JP3013412B2 - Negative electrode for metal hydride battery and method for producing the same - Google Patents

Negative electrode for metal hydride battery and method for producing the same

Info

Publication number
JP3013412B2
JP3013412B2 JP2229902A JP22990290A JP3013412B2 JP 3013412 B2 JP3013412 B2 JP 3013412B2 JP 2229902 A JP2229902 A JP 2229902A JP 22990290 A JP22990290 A JP 22990290A JP 3013412 B2 JP3013412 B2 JP 3013412B2
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
negative electrode
hydrogen
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2229902A
Other languages
Japanese (ja)
Other versions
JPH04112458A (en
Inventor
利明 小貫
洋一 野村
武 津田
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2229902A priority Critical patent/JP3013412B2/en
Publication of JPH04112458A publication Critical patent/JPH04112458A/en
Application granted granted Critical
Publication of JP3013412B2 publication Critical patent/JP3013412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可逆的に水素を吸蔵・放出する水素吸蔵合金
を電極の主材料とする、金属水素化物電池に関し、特に
電池の長寿命化に係わるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal hydride battery having a hydrogen storage alloy that reversibly stores and releases hydrogen as a main material of an electrode, and more particularly to a prolonged battery life. It is.

従来技術 発泡金属、金属焼結板、パンチングメタル等の多孔性
基体に、水素を可逆的に吸蔵・放出する水素吸蔵合金を
充填して構成する金属水素化物電池用負極に於いては、
充電(水素の吸蔵)と放電(水素の放出)を繰返すと、
この水素吸蔵合金が微細化し、多孔性基体から水素吸蔵
合金が脱落する。この現象は電極の性能低下を招き、金
属水素化物電池の寿命性能を著しく低下させる。
Prior art In a negative electrode for a metal hydride battery, which is formed by filling a porous substrate such as a foamed metal, a metal sintered plate, and a punching metal with a hydrogen storage alloy that reversibly stores and releases hydrogen,
When charging (absorbing hydrogen) and discharging (releasing hydrogen) are repeated,
The hydrogen storage alloy becomes finer, and the hydrogen storage alloy falls off the porous substrate. This phenomenon causes a decrease in the performance of the electrode, and significantly reduces the life performance of the metal hydride battery.

上記、欠点を解決するために、例えば特開昭63−2648
69号公報に開示されているように、水素吸蔵合金を活性
化処理も兼ねている水素化粉砕により微細化し、この微
細化が進みにくくなる粒径(100μm以下)になった水
素吸蔵合金粒子を、篩分けにより選択して電極材料に用
いる製造方法にて、水素吸蔵合金の脱落が原因となる電
極性能低下の防止策を講じていた。
In order to solve the above-mentioned disadvantages, for example, JP-A-63-2648
As disclosed in Japanese Patent Publication No. 69, the hydrogen storage alloy is refined by hydrogenation and pulverization which also serves as an activation treatment, and the hydrogen storage alloy particles having a particle size (100 μm or less) at which the refinement is difficult to proceed are reduced. In a manufacturing method that is selected by sieving and used as an electrode material, measures have been taken to prevent the electrode performance from being deteriorated due to the falling off of the hydrogen storage alloy.

発明が解決しようとする課題 上記製造方法の技術的特徴は、水素吸蔵合金を水素化
粉砕にて、水素吸蔵合金の微細化の限界近くまで細かく
する事にある。しかし、負極材料に用いる水素吸蔵合金
の組成比、あるいは合金に添加されている元素の種類に
よっては、水素化粉砕にて微細化が進みにくくなる粒径
に成るまでの、水素の吸蔵・放出サイクルが数十回に及
ぶと言う欠点が生じる。
A technical feature of the above-mentioned manufacturing method is that the hydrogen storage alloy is finely reduced to near the limit of miniaturization of the hydrogen storage alloy by hydrogenation and pulverization. However, depending on the composition ratio of the hydrogen storage alloy used for the negative electrode material or the type of element added to the alloy, the hydrogen storage / desorption cycle until the particle size becomes small enough to be difficult to be refined by hydrogenation and pulverization. Occurs several tens of times.

