrogen storage alloy electrode containing a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, wherein a part of the surface of the alloy is coated with an alkali-soluble metal or its oxide, and The hydrogen storage alloy electrode is characterized in that the surface portion of the electrode is coated with a metal that is difficult to dissolve in alkali.
【請求項2】 水素吸蔵合金の表面の一部に、アルカ
リに可溶な金属又はその酸化物を被覆させる第1ステッ
プと、 その他の水素吸蔵合金の露出部に、アルカリに溶出しに
くい金属を被覆させる第2ステップと、 を有することを特徴とする水素吸蔵合金電極の製造方
法。
2. A first step of coating a part of the surface of the hydrogen storage alloy with an alkali-soluble metal or an oxide thereof, and a metal which is difficult to elute into an alkali on the exposed part of the other hydrogen storage alloy. A second step of coating, and a method of manufacturing a hydrogen storage alloy electrode, comprising:
JP15088592A 1992-06-10 1992-06-10 Hydrogen storage alloy electrode and method for producing the same Expired - Fee Related JP3326197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15088592A JP3326197B2 (en) 1992-06-10 1992-06-10 Hydrogen storage alloy electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15088592A JP3326197B2 (en) 1992-06-10 1992-06-10 Hydrogen storage alloy electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05343058A true JPH05343058A (en) 1993-12-24
JP3326197B2 JP3326197B2 (en) 2002-09-17

Family

ID=15506514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15088592A Expired - Fee Related JP3326197B2 (en) 1992-06-10 1992-06-10 Hydrogen storage alloy electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3326197B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879429A (en) * 1994-04-04 1999-03-09 Matsushita Electric Industrial Co., Ltd. Method for producing hydrogen storage alloy electrode
WO1999017387A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Hydrogen absorbing allow electrode and method of producing the same
US6207323B1 (en) 1998-03-09 2001-03-27 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode
JP2001176514A (en) * 1999-12-14 2001-06-29 Santoku Corp Negative electrode active material for alkaline secondary battery and method of manufacturing the same
JP2009299172A (en) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd Hydrogen storage alloy and alkali storage battery
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879429A (en) * 1994-04-04 1999-03-09 Matsushita Electric Industrial Co., Ltd. Method for producing hydrogen storage alloy electrode
WO1999017387A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Hydrogen absorbing allow electrode and method of producing the same
US6207323B1 (en) 1998-03-09 2001-03-27 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode
JP2001176514A (en) * 1999-12-14 2001-06-29 Santoku Corp Negative electrode active material for alkaline secondary battery and method of manufacturing the same
JP2009299172A (en) * 2008-06-17 2009-12-24 Sanyo Electric Co Ltd Hydrogen storage alloy and alkali storage battery
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery
US9748560B2 (en) 2011-07-28 2017-08-29 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery

Also Published As

Publication number Publication date
JP3326197B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP3326197B2 (en) Hydrogen storage alloy electrode and method for producing the same
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP2604282B2 (en) Alkaline storage battery
JP2001118597A (en) Alkaline secondary cell
JPH05343059A (en) Hydrogen storage alloy electrode
JP3113345B2 (en) Hydrogen storage alloy electrode
JP3192694B2 (en) Alkaline storage battery
EP1012894A1 (en) Hydrogen storage alloy
KR100405016B1 (en) Hydrogen Absorbing Alloy Electrode and Method of Producing the Same
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3176387B2 (en) Method for producing hydride secondary battery
JP3490799B2 (en) Hydrogen storage alloy electrode, method for producing the same, and alkaline storage battery
JP3499923B2 (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries
JP3322415B2 (en) Metal-hydrogen alkaline storage battery and method of manufacturing the same
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3369148B2 (en) Alkaline storage battery
JP2847872B2 (en) Hydrogen storage electrode
JP3459528B2 (en) Method for producing hydrogen storage alloy for hydrogen storage alloy electrode
JPH11191412A (en) Alkaline storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3485753B2 (en) Method for producing hydrogen storage alloy electrode
JPH10255779A (en) Manufacture for nickel hydrogen storage battery
JP2966467B2 (en) Method for producing electrode material for alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees