JPH06325761A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPH06325761A
JPH06325761A JP5136829A JP13682993A JPH06325761A JP H06325761 A JPH06325761 A JP H06325761A JP 5136829 A JP5136829 A JP 5136829A JP 13682993 A JP13682993 A JP 13682993A JP H06325761 A JPH06325761 A JP H06325761A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
nickel
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5136829A
Other languages
Japanese (ja)
Inventor
Yuichi Matsumura
勇一 松村
Masuhiro Onishi
益弘 大西
Keiichi Hasegawa
圭一 長谷川
Minoru Kurokuzuhara
実 黒葛原
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP5136829A priority Critical patent/JPH06325761A/en
Publication of JPH06325761A publication Critical patent/JPH06325761A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an electrode which can be simply manufactured, can obtain stable characteristics regardless of its composition, can prevent alloy powder from falling due to repeated charge/discharge, and thereby enhances its utilization factor. CONSTITUTION:The manufacture of a hydrogen storage electrode is so constituted that nickel powder is mixed with hydrogen storage alloy powder by a weight ratio of 20% to 40%, the mixture is molded with pressure, and it is then enclosed by a nickel net so as to be pressed again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は水素吸蔵合金を用いた
ニッケル−水素化物二次電池を構成する水素吸蔵電極の
製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage electrode which constitutes a nickel-hydride secondary battery using a hydrogen storage alloy.

【0002】[0002]

【従来の技術】水素吸蔵合金を用いたニッケル−水素化
物電池は、無公害で高エネルギ−密度を有する高性能二
次電池として注目されており、ポ−タブル機器などに多
くの需要があるが、機器の小型化、軽量化に伴い、電源
として用いられる電池の高容量化が要求されている。こ
の要求に対応するために負極のAB5 型水素吸蔵合金電
極において、ミッシュメタル中のランタン量を増加する
などして改良されている。ニッケル−水素化物電池をさ
らに高容量化するためにAB5 型水素吸蔵合金よりも大
容量を持つAB2 型水素吸蔵合金の研究もなされてい
る。
2. Description of the Related Art A nickel-hydride battery using a hydrogen-absorbing alloy has attracted attention as a high-performance secondary battery that is pollution-free and has a high energy density, and is in great demand for portable devices. As devices are made smaller and lighter, higher capacity is required for batteries used as power sources. In order to meet this requirement, the AB 5 type hydrogen storage alloy electrode of the negative electrode has been improved by increasing the amount of lanthanum in the misch metal. In order to further increase the capacity of nickel-hydride batteries, studies have been made on AB 2 type hydrogen storage alloys having a larger capacity than AB 5 type hydrogen storage alloys.

【0003】AB5 型水素吸蔵合金電極はMC、PVA
などの増粘剤を混合して作製するペ−スト式電極が主流
である。一方、AB2 型水素吸蔵合金電極で合金をニッ
ケルネット上にプレスして焼結する焼結式電極が一般的
である。
AB 5 type hydrogen storage alloy electrodes are MC, PVA
A paste-type electrode prepared by mixing a thickener such as is mainly used. On the other hand, an AB 2 type hydrogen storage alloy electrode is generally a sintered electrode in which an alloy is pressed on a nickel net and sintered.

【0004】[0004]

【発明が解決しようとする課題】Laves相水素吸蔵
合金に代表されるAB2 型合金は不働態被膜を形成しや
すく合金粒子間の導電性が低いために、初期活性が遅
い、利用率が低いなどの問題点がある。従って、この合
金を用いて電極を作製する際には合金粒子間の接触抵抗
を軽減するための技術が必要である。
The AB 2 type alloy represented by the Laves phase hydrogen storage alloy is likely to form a passive film and has low conductivity between alloy particles, so that the initial activity is slow and the utilization rate is low. There are problems such as. Therefore, a technique for reducing the contact resistance between alloy particles is required when manufacturing an electrode using this alloy.

【0005】その方法としては電極を焼結により作製す
る方法が一般的であるが、焼結条件の設定は合金組成の
変化に伴って異なり、また、工程も煩雑である。従っ
て、組成によらず安定した特性を示し得る電極の作製方
法が望まれていた。
As a method therefor, a method of producing an electrode by sintering is generally used. However, the setting of sintering conditions differs depending on the change in alloy composition, and the process is complicated. Therefore, there has been a demand for a method for producing an electrode that can exhibit stable characteristics regardless of composition.