また、水素化粉砕にて得られた水素吸蔵合金は高活性
であり、その表面に非常に酸化されやすい。一般に、表
面が酸化した水素吸蔵合金を活性化するためには、酸化
被膜を湿式法あるいは高温、高圧下での乾式法にて還元
するか、または、再度水素吸蔵合金を水素圧下にさらし
て、酸化被膜の亀裂部分、あるいは、被膜層の比較的薄
い層から水素を吸蔵・放出させ、合金を膨張収縮させて
微細化を計り、これにより酸化していない合金の新面を
露出させて活性化する方法がある。水素吸蔵合金を酸化
させると、この様に面倒な処理が必要となる。この為、
高活性な水素吸蔵合金の周囲は、電池を組あげるまでは
高純度の不活性雰囲気あるいは水素雰囲気に保たなけれ
ばならないと言う欠点がある。また、酸化被膜の形成を
防止して電池に組あげても、電池が過充電されると、正
極から発生する酸素にて負極中の水素吸蔵合金が酸化さ
れてしまう。従来の負極(特開昭63−264869号公報)
は、微細化が進みにくい状態まで小さくなった水素吸蔵
合金にて形成されているため、合金粒子全面が酸化され
ると、充放電に伴う微細化により、活性な新面を露出せ
しめる事ができない。このため、過充電状態が長く続く
か、あるいは、度重なる電池性能が著しく低下すると言
う欠点が生じた。
Further, the hydrogen storage alloy obtained by hydrogenation pulverization has high activity and is very easily oxidized on its surface. Generally, in order to activate the hydrogen storage alloy whose surface has been oxidized, the oxide film is reduced by a wet method or a dry method under high temperature and high pressure, or the hydrogen storage alloy is again exposed to hydrogen pressure, Hydrogen is absorbed and released from cracks in the oxide film or from a relatively thin layer of the film, and the alloy expands and contracts to reduce the size of the alloy, thereby activating the unoxidized alloy by exposing a new surface. There is a way to do that. When the hydrogen storage alloy is oxidized, such complicated processing is required. Because of this,
There is a disadvantage that the surroundings of the highly active hydrogen storage alloy must be kept in a high-purity inert atmosphere or hydrogen atmosphere until the battery is assembled. Further, even when the battery is assembled in such a manner that an oxide film is prevented from being formed, if the battery is overcharged, the hydrogen storage alloy in the negative electrode is oxidized by oxygen generated from the positive electrode. Conventional negative electrode (JP-A-63-264869)
Is made of a hydrogen storage alloy that has been reduced to a state where it is difficult to miniaturize, so if the entire surface of the alloy particles is oxidized, the active new surface cannot be exposed due to the miniaturization accompanying charging and discharging . For this reason, there has been a drawback that the overcharge state continues for a long time or the repeated battery performance is remarkably reduced.

課題を解決するための手段 本発明は、金属水素化物電池用負極の主材料となる水
素吸蔵合金を水素化粉砕し、細かい粒径となった水素吸
蔵合金と粗い粒径の水素吸蔵合金とを篩分けにより選別
し、この細かくなった水素吸蔵合金粒子からなる負極の
表面に、粗い粒径の水素吸蔵合金粒子の層を設ける。こ
の水素化粉砕にて微細化する物を第1の水素吸蔵合金粒
子とし、微細化しにくい物を第2の水素吸蔵合金粒子と
する。さらに、この細かくなった第1の水素吸蔵合金の
粒径は150μm未満が望ましく、また、粗い第2の水素
吸蔵合金の粒径は150μm以上である事が望ましい。
Means for Solving the Problems The present invention is a method for hydrogenating and pulverizing a hydrogen storage alloy, which is a main material of a negative electrode for a metal hydride battery, to form a hydrogen storage alloy having a fine particle size and a hydrogen storage alloy having a coarse particle size. Screened by sieving, a layer of hydrogen storage alloy particles having a coarse particle size is provided on the surface of the negative electrode composed of the fine hydrogen storage alloy particles. The material that is made fine by the hydrogenation and pulverization is referred to as first hydrogen storage alloy particles, and the material that is difficult to be reduced is referred to as second hydrogen storage alloy particles. Further, it is desirable that the finer particle size of the first hydrogen storage alloy is less than 150 μm, and that the coarser particle size of the second hydrogen storage alloy is 150 μm or more.

