JPH05343059A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH05343059A
JPH05343059A JP4150886A JP15088692A JPH05343059A JP H05343059 A JPH05343059 A JP H05343059A JP 4150886 A JP4150886 A JP 4150886A JP 15088692 A JP15088692 A JP 15088692A JP H05343059 A JPH05343059 A JP H05343059A
Authority
JP
Japan
Prior art keywords
battery
hydrogen storage
electrode
storage alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4150886A
Other languages
Japanese (ja)
Inventor
Fusago Mizutaki
房吾 水瀧
Mamoru Kimoto
衛 木本
Masao Takee
正夫 武江
Koji Nishio
晃治 西尾
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4150886A priority Critical patent/JPH05343059A/en
Publication of JPH05343059A publication Critical patent/JPH05343059A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a hydrogen storage alloy electrode whose initial characteristic is improved by covering the surface of hydrogen storage alloy used in an electrode with alkali - soluble metal or the oxide. CONSTITUTION:The surface of hydrogen storage alloy powder to store or release hydrogen reversibly is covered with alkali soluble metal such as Al or the oxide such as Al2O3. This covering can be carried out by a mechanical alloying treatement. An electrode is molded by using this covered alloy powder. When this electrode is molded, this alloy is prevented from being oxidized due to the covering. When this electrode is incorporated into a battery, the covering is dissolved by alkaline electrolyte, and a reacted surface is exposed on the alloy surface. In the hydrogen storage alloy electrode obtained in this way, since a charge and discharge reaction makes progress speedily on the alloy surface from the initial stage of a cycle, an initial characteristic can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属−水素アルカリ蓄
電池に用いられる水素吸蔵合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used in a metal-hydrogen alkaline storage battery.

【0002】[0002]

【従来の技術】従来からよく用いられている蓄電池とし
ては、ニッケル−カドミウム蓄電池のようなアルカリ蓄
電池や,鉛蓄電池等がある。しかし、近年、これらの蓄
電池よりも軽量で、且つ、高容量となる可能性があると
いうことで、特に常圧で負極活物質である水素を可逆的
に吸蔵,放出する水素吸蔵合金を備えた電極を負極に用
い、水酸化ニッケル等の金属酸化物を正極活物質とする
電極を正極に用いた金属−水素アルカリ蓄電池が注目さ
れている。この電池の水素吸蔵合金電極での充放電反応
は、化1のように表される。
2. Description of the Related Art Conventionally used storage batteries include alkaline storage batteries such as nickel-cadmium storage batteries and lead storage batteries. However, in recent years, it has been possible to provide a hydrogen storage alloy that reversibly stores and releases hydrogen, which is the negative electrode active material, especially under normal pressure because it is lighter in weight and has a higher capacity than these storage batteries. Attention has been paid to a metal-hydrogen alkaline storage battery in which an electrode is used as a negative electrode and an electrode having a metal oxide such as nickel hydroxide as a positive electrode active material is used as a positive electrode. The charging / discharging reaction at the hydrogen storage alloy electrode of this battery is represented by Chemical formula 1.

【0003】[0003]

【化1】 [Chemical 1]

【0004】〔上記式中、Mは水素吸蔵合金を,MHは
水素が吸蔵された状態の水素吸蔵合金を示す。〕即ち、
充電は電解液中の水分子が合金表面上で水素原子とな
り、合金中に吸蔵される吸蔵反応によって行われる。一
方、放電は水素吸蔵合金が電気化学的に水素を放出する
放出反応によって行われる。そして、この放出反応は、
電極内部に蓄えられた原子状の水素が水素吸蔵合金の周
囲に存在するOH- と反応することで進行する。
[In the above formula, M represents a hydrogen storage alloy, and MH represents a hydrogen storage alloy in which hydrogen is stored. ] That is,
Charging is performed by an occlusion reaction in which water molecules in the electrolytic solution become hydrogen atoms on the surface of the alloy and are occluded in the alloy. On the other hand, the discharge is performed by a release reaction in which the hydrogen storage alloy electrochemically releases hydrogen. And this release reaction is
The atomic hydrogen stored inside the electrode proceeds by reacting with OH existing around the hydrogen storage alloy.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記水素吸
蔵合金を用いた電池は、電池作製工程において水素吸蔵
合金が空気中の酸素と容易に反応するため、合金表面に
酸化膜が存在することになる。その結果、合金表面での
上記充放電反応が阻害されるため、初期特性が低下する
という課題を有していた。
However, in the battery using the above hydrogen storage alloy, the hydrogen storage alloy easily reacts with oxygen in the air during the battery manufacturing process, so that an oxide film exists on the surface of the alloy. Become. As a result, the charge / discharge reaction on the surface of the alloy is hindered, so that there is a problem that the initial characteristics are deteriorated.