【0006】また、AB5 型水素吸蔵合金電極はその放
電容量を増大させることが要求されており、ミッシュメ
タル中のランタン量を増加して改良されているが、どの
ようなミッシュメタル組成でも簡単に放電容量を増加す
る技術が望まれている。
Further, the AB 5 type hydrogen storage alloy electrode is required to increase its discharge capacity, and it has been improved by increasing the amount of lanthanum in the misch metal. Therefore, a technology for increasing the discharge capacity is desired.

【0007】[0007]

【課題を解決するための手段】本発明は水素吸蔵合金に
ニッケル粉末を重量比20%〜40%混合し、加圧成型
したものをニッケルネットで包み込み、再度プレスする
方法で作製することを特徴とする水素吸蔵電極である。
The present invention is characterized in that a hydrogen storage alloy is mixed with nickel powder in a weight ratio of 20% to 40%, pressure-molded, wrapped with a nickel net and pressed again. And a hydrogen storage electrode.

【0008】[0008]

【作用】AB2 型水素吸蔵合金は合金表面に不働態被膜
を形成しやすく合金粒子間の導電性がきわめて低い。合
金粉末に導電性の高いニッケル粉末を重量比20%〜4
0%混合して加圧成型することにより、合金粒子間の接
触抵抗を大幅に軽減することができる。その結果、導電
性が向上し、この電極の利用率が向上する。しかし、加
圧成型だけでは電極の安定性が乏しく、充放電中に合金
粉末が脱落する。そこで、加圧成型したペレットをニッ
ケルネットで包み込み再度プレスし、これを電極として
用いることにより合金粉末の脱落を防止できる。
The AB 2 type hydrogen storage alloy easily forms a passive film on the surface of the alloy, and the conductivity between the alloy particles is extremely low. 20% to 4% by weight of highly conductive nickel powder as the alloy powder
By mixing 0% and press-molding, the contact resistance between alloy particles can be significantly reduced. As a result, the conductivity is improved and the utilization rate of this electrode is improved. However, only by pressure molding, the stability of the electrode is poor, and the alloy powder falls off during charge / discharge. Therefore, it is possible to prevent the alloy powder from falling off by wrapping the pressure-molded pellet with a nickel net and pressing it again and using this as an electrode.

【0009】ここで混合するニッケル粉末は重量比20
%以上40%未満とするのが望ましい。ニッケル粉末が
20%未満では導電剤としての効果が乏しくなり、ニッ
ケル粉末が40%以上では電極全体としての容量が低下
してしまうためである。
The nickel powder mixed here has a weight ratio of 20.
% Or more and less than 40% is desirable. This is because if the nickel powder is less than 20%, the effect as a conductive agent becomes poor, and if the nickel powder is 40% or more, the capacity of the electrode as a whole decreases.

【0010】本発明は組成によらず同一の製法で安定し
た特性を得ることができ、しかも焼結法に比べ簡単に作
製できる。この電極の製造法はAB5 型水素吸蔵合金に
も適用でき、ニッケル粉末を混合して加圧成型し、ニッ
ケルネットで包み再度プレスすることにより合金の水素
吸蔵容量が増加する。
According to the present invention, stable characteristics can be obtained by the same manufacturing method regardless of the composition, and moreover, it can be easily manufactured as compared with the sintering method. This electrode manufacturing method can also be applied to an AB 5 type hydrogen storage alloy, in which nickel powder is mixed, pressure-molded, wrapped with a nickel net and pressed again to increase the hydrogen storage capacity of the alloy.

【0011】[0011]

【実施例】以下に本発明を実施例に基づき説明する。目
的組成となるように秤量した成分元素をるつぼに投入
し、不活性雰囲気下で高周波溶解炉を用いて溶解し、冷
却後機械粉砕または水素化粉砕することで水素吸蔵合金
粉末試料を得た。
EXAMPLES The present invention will be described below based on examples. A hydrogen storage alloy powder sample was obtained by charging component elements weighed so as to obtain a desired composition into a crucible, melting them in a high-frequency melting furnace under an inert atmosphere, cooling and mechanically grinding or hydrogenating grinding.

【0012】このようにして得た水素吸蔵合金粉末とニ
ッケル粉末を所定の重量比でそれぞれ混合し、プレス用
金型を用いて直径21mm、厚さ約1mmに加圧成型し
たペレットをニッケルネットで包み込み再度プレスして
水素吸蔵電極とした。
The hydrogen storage alloy powder thus obtained and the nickel powder were mixed at a predetermined weight ratio, and the resulting pellet was pressure-molded with a press die to a diameter of 21 mm and a thickness of about 1 mm using a nickel net. It was wrapped and pressed again to form a hydrogen storage electrode.

【0013】充放電試験は対極に焼結式水酸化ニッケル
電極、電解液に比重1.28の水酸化カリウム水溶液を
用い、充電は0.1Cで150%、放電は0.2Cで酸
化水銀電極基準で−0.6Vまで行った。
In the charge / discharge test, a sintered nickel hydroxide electrode was used as the counter electrode, and an aqueous solution of potassium hydroxide having a specific gravity of 1.28 was used as the electrolytic solution. The charge was 0.1 C and 150%, and the discharge was 0.2 C and the mercury oxide electrode was used. It went to -0.6V by the standard.

【0014】(実施例1)図1はAB2 型水素吸蔵合金
にニッケル粉末を40%(A)、20%(B)、0%
(C)それぞれ混合し、ニッケルネットで包み再度プレ
スした電極およびニッケル粉末を40%混合し、ニッケ
ルネットで包まない電極(D)について放電試験を行っ
た結果である。(A)、(B)、(C)、(D)はすべ
て同じ組成の合金V25Ti17Zr16Ni40Cr2 を用い
た。ニッケル粉末を混合しない(C)では約300mA
h/gの容量であるが、ニッケル粉末を20%および4
0%混合した(B)および(C)では容量が335〜3
40mAh/gに増加するという結果が得られた。ま
た、ニッケルネットで包まなかった(D)では充放電の
繰り返しによる合金の脱落のために放電容量が減少し
た。
Example 1 FIG. 1 shows an AB 2 type hydrogen storage alloy containing 40% (A), 20% (B) and 0% nickel powder.
(C) is a result of conducting a discharge test on an electrode (D) which is mixed and wrapped with nickel net and pressed again, and 40% of nickel powder is mixed, and which is not wrapped with nickel net. The alloys V 25 Ti 17 Zr 16 Ni 40 Cr 2 having the same composition were used for (A), (B), (C) and (D). About 300mA without mixing nickel powder (C)
h / g capacity, but with 20% nickel powder and 4
In (B) and (C) mixed with 0%, the capacity is 335-3.
The result was increased to 40 mAh / g. Further, in the case (D) which was not wrapped with a nickel net, the discharge capacity was decreased due to the dropping of the alloy due to repeated charging and discharging.

【0015】(実施例2)図2はAB5 型水素吸蔵合金
にニッケル粉末を40%(A)、20%(B)、0%
(C)それぞれ混合し、ニッケルネットで包み再度プレ
スした電極およびニッケル粉末を40%混合し、ニッケ
ルネットで包まない電極(D)について放電試験を行っ
た結果である。(A)、(B)、(C)、(D)はすべ
て同じ組成の合金MmNi3.5 Al0.8 Co0.7 を用い
た。ニッケル粉末を混合しない(C)では約220mA
h/gの容量であるが、ニッケル粉末を20%および4
0%混合した(B)および(C)では容量が255〜2
65mAh/gに増加するという結果が得られた。ま
た、ニッケルネットで包まなかった(D)では充放電の
繰り返しによる合金の脱落のために放電容量が減少し
た。
(Embodiment 2) FIG. 2 shows a nickel powder in an AB 5 type hydrogen storage alloy of 40% (A), 20% (B) and 0%.
(C) is a result of conducting a discharge test on an electrode (D) which is mixed and wrapped with nickel net and pressed again, and 40% of nickel powder is mixed, and which is not wrapped with nickel net. (A), (B), (C), (D) were used alloy MmNi 3.5 Al 0.8 Co 0.7 All the same composition. 220mA without nickel powder (C)
h / g capacity, but with 20% nickel powder and 4
In (B) and (C) mixed with 0%, the capacity is 255 to 2
The result was increased to 65 mAh / g. Further, in the case (D) which was not wrapped with a nickel net, the discharge capacity was decreased due to the dropping of the alloy due to repeated charging and discharging.

【0016】AB2 型、AB5 型いずれの合金電極の場
合でもニッケル粉末を混合し、加圧成型したものをニッ
ケルネットで包み再度プレスすることにより、ニッケル
粉末を混合しないものに比べ35〜45mAh/g程度
容量増加するという結果が得られた。
In the case of both AB 2 type and AB 5 type alloy electrodes, nickel powder is mixed, pressure molded and wrapped with a nickel net and pressed again. The result is that the capacity is increased by about / g.

【0017】[0017]

【発明の効果】以上のように本発明の水素吸蔵電極の製
造法によれば、作製方法が簡単で、組成によらず安定し
た特性を得ることができ、充放電の繰り返しによる合金
粉末の脱落を防止し利用率を向上させた電極を提供する
ことができるのでその工業的価値は大である。
As described above, according to the method for manufacturing a hydrogen storage electrode of the present invention, the manufacturing method is simple, stable characteristics can be obtained regardless of the composition, and the alloy powder falls off due to repeated charging and discharging. Since it is possible to provide an electrode that prevents the above-mentioned phenomenon and the utilization rate is improved, its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】AB2 型水素吸蔵合金を用いた場合の放電容量
の変化を示す図である。
FIG. 1 is a diagram showing a change in discharge capacity when an AB 2 type hydrogen storage alloy is used.

【図2】AB5 型水素吸蔵合金を用いた場合の放電容量
の変化を示す図である。
FIG. 2 is a diagram showing a change in discharge capacity when an AB 5 type hydrogen storage alloy is used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒葛原 実 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 (72)発明者 押谷 政彦 大阪府高槻市城西町6番6号 株式会社ユ アサコーポレーション内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minoru Kurohara 6-6 Josaimachi, Takatsuki City, Osaka Prefecture, Yuasa Corporation (72) Masahiko Oshiya 6-6 Josaimachi, Takatsuki City, Osaka Prefecture Inside Yuasa Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末にニッケル粉末を重量
比20%〜40%混合し、加圧成型したものをニッケル
ネットで包み込み、再度プレスすることを特徴とする水
素吸蔵電極の製造法。
1. A method for producing a hydrogen storage electrode, comprising mixing a hydrogen storage alloy powder with a nickel powder in a weight ratio of 20% to 40%, encapsulating the pressure-molded product with a nickel net, and pressing it again.
JP5136829A 1993-05-13 1993-05-13 Manufacture of hydrogen storage electrode Pending JPH06325761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5136829A JPH06325761A (en) 1993-05-13 1993-05-13 Manufacture of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136829A JPH06325761A (en) 1993-05-13 1993-05-13 Manufacture of hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH06325761A true JPH06325761A (en) 1994-11-25

Family

ID=15184479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136829A Pending JPH06325761A (en) 1993-05-13 1993-05-13 Manufacture of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH06325761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079875A (en) * 2004-09-08 2006-03-23 Furukawa Battery Co Ltd:The Pocket type hydrogen absorbing alloy electrode and nickel/hydrogen storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079875A (en) * 2004-09-08 2006-03-23 Furukawa Battery Co Ltd:The Pocket type hydrogen absorbing alloy electrode and nickel/hydrogen storage battery

Similar Documents

Publication Publication Date Title
KR19980085375A (en) Micro Metals and Nickel-Based Hydrogen Storage Alloys for Ni / MH Secondary Batteries
JPH06325761A (en) Manufacture of hydrogen storage electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH11217643A (en) New hydrogen storage alloy and hydrogen electrode using the alloy
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPS61168870A (en) Metal-hydrogen alkaline storage battery
KR100269515B1 (en) The surface modification of mg-based alloy of high discharge capacity for improvement in cycle life
JP3583837B2 (en) Method for producing hydrogen storage alloy electrode
JPH0562676A (en) Alkaline storage battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
CN1056017C (en) Hydrogen-storage alloy material for negative electrode of alkaline accumulator and mfg. process thereof
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH0963569A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0935708A (en) Hydrogen storage alloy electrode and its manufacture
JP3011454B2 (en) Hydrogen storage alloy for secondary batteries
JPH0927321A (en) Hydrogen storage alloy electrode
JPS61292855A (en) Metal oxide and hydrogen cell
JPH0393159A (en) Hydrogen storage alloy
JPH09259875A (en) Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery
JPH06215762A (en) Hydrogen absorbing electrode
JPS6119059A (en) Hydrogen occlusion electrode