この負極の作製方法としては、上述した多孔性基体
に、150μm未満の第1の水素吸蔵合金粒子を結着剤と
共に充填し、その後に150μm以上の第2の水素吸蔵合
金粒子を負極表面に充填する。また、150μm未満の第
1の水素吸蔵合金粒子を結着剤と共に充填した多孔性基
体に、150μm以上の第2の水素吸蔵合金粒子を結着剤
と共に充填した多孔性基体とを、張合わせ又は積層する
事によっても本発明の負極は得られる。本発明は、これ
等の方法にて得られた負極に限定するものではない。
As a method for manufacturing this negative electrode, the above-described porous substrate is filled with first hydrogen storage alloy particles having a particle size of less than 150 μm together with a binder, and then second hydrogen storage alloy particles having a size of 150 μm or more are charged on the surface of the negative electrode. I do. Further, a porous substrate filled with first hydrogen storage alloy particles of less than 150 μm together with a binder and a porous substrate filled with second hydrogen storage alloy particles of 150 μm or more together with a binder are bonded or bonded. The negative electrode of the present invention can also be obtained by stacking. The present invention is not limited to the negative electrode obtained by these methods.

作用 LaあるいはMm(ミッシュメタル)にNi,Co,Al等の各種
金属を一定の組成比になるよう混合し、アーク溶解炉に
て調整して水素吸蔵合金を得る製造方法は広く知られて
いる。また、上記のCo,Mn,Al等の金属を添加すると、水
素吸蔵合金の耐酸化性、平衡圧の低下作用等に有効であ
る事も公知とされている。この様に、種々の金属を多く
添加して得られる水素吸蔵合金を、キログラム単位で製
造しなければならない工業生産設備にて、合金の組成比
を一定に保ち、かつ、合金全体を均一なる組成に製造す
ることは困難である。この合金組成の不均一が微細化の
進行に差を生じさせる事は、特開昭63−264869号公報に
て開示されている。上記方法にて、例えばMmNiMnCo(1:
4.5:0.2:0.3)を製造し、水素の吸蔵・放出を1回とす
る水素化粉砕を実施すると第3図に示す粒度分布とな
る。さらに、水素の吸蔵・放出回数を5回とした時の粒
度分布は第4図に示す粒度分布となる。水素化粉砕に於
ける水素の吸蔵・放出回数1の粒度分布と5回の物を比
較すると、150μm以上の粒径の粒子量は変化せず、そ
れ未満の粒径の物が細かく変化している事が認められ
る。上記図に示した水素吸蔵合金MmNiMnCo(1:4.5:0.2:
0.3)を、150μmを分岐点として選別して、水素の吸蔵
速度を測定した結果、第5図に示すように、その速度は
150μm以上の粒径の物の方が、それ未満の物に比べ遅
くなる。しかし、電池の容量及び電池内圧を決定するPC
T特性に関しては、第6図に示すように粒径の大小によ
る特性変化は見られない。これ等、水素化粉砕による微
細化の進行が異なる粒子を、上述した構成にて負極を形
成せしめれば、微細化しにくい水素吸蔵合金粒子層が存
在するが故に、その内層の水素吸蔵合金粒子が、水素の
吸蔵・放出、つまり、充放電にて微細化しても、負極よ
り脱落する事を防止できる。また、過充電時の負極中の
水素吸蔵合金粒子の酸化が生じても、微細化が進行する
層の水素吸蔵合金粒子は微細化による、活性な新面の露
出が行なえるので、負極の性能低下を防止でき、電池の
長寿命化が計れる。
It is widely known that various metals such as Ni, Co, and Al are mixed with La or Mm (misch metal) so as to have a constant composition ratio and adjusted in an arc melting furnace to obtain a hydrogen storage alloy. . It is also known that the addition of metals such as Co, Mn, and Al is effective in reducing the oxidation resistance and equilibrium pressure of the hydrogen storage alloy. In this way, the hydrogen storage alloy obtained by adding a large amount of various metals can be manufactured in an industrial production facility that has to produce kilograms, and the composition ratio of the alloy is kept constant, and the composition of the entire alloy is uniform. It is difficult to manufacture. It is disclosed in Japanese Patent Application Laid-Open No. 63-264869 that the unevenness of the alloy composition causes a difference in progress of miniaturization. In the above method, for example, MmNiMnCo (1:
4.5: 0.2: 0.3), and performing hydrogenation and pulverization with one time of hydrogen absorption / release gives the particle size distribution shown in FIG. Further, when the number of times of storing and releasing hydrogen is set to 5, the particle size distribution is as shown in FIG. Comparing the particle size distribution with hydrogen absorption and desorption times of 1 in hydrogenation pulverization with that of 5 times, the amount of particles having a particle size of 150 μm or more does not change, and the particle size of less than 150 μm changes finely. Is recognized. The hydrogen storage alloy MmNiMnCo (1: 4.5: 0.2:
0.3) was selected with a branch point of 150 μm, and the hydrogen absorption rate was measured. As a result, as shown in FIG.
An article having a particle diameter of 150 μm or more is slower than an article having a particle diameter of 150 μm or less. However, the PC that determines the battery capacity and battery internal pressure
As for the T characteristic, no characteristic change due to the size of the particle size is observed as shown in FIG. If the negative electrode is formed by the above-described configuration using particles having a different degree of miniaturization due to hydrogenation and pulverization, there is a hydrogen storage alloy particle layer that is difficult to miniaturize. In addition, even if hydrogen is absorbed and released, that is, is miniaturized by charging and discharging, it can be prevented from dropping from the negative electrode. In addition, even if the hydrogen storage alloy particles in the negative electrode are oxidized during overcharge, the hydrogen storage alloy particles in the layer where the miniaturization proceeds can be exposed to an active new surface due to the miniaturization. The battery life can be prevented from lowering, and the battery life can be prolonged.