【0006】本発明は上記課題に鑑みてなされたもので
あり、初期特性を向上させることができる水素吸蔵合金
電極を提供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a hydrogen storage alloy electrode capable of improving initial characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、水素を可逆的に吸蔵,放出する水素吸蔵合金
を含む水素吸蔵合金電極において、上記合金表面には、
アルカリに可溶な金属又はその酸化物が被覆されている
ことを特徴とする。
In order to solve the above problems, the present invention provides a hydrogen storage alloy electrode containing a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, wherein the alloy surface has:
It is characterized in that it is coated with an alkali-soluble metal or its oxide.

【0008】[0008]

【作用】上記構成の如く、表面がアルカリ可溶金属(又
は金属酸化物)で被覆された水素吸蔵合金電極を用いた
電池は、電池作製工程において、水素吸蔵合金が空気中
の酸素によって酸化されることがない。一方、電池作製
後は、電池内に注液されるアルカリ電解液によって、前
記アルカリ可溶金属(又は金属酸化物)が溶解するの
で、合金表面に露出面(即ち、反応面)が存在する。そ
の結果、サイクル初期の段階から合金表面での充放電反
応が速やかに進行するので、初期特性が向上する。
In the battery having the hydrogen storage alloy electrode whose surface is coated with the alkali-soluble metal (or metal oxide) as described above, the hydrogen storage alloy is oxidized by oxygen in the air during the battery manufacturing process. Never. On the other hand, after the battery is manufactured, the alkali-soluble metal (or metal oxide) is dissolved by the alkaline electrolyte injected into the battery, so that the alloy surface has an exposed surface (that is, a reaction surface). As a result, the charge / discharge reaction on the alloy surface rapidly progresses from the initial stage of the cycle, so that the initial characteristics are improved.

【0009】[0009]

【実施例】【Example】

〔実施例1〕図1は本発明の一実施例に係る水素吸蔵合
金電極を用いた円筒型ニッケル−水素アルカリ蓄電池の
断面図であり、焼結式ニッケルから成る正極1と,水素
吸蔵合金(MmNi3.1 Co0.9 Al0.2 Mn0.5 )を
含む負極2と、これら正負両極1・2間に介挿されたセ
パレータ3とから成る電極群4は渦巻状に巻回されてい
る。この電極群4は負極端子兼用の外装罐6内に配置さ
れており、この外装罐6の上部開口にはパッキング7を
介して封口体8が装着されており、この封口体8の内部
にはコイルスプリング9が設けられている。このコイル
スプリング9は電池内部の内圧が異常上昇したときに矢
印A方向に押圧されて内部のガスが大気中に放出される
ように構成されている。また、上記封口体8と前記正極
1とは正極用導電タブ10にて接続されている。
[Embodiment 1] FIG. 1 is a cross-sectional view of a cylindrical nickel-hydrogen alkaline storage battery using a hydrogen storage alloy electrode according to an embodiment of the present invention. A positive electrode 1 made of sintered nickel and a hydrogen storage alloy ( An electrode group 4 composed of a negative electrode 2 containing MmNi 3.1 Co 0.9 Al 0.2 Mn 0.5 ) and a separator 3 interposed between the positive and negative electrodes 1 and 2 is spirally wound. The electrode group 4 is arranged in an outer casing 6 which also serves as a negative electrode terminal, and a sealing body 8 is attached to an upper opening of the outer casing 6 via a packing 7 and inside the sealing body 8. A coil spring 9 is provided. The coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery is abnormally increased, and the gas inside is released into the atmosphere. Further, the sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0010】ここで、上記構造の円筒型ニッケル−水素
アルカリ蓄電池を、以下のようにして作製した。先ず、
市販のMm(ミッシュメタルであって、希土類元素の混
合物),Ni,Co,Al,及びMnを元素比で1:3.
1:0.9:0.2:0.5の割合となるようにそれぞれ秤量
した後、アルゴン不活性雰囲気のアーク炉内で溶解して
溶湯を作成した。次に、上記溶湯を冷却することによ
り、MmNi3.1 Co0.9 Al0.2Mn0.5 で示される
水素吸蔵合金鋳塊を作成した。続いて、この水素吸蔵合
金鋳塊の粒径が100μm以下となるように機械的に粗
粉砕して水素吸蔵合金粉末を作製した。その後、この水
素吸蔵合金粉末と5重量%の酸化アルミニウム(Al 2
3 )とをボールミル内に充填し、更にボールミル内に
アルゴンガスを封入し、室温下、回転数80rpmで2
0時間攪拌しメカニカルアロイング処理を施した。しか
る後、メカニカルアロイング処理がなされた水素吸蔵合
金粉末に結着剤としてのポリエチレンオキサイドを1重
量%添加し、これらを均一に混合することによりペース
トを作成した。この後、このペーストを、ニッケルメッ
キが施されたパンチングメタル芯体の両面に塗着し、室
温で乾燥させ、更に所定の寸法に切断することより負極
2を作製した。
Here, the cylindrical nickel-hydrogen having the above structure
The alkaline storage battery was produced as follows. First,
Commercially available Mm (mixed with rare earth elements, which is a misch metal
Compound), Ni, Co, Al, and Mn in the element ratio of 1: 3.
Weigh each to a ratio of 1: 0.9: 0.2: 0.5
Then, melt it in an arc furnace in an argon-inert atmosphere.
I made a molten metal. Next, by cooling the molten metal
MmNi3.1Co0.9Al0.2Mn0.5Indicated by
A hydrogen storage alloy ingot was prepared. Then, this hydrogen storage
Mechanically rough so that the grain size of the gold ingot is 100 μm or less
The powder was pulverized to prepare a hydrogen storage alloy powder. Then this water
Elemental storage alloy powder and 5% by weight of aluminum oxide (Al 2
O3) And are filled in the ball mill, and then in the ball mill.
Fill with argon gas and rotate at room temperature for 2 revolutions at 80 rpm.
The mixture was stirred for 0 hour and mechanically alloyed. Only
After hydrogen storage, the mechanically alloyed hydrogen storage
Single layer of polyethylene oxide as a binder on gold powder
Add the amount% and mix them uniformly to keep pace.
Created. After this, paste this
Apply it to both sides of the punched metal core body
Negative electrode by drying at a temperature and further cutting to the specified size
2 was produced.