実施例 本発明の一実施例を上述のMmNiMnCo(1:4.5:0.2:0.
3)を用いた負極について説明する。アーク溶解炉にて
製造されたMmNiMnCo(1:4.5:0.2:0.3)を圧力容器に入
れて、水素化粉砕を実施する。この時の条件を次に示
す。水素の吸蔵時には、圧力容器の周囲温度を0℃と
し、水素の導入圧力を3MPaで行う。放出時は水素の放出
をより放出しやすい様に、圧力容器の周囲温度を80℃と
し、さらに、圧力容器内を真空ポンプにて減圧する。以
上の条件下で吸蔵・放出を1回行った後、150μm以上
の粒子と、それ未満の粒子とを、篩分けして選別する。
150μm未満の合金粒子を結着剤であるPVAと混合する。
この混合化は水素吸蔵合金99に対しPVA1である(重量
比)。この混合物を気孔率75%、厚み1mmの発泡ニッケ
ル板に充填して負極を作製し、その後に、この負極の両
表面に、150μm以上の合金粒子とPVAを混合したこの混
合物を充填、乾燥後、単位面積当り150kgの圧力でプレ
スして、本発明の負極を作製する。また、篩分けの操作
から電池に組立てるまでの周囲の雰囲気は工業用の窒素
ガスを用いた。
Example One example of the present invention was prepared using the above-described MmNiMnCo (1: 4.5: 0.2: 0.
The negative electrode using 3) will be described. MmNiMnCo (1: 4.5: 0.2: 0.3) produced in the arc melting furnace is put in a pressure vessel and hydrogenated and pulverized. The conditions at this time are shown below. When storing hydrogen, the ambient temperature of the pressure vessel is set to 0 ° C., and the pressure for introducing hydrogen is set at 3 MPa. At the time of release, the ambient temperature of the pressure vessel is set to 80 ° C., and the pressure inside the pressure vessel is further reduced by a vacuum pump so as to release hydrogen more easily. After one occlusion / release under the above conditions, particles having a size of 150 μm or more and particles having a size of 150 μm or less are sieved and sorted.
The alloy particles smaller than 150 μm are mixed with PVA as a binder.
This mixture is PVA1 for the hydrogen storage alloy 99 (weight ratio). This mixture was filled into a foamed nickel plate having a porosity of 75% and a thickness of 1 mm to produce a negative electrode. Thereafter, both surfaces of the negative electrode were filled with this mixture obtained by mixing alloy particles of 150 μm or more and PVA, and then dried. The negative electrode of the present invention is manufactured by pressing at a pressure of 150 kg per unit area. The surrounding atmosphere from the sieving operation to the assembling of the battery was an industrial nitrogen gas.

第7図に粗い粒径のMmNiMnCo(1:4.5:0.2:0.3)のSEM
写真を示す。イは水素化粉砕に於ける水素の吸蔵・放出
を1回実施した時のSEM写真、ロは吸蔵・放出を5回実
施した時のSEM写真である。この様に微細化しにくい粒
子も、水素の吸蔵・放出の回数を重ねると、亀裂が生じ
てくる。この為、電池組立て工程中及び過充電時に、負
極中の微細化しにくい水素吸蔵合金粒子が部分的に酸化
しても、充放電時の水素の吸蔵・放出に伴って合金粒子
に亀裂が生じ、 この亀裂部分の活性な新面の露出にて、負極の性能低下
を防止できる。
Fig. 7 shows SEM of coarse particle size MmNiMnCo (1: 4.5: 0.2: 0.3).
A photograph is shown. (A) is an SEM photograph when hydrogen is occluded / released once in hydrogenation and pulverization, and (b) is an SEM photograph when hydrogen is occluded / released five times. Such particles that are difficult to be made fine will crack if the number of times of storing and releasing hydrogen is increased. For this reason, during the battery assembly process and during overcharging, even if the hydrogen storage alloy particles that are difficult to make finer in the negative electrode are partially oxidized, cracks occur in the alloy particles with the occlusion and release of hydrogen during charging and discharging, By exposing the active new surface of the crack portion, it is possible to prevent the performance of the negative electrode from lowering.

上記本発明からなる負極を、公称1100mAhのAAサイズ
のニッケル・水素電池に用いて、通常の充放電及び過充
電試験を実施したので以下に説明する。充放電条件は次
の通りである。充電は0.1Cで150%、放電は0.2Cで終止
電圧1V、周囲温度で20℃。第1図に本発明からなる負極
aを用いたニッケル・水素電池のサイクル特性を示す。
この図中には比較の為に100μm以下の合金粒子だけを
用いた負極b、また、粒径の異なる粒子を混同した負極
cのサイクル特性も示す。初期容量は本発明からなる負
極aに比べ従来負極bの方が若干高いが、寿命性能に関
しては3種類の負極の中で本発明品が最も良好であっ
た。次に、上記電池の過充電試験結果を説明する。充電
条件は0.1C、周囲温度20℃である。第2図に本発明から
なる負極を用いたニッケル・水素電池の過充電特性を示
す。この図から分かるように、過充電特性は本発明から
なる負極aが最も高く、次いで負極c、負極bの順とな
った。
A normal charge / discharge and overcharge test was performed using the above-described negative electrode of the present invention for a 1100 mAh AA-size nickel-metal hydride battery, which will be described below. The charging and discharging conditions are as follows. Charging is 150% at 0.1C, discharging is 0.2C and the final voltage is 1V, ambient temperature is 20 ℃. FIG. 1 shows the cycle characteristics of a nickel-metal hydride battery using the negative electrode a according to the present invention.
For comparison, the cycle characteristics of a negative electrode b using only alloy particles of 100 μm or less and a negative electrode c containing particles having different particle sizes are also shown in FIG. Although the initial capacity of the conventional negative electrode b was slightly higher than that of the negative electrode a according to the present invention, the product of the present invention was the best among the three types of negative electrodes in terms of life performance. Next, results of the overcharge test of the battery will be described. The charging conditions are 0.1C and the ambient temperature is 20 ° C. FIG. 2 shows the overcharge characteristics of a nickel-metal hydride battery using the negative electrode according to the present invention. As can be seen from the figure, the overcharge characteristics of the negative electrode a according to the present invention were the highest, followed by the negative electrode c and the negative electrode b.