【0011】次に、耐アルカリ性を有する不織布から成
るセパレータ3を介して上記負極2と,公知の焼結式ニ
ッケル正極1とから成る電極群4を作成した後、この電
極群4を電池缶6内に挿入した。次いで、この電池缶6
内に30重量%のKOH水溶液を注液した後、更に電池
缶6を封口して、公称容量1000mAhの円筒型ニッ
ケル−水素アルカリ蓄電池を作製した。
Next, an electrode group 4 composed of the negative electrode 2 and a known sintered nickel positive electrode 1 is formed through a separator 3 made of a non-woven fabric having alkali resistance, and then the electrode group 4 is connected to a battery can 6. Inserted inside. Then, this battery can 6
After pouring a 30% by weight KOH aqueous solution into the inside, the battery can 6 was further sealed to prepare a cylindrical nickel-hydrogen alkaline storage battery having a nominal capacity of 1000 mAh.

【0012】このようにして作製した電池を以下、(A
1 )電池と称する。 〔実施例2〜6〕Al2 3 の代わりに、Al,ZrO
2 ,Zr,SiO2 ,Siをそれぞれ用いてメカニカル
アロイング処理を行った負極を用いる他は、上記実施例
1と同様にして電池を作製した。
The battery thus produced is described below in (A
1 ) Called battery. Examples 2 to 6 Al, ZrO instead of Al 2 O 3
A battery was produced in the same manner as in Example 1 except that the negative electrode that was mechanically alloyed with 2 , Zr, SiO 2 , and Si was used.

【0013】このように作製した電池を以下、それぞれ
(A2 )電池〜(A6 )電池と称する。 〔実施例7〜10〕メカニカルアロイング処理における
Al2 3 の添加量を、1wt%,10wt%,15wt%,
20wt%とそれぞれ変化させた負極を用いる他は、上記
実施例1と同様にして電池を作製した。
The batteries thus produced are hereinafter referred to as (A 2 ) battery to (A 6 ) battery. [Examples 7 to 10] Addition amounts of Al 2 O 3 in the mechanical alloying treatment were 1 wt%, 10 wt%, 15 wt%,
A battery was prepared in the same manner as in Example 1 except that the negative electrode was changed to 20 wt%.

【0014】このように作製した電池を以下、それぞれ
(A7 )電池〜(A10)電池と称する。 〔比較例〕メカニカルアロイング処理を行わない負極を
用いる他は、上記実施例1と同様にして電池を作製し
た。
The batteries thus produced are hereinafter referred to as (A 7 ) battery to (A 10 ) battery, respectively. [Comparative Example] A battery was prepared in the same manner as in Example 1 except that a negative electrode not subjected to mechanical alloying treatment was used.