発明の効果 本発明からなる金属水素化物電池用負極を用いれば、
充放電による微細化が生じても、水素吸蔵合金粒子の負
極からの脱落を防止でき、かつ、水素吸蔵合金粒子が酸
化されても、上記の微細化、あるいは合金粒子に発生す
る亀裂により、活性な新面が露出せしめる事ができ、長
寿命で過充電性能にすぐれる金属水素化物電池を得るこ
とが可能になり、さらには、電池製造工程に於ける不活
性雰囲気に用いるガスを低純度の工業ガスを用いる事が
できる点、工業的価値大なる物である。
Effect of the Invention By using the metal hydride battery negative electrode according to the present invention,
Even if miniaturization due to charge and discharge occurs, it is possible to prevent the hydrogen storage alloy particles from falling off from the negative electrode, and even if the hydrogen storage alloy particles are oxidized, the hydrogen storage alloy particles are activated due to the above-mentioned miniaturization or cracks generated in the alloy particles. A new surface can be exposed, and a metal hydride battery with a long life and excellent overcharge performance can be obtained.Furthermore, the gas used for the inert atmosphere in the battery manufacturing process has a low purity. It is industrially valuable because industrial gas can be used.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明からなる負極aと従来の負極b、cを用
いたニッケル・水素電池のサイクル特性図、第2図は本
発明からなる負極aと従来の負極b、cを用いたニッケ
ル・水素電池の過充電特性図、第3図はMmNiMnCo(1:4.
5:0.2:0.3)の水素化粉砕に於ける水素の吸蔵・放出を
1回実施した後の粒度分布図、第4図はMmNiMnCo(1:4.
5:0.2:0.3)の水素化粉砕に於ける水素の吸蔵・放出を
5回実施した後の粒度分布図、第5図はMmNiMnCo(1:4.
5:0.2:0.3)の水素の吸蔵速度図、第6図はMmNiMnCo
(1:4.5:0.2:0.3)のPCT特性図、第7図のイは水素化粉
砕に於ける水素の吸蔵・放出を1回実施した時のMmNiMn
Co(1:4.5:0.2:0.3)の粒子構造のSEM写真、ロは水素化
粉砕に於ける水素の吸蔵・放出を5回実施した時のMmNi
MnCo(1:4.5:0.2:0.3)の粒子構造のSEM写真である。 a……本発明品
FIG. 1 is a cycle characteristic diagram of a nickel-metal hydride battery using a negative electrode a according to the present invention and conventional negative electrodes b and c, and FIG. 2 is a nickel diagram using a negative electrode a according to the present invention and conventional negative electrodes b and c.・ Hydrogen battery overcharge characteristics, Fig. 3 shows MmNiMnCo (1: 4.
5: 0.2: 0.3) Particle size distribution diagram after one hydrogen absorption and desorption in hydrogrinding. Fig. 4 shows MmNiMnCo (1: 4.
5: 0.2: 0.3) Particle size distribution diagram after hydrogen absorption and desorption were performed 5 times in hydrogrinding. Figure 5 shows MmNiMnCo (1: 4.
5: 0.2: 0.3) hydrogen storage rate diagram, Fig. 6 shows MmNiMnCo
(1: 4.5: 0.2: 0.3) PCT characteristic diagram, Fig. 7 (a) shows MmNiMn when hydrogen was absorbed and released once in hydrogrinding.
SEM photograph of the particle structure of Co (1: 4.5: 0.2: 0.3). (B) MmNi when hydrogen was absorbed and released five times in hydrogrinding.
It is a SEM photograph of the particle structure of MnCo (1: 4.5: 0.2: 0.3). a ... The present invention