【0015】このように作製した電池を以下、(X)電
池と称する。 〔実験1〕上記本発明の(A1 )電池〜(A10)電池,
及び比較例の(X)電池を用いて初期容量を調べたの
で、その結果を下記表1に示す。尚、実験は電池を電流
0.2Cで6時間充電した後、同じく電流0.2Cで電池電
圧が1.0Vに達するまで放電を行うという条件である。 〔実験2〕上記本発明の(A1 )電池〜(A10)電池,
及び比較例の(X)電池を用いてサイクル寿命(初期容
量の50%に減少する時期)を調べたので、その結果を
上記初期容量と共に下記表1に示す。尚、実験は電池を
電流1Cで1.2時間充電した後、同じく電流1Cで電池
電圧が1.0Vに達するまで放電を行うという条件であ
る。 〔実験1及び実験2のまとめ〕
The battery thus manufactured is hereinafter referred to as (X) battery. [Experiment 1] (A 1 ) battery to (A 10 ) battery of the present invention,
The initial capacity was examined using the (X) battery of Comparative Example, and the results are shown in Table 1 below. In the experiment, the battery
The condition is that the battery is charged at 0.2C for 6 hours and then discharged at a current of 0.2C until the battery voltage reaches 1.0V. [Experiment 2] (A 1 ) battery to (A 10 ) battery of the present invention,
The cycle life (the time when the capacity was reduced to 50% of the initial capacity) was examined using the (X) battery of Comparative Example. The results are shown in Table 1 below together with the initial capacity. In the experiment, the battery was charged at a current of 1C for 1.2 hours, and then discharged at the same current of 1C until the battery voltage reached 1.0V. [Summary of Experiment 1 and Experiment 2]

【0016】[0016]

【表1】 [Table 1]

【0017】上記表1から明らかなように、本発明の
(A1 )電池〜(A10)電池は、比較例の(X)電池に
比べて初期容量が高いことが認められる。これは、比較
例の(X)電池では、電池作製工程において、負極であ
る水素吸蔵合金が酸化されるのに対して、本発明の(A
1 )電池〜(A10)電池では、水素吸蔵合金がアルカリ
可溶金属(又は金属酸化物)によって被覆されているた
め、電池作製工程において、水素吸蔵合金が酸化される
ことがない。一方、電池作製後は、KOH水溶液に溶解
するため、サイクル初期の段階から充放電反応が速やか
に進行するためと思われる。
As is apparent from Table 1 above, it is recognized that the batteries (A 1 ) to (A 10 ) of the present invention have a higher initial capacity than the battery (X) of the comparative example. This is because in the battery (X) of the comparative example, the hydrogen storage alloy that is the negative electrode is oxidized in the battery manufacturing process, whereas
1) The cell ~ (A 10) cell, the hydrogen storage alloy is coated with the alkali-soluble metal (or metal oxides), in the battery manufacturing process, it is not the hydrogen absorbing alloy is oxidized. On the other hand, it is considered that since the battery is dissolved in the KOH aqueous solution after the battery is manufactured, the charge / discharge reaction proceeds rapidly from the initial stage of the cycle.

【0018】また、本発明の(A1 )電池〜(A10)電
池は、比較例の(X)電池に比べてわずかにサイクル寿
命が向上していることが認められる。これは、比較例の
(X)電池は合金表面が酸化するため充放電反応が阻害
されるのに対して、本発明の(A1 )電池〜(A10)電
池では、充放電サイクルの後期の段階においても、KO
H水溶液によっで溶解されないアルカリ可溶金属(又は
金属酸化物)が残存しているため、合金の酸化が阻害さ
れることよると思われる。 〔その他の事項〕 上記実施例においては、アルカリ可溶金属(又は金
属酸化物)としてAl(Al2 3 ),Zr(Zr
2 ),Si(SiO2 )等を用いたが、本発明はこれ
らに何ら限定されるものではない。 希土類系の水素吸蔵合金としてMmNi3.1 Co
0.9 Al0.2 Mn0.5 を用いたが、本発明はこれに何ら
限定されるものではなく、例えば、Ti−Mn系,Ti
−Fe系,Ti−Zr系,Mg−Ni系,Zr−Mn系
等の水素吸蔵合金を用いても上記実施例と同様の効果を
奏する。
It is also recognized that the batteries (A 1 ) to (A 10 ) of the present invention have a slightly improved cycle life as compared with the battery (X) of the comparative example. This is because the (X) battery of the comparative example inhibits the charge / discharge reaction due to the oxidation of the alloy surface, whereas the (A 1 ) battery to (A 10 ) battery of the present invention have the latter stage of the charge / discharge cycle. At the stage of
It is considered that the alkali-soluble metal (or metal oxide) that is not dissolved by the H aqueous solution remains, so that the oxidation of the alloy is inhibited. [Other Matters] In the above embodiment, Al (Al 2 O 3 ), Zr (Zr
O 2 ), Si (SiO 2 ), etc. were used, but the present invention is not limited to these. MmNi 3.1 Co as a rare earth hydrogen storage alloy
Although 0.9 Al 0.2 Mn 0.5 was used, the present invention is not limited to this. For example, Ti--Mn system, Ti
Even if a hydrogen storage alloy such as -Fe-based, Ti-Zr-based, Mg-Ni-based, Zr-Mn-based is used, the same effect as in the above-described embodiment can be obtained.

【0019】[0019]

【発明の効果】以上の本発明によれば、表面がアルカリ
可溶金属(又は金属酸化物)で被覆されているため、電
池作製工程において、水素吸蔵合金が空気中の酸素によ
って酸化されることがない。一方、電池作製後は、電池
内に注液されるアルカリ電解液によって、前記アルカリ
可溶金属(又は金属酸化物)が溶解するので、合金表面
に露出面(即ち、反応面)が存在する。その結果、サイ
クル初期の段階から合金表面での充放電反応が速やかに
進行するので、初期特性が向上するといった優れた効果
を奏する。
As described above, according to the present invention, since the surface is coated with an alkali-soluble metal (or metal oxide), the hydrogen storage alloy is oxidized by oxygen in the air during the battery manufacturing process. There is no. On the other hand, after the battery is manufactured, the alkali-soluble metal (or metal oxide) is dissolved by the alkaline electrolyte injected into the battery, so that the alloy surface has an exposed surface (that is, a reaction surface). As a result, the charge / discharge reaction on the alloy surface rapidly progresses from the initial stage of the cycle, so that there is an excellent effect that the initial characteristics are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る水素吸蔵合金電極を用
いた円筒型ニッケル−水素アルカリ蓄電池の部分断面斜
視図である。
FIG. 1 is a partial cross-sectional perspective view of a cylindrical nickel-hydrogen alkaline storage battery using a hydrogen storage alloy electrode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 負極 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 古川 修弘 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-18 Keihan Hondori, Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18 Keiyo Hondori, Moriguchi City Sanyo Electric Co., Ltd. Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素を可逆的に吸蔵,放出する水素吸
蔵合金を含む水素吸蔵合金電極において、 上記合金表面には、アルカリに可溶な金属又はその酸化
物が被覆されていることを特徴とする水素吸蔵合金電
極。
1. A hydrogen storage alloy electrode comprising a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, wherein the alloy surface is coated with an alkali-soluble metal or its oxide. Hydrogen storage alloy electrode.
JP4150886A 1992-06-10 1992-06-10 Hydrogen storage alloy electrode Pending JPH05343059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150886A JPH05343059A (en) 1992-06-10 1992-06-10 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150886A JPH05343059A (en) 1992-06-10 1992-06-10 Hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH05343059A true JPH05343059A (en) 1993-12-24

Family

ID=15506537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150886A Pending JPH05343059A (en) 1992-06-10 1992-06-10 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH05343059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275631A (en) * 1996-12-27 1998-10-13 Canon Inc Powder material, electrode structure, manufacture of them, and secondary battery
US6207323B1 (en) 1998-03-09 2001-03-27 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275631A (en) * 1996-12-27 1998-10-13 Canon Inc Powder material, electrode structure, manufacture of them, and secondary battery
US6207323B1 (en) 1998-03-09 2001-03-27 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode

Similar Documents

Publication Publication Date Title
JPH0515774B2 (en)
EP1026764B1 (en) Hydrogen absorbing alloy, method of manufacturing hydrogen absorbing alloy and alkali secondary battery
JP2604282B2 (en) Alkaline storage battery
JP3433033B2 (en) Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
JP3326197B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH05343059A (en) Hydrogen storage alloy electrode
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JPH1021908A (en) Active material for battery, and battery
JP3192694B2 (en) Alkaline storage battery
EP1012894A1 (en) Hydrogen storage alloy
JP2005108816A (en) Hydrogen storage alloy for alkaline accumulator, its manufacturing method and alkaline accumulator
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3071026B2 (en) Metal hydride storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP3176387B2 (en) Method for producing hydride secondary battery
JP3744734B2 (en) Nickel / hydrogen storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3369148B2 (en) Alkaline storage battery
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05144433A (en) Electrode with hydrogen storage alloy
JPH06145849A (en) Hydrogen storage alloy electrode