フロントページの続き (56)参考文献 特開 昭53−103910(JP,A) 特開 昭63−138653(JP,A) 特開 平1−204371(JP,A) 特開 平2−227958(JP,A) 特開 平3−101055(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 H01M 4/26 B22F 9/00 Continuation of front page (56) References JP-A-53-103910 (JP, A) JP-A-63-138653 (JP, A) JP-A-1-204371 (JP, A) JP-A-2-227958 (JP) , A) JP-A-3-101055 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24 H01M 4/26 B22F 9/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の水素吸蔵合金粒子からなる負極の表
面に、水素の吸蔵・放出による微細化のおこりにくい第
2の水素吸蔵合金からなる層を設けた金属水素化物電池
用負極であって、前記第1の水素吸蔵合金粒子が、水素
化粉砕によって150μm未満となった水素吸蔵合金粒子
であり、前記第2の水素吸蔵合金が、水素化粉砕によっ
て150μm以上になった水素吸蔵合金粒子であることを
特徴とする金属水素化物電池用負極。
1. A negative electrode for a metal hydride battery comprising a first hydrogen storage alloy particle and a second hydrogen storage alloy layer provided on the surface of the negative electrode, the second hydrogen storage alloy being hard to be miniaturized due to the storage and release of hydrogen. The first hydrogen storage alloy particles are hydrogen storage alloy particles that have been reduced to less than 150 μm by hydrogenation and pulverization, and the second hydrogen storage alloy particles are hydrogen storage alloy particles that have been reduced to 150 μm or more by hydrogenation and pulverization. A negative electrode for a metal hydride battery, comprising:
【請求項2】第1の水素吸蔵合金粒子からなる負極の表
面に、水素の吸蔵・放出による微細化のおこりにくい第
2の水素吸蔵合金からなる層を設けた金属水素化物電池
用負極の製造方法であって、前記第1の水素吸蔵合金粒
子に、水素化粉砕によって150μm未満となった水素吸
蔵合金粒子を用い、前記第2の水素吸蔵合金に、水素化
粉砕によって150μm以上になった水素吸蔵合金粒子を
用い、前記水素化粉砕の条件が、周囲温度が−10℃〜10
0℃の範囲で、水素導入圧力が0.05MPa〜10MPaの範囲に
設定され、かつ、水素の吸蔵・放出が1回以上行われる
ことを特徴とする金属水素化物電池用負極の製造方法。
2. Manufacture of a negative electrode for a metal hydride battery in which a layer made of a second hydrogen storage alloy is provided on the surface of the first hydrogen storage alloy particles, the second hydrogen storage alloy being hard to be miniaturized due to absorption and release of hydrogen. The method according to claim 1, wherein the first hydrogen storage alloy particles include hydrogen storage alloy particles that have been reduced to less than 150 μm by hydrogenation and pulverization, and the second hydrogen storage alloy has hydrogen that has been reduced to 150 μm or more by hydrogenation and pulverization. Using the occlusion alloy particles, the conditions of the hydrogenation pulverization, the ambient temperature is -10 ℃ ~ 10
A method for producing a negative electrode for a metal hydride battery, wherein a hydrogen introduction pressure is set in a range of 0.05 MPa to 10 MPa in a range of 0 ° C., and hydrogen is stored and released one or more times.
JP2229902A 1990-08-31 1990-08-31 Negative electrode for metal hydride battery and method for producing the same Expired - Fee Related JP3013412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229902A JP3013412B2 (en) 1990-08-31 1990-08-31 Negative electrode for metal hydride battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229902A JP3013412B2 (en) 1990-08-31 1990-08-31 Negative electrode for metal hydride battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04112458A JPH04112458A (en) 1992-04-14
JP3013412B2 true JP3013412B2 (en) 2000-02-28

Family

ID=16899521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229902A Expired - Fee Related JP3013412B2 (en) 1990-08-31 1990-08-31 Negative electrode for metal hydride battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3013412B2 (en)

Also Published As

Publication number Publication date
JPH04112458A (en) 1992-04-14

Similar Documents

Publication Publication Date Title
US5518509A (en) Method for producing a hydrogen absorbing alloy electrode
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JP3307176B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode using the same
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JPS60212958A (en) Hydrogen absorption electrode
EP0550153B1 (en) Hydrogen-absorbing alloy electrode and its manufacturing method
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3011454B2 (en) Hydrogen storage alloy for secondary batteries
JPS5846827B2 (en) Manufacturing method of hydrogen storage electrode
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP3315880B2 (en) Method for producing hydrogen storage alloy powder
JP3519836B2 (en) Hydrogen storage alloy electrode
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JP3454780B2 (en) Alkaline storage battery
JP2916156B2 (en) Manufacturing method of sheet electrode and battery
JPH0834100B2 (en) Hydrogen storage alloy electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH0963569A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3583837B2 (en) Method for producing hydrogen storage alloy electrode
JPH06325761A (en) Manufacture of hydrogen storage electrode
JPH05114403A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0873970A (en) Hydrogen storage alloy and cathode for nickel-hydrogen battery using the same
JPS61168871A (en) Hydrogen occlusion electrode
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH08138666A (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees