JP3011454B2 - Hydrogen storage alloy for secondary batteries - Google Patents

Hydrogen storage alloy for secondary batteries

Info

Publication number
JP3011454B2
JP3011454B2 JP2333066A JP33306690A JP3011454B2 JP 3011454 B2 JP3011454 B2 JP 3011454B2 JP 2333066 A JP2333066 A JP 2333066A JP 33306690 A JP33306690 A JP 33306690A JP 3011454 B2 JP3011454 B2 JP 3011454B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
storage alloy
hydrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2333066A
Other languages
Japanese (ja)
Other versions
JPH04198443A (en
Inventor
秀樹 松永
雅秋 山本
博 遠藤
和太 武野
モモ子 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP2333066A priority Critical patent/JP3011454B2/en
Publication of JPH04198443A publication Critical patent/JPH04198443A/en
Application granted granted Critical
Publication of JP3011454B2 publication Critical patent/JP3011454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、アルカリ二次電池用負極材料として用いら
れる二次電池用水素吸蔵合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a hydrogen storage alloy for a secondary battery used as a negative electrode material for an alkaline secondary battery.

(従来の技術) LaNi5系水素吸蔵合金を負極として用いたアルカリ二
次電池は、同一容積のニッケル・カドミウム二次電池に
比べ、、高容量・高エネルギー密度であることが知られ
ている。かかるアルカリ二次電池は、前記水素吸蔵合金
の電解液との反応による腐食や、充放電に伴う水素吸蔵
・放出の繰り返しによる微粉化が充放電サイクル寿命を
低下させるため、前記水素吸蔵合金の特性が最終的な電
池特性を決定する。
(Prior Art) It is known that an alkaline secondary battery using a LaNi 5 hydrogen storage alloy as a negative electrode has a higher capacity and a higher energy density than a nickel-cadmium secondary battery having the same volume. Such an alkaline secondary battery is characterized in that corrosion due to the reaction of the hydrogen storage alloy with the electrolytic solution and pulverization due to repetition of hydrogen storage and release during charge / discharge lowers the charge / discharge cycle life. Determine the final battery characteristics.

このようなことから、水素吸蔵合金を多元化して特性
の改善を行うことが多数報告されている。代表的なもの
としては、LaNi5系水素吸蔵合金のNi部分をCo、Al、M
n、Fe、Crなどで置換することにより水素吸蔵・放出時
の水素平衡圧を減少させたり、合金の耐食性を向上させ
ることが知られている。また、LaNi5系水素吸蔵合金のL
a部分を他の希土類元素で置換することによって、二次
電池のサイクル寿命を向上させることが可能となること
も知られている。
For this reason, many reports have been made to improve the characteristics by diversifying the hydrogen storage alloy. As a typical example, the Ni portion of the LaNi 5 hydrogen storage alloy is represented by Co, Al, M
It is known that substitution with n, Fe, Cr, or the like reduces the hydrogen equilibrium pressure at the time of absorbing and releasing hydrogen, and improves the corrosion resistance of the alloy. In addition, L of the LaNi 5- based hydrogen storage alloy
It is also known that substituting part a with another rare earth element can improve the cycle life of the secondary battery.

ところで、水素吸蔵合金から負極を作製する場合に
は、予め水素化によって活性化した合金粉末を使用する
か、又は機械的に粉砕した合金を用いて電池製造後で出
荷以前に充電を行うことによって電気化学的に水素活性
化した合金粉末を使用する。いずれの合金粉末において
も、水素活性化(水素吸蔵)がなされるため、水素吸蔵
合金は体積膨脹が生じる。しかしながら、前記LaNi5
水素吸蔵合金及びNiやLaを他の元素置換した水素吸蔵合
金は高純度で均質性が高いため、前記体積膨張に際して
歪みが集中する箇所がなく、むしろ製造時のわずかな条
件の差によって生じる合金成分の濃度むらに起因して割
れ、しかもその割れ方に大きな差が生じる。その結果、
前記水素化によって割れた水素吸蔵合金粒子の粒度分布
が著しく広がったり、製造ロットの違いにより平均粒径
が大幅に変化する恐れがある。従って、前記水素活性化
した水素吸蔵合金から作製した負極を組込んだアルカリ
二次電池は寿命等の特性がばらつくという問題があっ
た。
By the way, when producing a negative electrode from a hydrogen storage alloy, by using an alloy powder activated by hydrogenation in advance, or by using a mechanically pulverized alloy and charging it after battery production and before shipping. An electrochemically hydrogen activated alloy powder is used. Since hydrogen activation (hydrogen storage) is performed in any of the alloy powders, the hydrogen storage alloy undergoes volume expansion. However, the order LaNi 5 type hydrogen absorbing alloy and the hydrogen storage alloy of Ni and La and other elements substitutions have high homogeneity in high purity, it said volume is no portion where the strain is concentrated upon inflation, a rather slight in manufacturing Cracks are caused due to uneven concentration of alloy components caused by the difference in conditions, and a large difference occurs in the manner of the cracks. as a result,
The particle size distribution of the hydrogen-absorbing alloy particles cracked by the hydrogenation may be remarkably widened, or the average particle size may significantly change depending on the production lot. Therefore, the alkaline secondary battery incorporating the negative electrode produced from the hydrogen-activated hydrogen storage alloy has a problem that the characteristics such as the life are varied.

(発明が解決しようとする課題) 本発明は、上記従来の問題点を解決するためになされ
たもので、水素吸蔵時の体積膨張に伴う割れの信号がほ
ぼ一定で、粒度分布の狭小、平均粒径の均一化を達成し
得る二次電池用水素吸蔵合金を提供しようとするもので
ある。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems, and the signal of cracks due to volume expansion at the time of hydrogen absorption is almost constant, and the particle size distribution is narrow and average. An object of the present invention is to provide a hydrogen storage alloy for a secondary battery capable of achieving a uniform particle size.

[発明の構成] (課題を解決するための手段) 本発明に係わる二次電池用水素吸蔵合金は、一般式 LnNixAy ただし、式中のLnはYを含む希土類元素の少なくとも
1種、AはCo,Al,Fe,Si,Cr,Cu,Mnの少なくとも1種、x,
yはそれぞれx>3.5、y<2.0、4.5<x+y<5.5を示
す、にて表わされ、かつ粉砕前の段階において酸素と希
土類元素とが結合した析出相を有し、この析出相を含む
合金は不活性ガス雰囲気中、1450℃以上で加熱した時に
放出される酸素量10〜80ppmを有すことを特徴とするも
のである。
[Constitution of the Invention] (Means for Solving the Problems) The hydrogen storage alloy for a secondary battery according to the present invention has a general formula LnNi x Ay , where Ln is at least one rare earth element containing Y, A is at least one of Co, Al, Fe, Si, Cr, Cu, Mn, x,
y represents x> 3.5, y <2.0, 4.5 <x + y <5.5, respectively, and has a precipitate phase in which oxygen and a rare earth element are combined in a stage before pulverization, and includes this precipitate phase The alloy has an oxygen content of 10 to 80 ppm released when heated at 1450 ° C. or more in an inert gas atmosphere.

前記水素吸蔵合金を表わす一般式中のLnの組成は、La
40〜50重量%、Ce0〜10重量%、Pr5〜15重量%、Nd30〜
45重量%、その他の希土類元素及び不純物0〜5重量%
とすることが望ましい。また、同一般式中のAはCo、M
n、Alの3元素で構成されていることがより望ましい。
The composition of Ln in the general formula representing the hydrogen storage alloy is La
40-50% by weight, Ce 0-10% by weight, Pr 5-15% by weight, Nd30-
45% by weight, other rare earth elements and impurities 0-5% by weight
It is desirable that A in the general formula is Co, M
More preferably, it is composed of three elements of n and Al.

前記水素吸蔵合金を表わす一般式中のx、yを限定し
た理由は、それらが前記範囲を逸脱すると水素吸蔵・放
出時の水素平衡圧の減少化、耐食性の向上を図ることが
できなくなるからである。
The reason why x and y in the general formula representing the hydrogen storage alloy are limited is that if they deviate from the above range, it becomes impossible to reduce the hydrogen equilibrium pressure during hydrogen storage / release and to improve corrosion resistance. is there.

前記合金の析出相において、不活性ガス雰囲気中、14
50℃以上で加熱した時に放出される酸素量を限定したの
は、次のような理由によるものである。前記析出相の酸
素量を10ppm未満にすると、水素吸蔵時の体積膨張に伴
う割れを十分に誘発することが困難となるばかりか、割
れの数も少なくなる恐れがある。一方、前記析出相の酸
素量が80ppmを越えると水素吸蔵時の体積膨張に伴う割
れが著しくなり、該水素吸蔵合金から作製した負極を二
次電池に組込んだ場合、電解液との接触面積が必要以上
に増加して水素吸蔵合金の腐食進行を早める恐れがあ
る。
In the precipitation phase of the alloy, in an inert gas atmosphere, 14
The reason for limiting the amount of oxygen released when heated at 50 ° C. or more is as follows. If the amount of oxygen in the precipitated phase is less than 10 ppm, it is not only difficult to sufficiently induce cracks due to volume expansion during hydrogen storage, but also the number of cracks may be reduced. On the other hand, when the oxygen content of the precipitated phase exceeds 80 ppm, cracks due to volume expansion during hydrogen storage become remarkable, and when a negative electrode produced from the hydrogen storage alloy is incorporated in a secondary battery, the contact area with the electrolytic solution is increased. May increase more than necessary and accelerate the progress of corrosion of the hydrogen storage alloy.

前記合金中の酸素源としては、例えば溶解前の合金組
成に配合されるSiO2を挙げることができる。
As the oxygen source in the alloy, for example, SiO 2 mixed in the alloy composition before melting can be mentioned.

(作用) 本発明に係わる水素吸蔵合金は、LnNixAyで表され、
粉砕前の段階において酸素と希土類元素とが結合した析
出相を有し、この析出相を含む合金は不活性ガス雰囲気
中、1450℃以上で加熱した時に放出される酸素量10〜80
ppmを有する。このような水素吸蔵合金を水素活性化工
程等で水素吸蔵させると、例えば粒界部分に位置する前
記所定量の酸素と希土類元素とが結合した析出相の水素
吸蔵能がマトリックス部分の水素吸蔵能とは大幅に異な
るため、水素吸蔵時の体積膨張に伴う歪みが前記析出相
に集中して割れを生じる。その結果、水素吸蔵時の体積
膨張に伴う割れの進行をほぼ一定でき、粒度分布の狭
小、平均粒径の均一化を達成できる。従って、かかる水
素吸蔵合金から作製した負極を用いることによって、該
負極の表面積、つまりアルカリ電解液との接触面積の増
加率を一定にでき、電解液との反応による水素吸蔵合金
の腐食劣化速度を一定に保持できるため、サイクル寿命
が長く、かつ安定した特性を有するアルカリ二次電池を
得ることができる。
(Function) The hydrogen storage alloy according to the present invention is represented by LnNi x A y ,
In the stage before pulverization, has a precipitated phase in which oxygen and a rare earth element are combined, and the alloy containing this precipitated phase is released in an inert gas atmosphere at a temperature of 1450 ° C. or more when heated at 1450 ° C. or more.
with ppm. When hydrogen is stored in such a hydrogen storage alloy in a hydrogen activation step or the like, for example, the hydrogen storage capacity of the precipitated phase in which the predetermined amount of oxygen and the rare earth element are located at the grain boundary portion is increased by the hydrogen storage capacity of the matrix portion. Is significantly different from the above, so that the strain accompanying the volume expansion at the time of occlusion of hydrogen concentrates on the above-mentioned precipitated phase and causes cracks. As a result, the progress of cracks due to volume expansion during hydrogen storage can be substantially constant, and a narrow particle size distribution and a uniform average particle size can be achieved. Therefore, by using the negative electrode made from such a hydrogen storage alloy, the surface area of the negative electrode, that is, the rate of increase of the contact area with the alkaline electrolyte can be kept constant, and the corrosion deterioration rate of the hydrogen storage alloy due to the reaction with the electrolyte can be reduced. Since it can be kept constant, an alkaline secondary battery having a long cycle life and stable characteristics can be obtained.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例 まず、市販のランタン富化ミッシュメタルMm(主要構
成元素の概略存在比;La45重量%、Ce5重量%、Pr10重量
%、Nd40重量%)とNi、Co、Mn、Al及び少量のSiO2を構
成成分とし、高周波溶解によってMm1.0Ni4.2Co0.2Mn0.3
Al0.3の組成を有する合金20試料を作製し、不活性雰囲
気下1000℃、10時間のアニールを行った。これら20試料
をそれぞれ機械的に粉砕し、90重量%以上が75μm以下
の粒径を有する粒子とした。つづいて、合金粒径を篩分
けして得られた25〜75μmの合金粒子96重量%とポリテ
トラフロロエチレン4重量部とを混合した後、ニッケル
網に混練圧着して水素吸蔵合金負極を作製した。つづい
て、これら水素吸蔵合金負極をセパレータを介してニッ
ケル・カドミウム電池用のニッケル極と共に巻回して電
極群を作製し、これら電極群を内圧測定用センサを備え
た容器に装填し、8mol/のKOH電解液を注入し、正極容
量1000mAh、負極容量1500mAhの二次電池を組み立てた。
Example First, commercially available lanthanum-enriched misch metal Mm (approximate abundance ratio of main constituent elements; La 45% by weight, Ce 5% by weight, Pr 10% by weight, Nd 40% by weight), Ni, Co, Mn, Al and a small amount of SiO 2 Mm 1.0 Ni 4.2 Co 0.2 Mn 0.3
Twenty alloy samples having a composition of Al 0.3 were prepared and annealed at 1000 ° C. for 10 hours in an inert atmosphere. Each of these 20 samples was mechanically pulverized into particles having a particle size of 90% by weight or more and 75 μm or less. Subsequently, 96% by weight of 25 to 75 μm alloy particles obtained by sieving the alloy particle diameter and 4 parts by weight of polytetrafluoroethylene are mixed, and kneaded and pressed on a nickel net to produce a hydrogen storage alloy negative electrode. did. Subsequently, these hydrogen storage alloy negative electrodes were wound together with a nickel electrode for a nickel-cadmium battery via a separator to form an electrode group. A KOH electrolyte was injected, and a secondary battery having a positive electrode capacity of 1000 mAh and a negative electrode capacity of 1500 mAh was assembled.

一方、前記アニール後の原料段階の合金20試料を約0.
3g秤量し、これら合金を不活性ガス雰囲気下で加熱し、
1450℃以上にて放出される全酸素量を測定した。その結
果を下記第1表に示した。
On the other hand, about 20 samples of the alloy 20 in the raw material stage after the above-mentioned annealing were used.
Weigh 3 g, heat these alloys under an inert gas atmosphere,
The total amount of oxygen released above 1450 ° C. was measured. The results are shown in Table 1 below.

得られた二次電池について、充電;1000mA、90分間、
放電;1000mA,カットオフ電圧1Vの条件にて充放電を繰り
返し、充電末期における電池内圧が15kg/cm2を越すのに
要したサイクル数を測定した。その結果を前述した合金
粒子の放出全酸素量と共に下記第1表に併記した。
About the obtained secondary battery, charging; 1000 mA, 90 minutes,
Discharge; charge and discharge were repeated under the conditions of 1000 mA and a cutoff voltage of 1 V, and the number of cycles required for the battery internal pressure to exceed 15 kg / cm 2 at the end of charging was measured. The results are shown in Table 1 below together with the total amount of oxygen released from the alloy particles.

上記第1表から明らかなように、原料段階で不活性ガ
ス雰囲気にて加熱した時に1450℃以上で放出される全酸
素量が10〜80ppmの合金を用いて作製した水素吸蔵合金
負極を組み込んだ二次電池(第1表中のNo4〜15)は、
全酸素量が前記範囲から外れる合金を用いた二次電池
(第1表中のNo1〜3、No16〜20)に比べて優れたサイ
クル寿命を有することがわかる。
As is clear from the above Table 1, a hydrogen storage alloy negative electrode produced using an alloy having a total oxygen amount of 10 to 80 ppm released at 1450 ° C. or higher when heated in an inert gas atmosphere at the raw material stage was incorporated. Rechargeable batteries (No. 4 to 15 in Table 1)
It can be seen that the cycle life is superior to that of the secondary batteries (Nos. 1 to 3 and Nos. 16 to 20 in Table 1) using alloys whose total oxygen amount is out of the above range.

[発明の効果] 以上詳述した如く、本発明に係わる水素吸蔵合金よれ
ば水素吸蔵時の体積膨脹に伴う割れの進行がほぼ一定
で、粒度分布の狭小、平均粒径の均一化を達成でき、ひ
いてはかかる水素吸蔵合金により作製した負極を用いる
ことによって優れたサイクル寿命を有する二次電池を得
ることができる等顕著な効果を奏する。
[Effects of the Invention] As described in detail above, according to the hydrogen storage alloy according to the present invention, the progress of cracks due to volume expansion during hydrogen storage is almost constant, and a narrow particle size distribution and a uniform average particle size can be achieved. Further, by using the negative electrode made of such a hydrogen storage alloy, a remarkable effect such as a secondary battery having an excellent cycle life can be obtained.

フロントページの続き (72)発明者 遠藤 博 神奈川県川崎市幸区小向東芝町1番地 東芝リサーチコンサルディング株式会社 内 (72)発明者 武野 和太 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 竹村 モモ子 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (56)参考文献 特開 平2−277737(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 19/00 H01M 4/24 H01M 4/38 Continuing on the front page (72) Inventor Hiroshi Endo 1 Toshiba Research Consulting Co., Ltd., Komukai Toshiba-cho, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Kazuta Takeno 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd. (72) Inventor Momoko Takemura 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Toshiba Research Institute, Inc. (56) References JP-A-2-277737 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 19/00 H01M 4/24 H01M 4/38

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式 LnNixAy ただし、式中のLnはYを含む希土類元素の少なくとも1
種、AはCo,Al,Fe,Si,Cr,Cu,Mnの少なくとも1種、x,y
はそれぞれx>3.5、y<2.0、4.5<x+y<5.5を示
す、にて表わされ、かつ粉砕前の段階において酸素と希
土類元素とが結合した析出相を有し、この析出相を含む
合金は不活性ガス雰囲気中、1450℃以上で加熱した時に
放出される酸素量10〜80ppmを有すことを特徴とする二
次電池用水素吸蔵合金。
1. The general formula LnNi x Ay , wherein Ln is at least one of rare earth elements including Y.
A is at least one of Co, Al, Fe, Si, Cr, Cu, Mn, x, y
Represents an x> 3.5, y <2.0, 4.5 <x + y <5.5, respectively, and has a precipitate phase in which oxygen and a rare earth element are combined in a stage before pulverization, and an alloy containing this precipitate phase Is a hydrogen storage alloy for secondary batteries, characterized by having an oxygen content of 10 to 80 ppm released when heated at 1450 ° C. or more in an inert gas atmosphere.
JP2333066A 1990-11-29 1990-11-29 Hydrogen storage alloy for secondary batteries Expired - Fee Related JP3011454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333066A JP3011454B2 (en) 1990-11-29 1990-11-29 Hydrogen storage alloy for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333066A JP3011454B2 (en) 1990-11-29 1990-11-29 Hydrogen storage alloy for secondary batteries

Publications (2)

Publication Number Publication Date
JPH04198443A JPH04198443A (en) 1992-07-17
JP3011454B2 true JP3011454B2 (en) 2000-02-21

Family

ID=18261887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333066A Expired - Fee Related JP3011454B2 (en) 1990-11-29 1990-11-29 Hydrogen storage alloy for secondary batteries

Country Status (1)

Country Link
JP (1) JP3011454B2 (en)

Also Published As

Publication number Publication date
JPH04198443A (en) 1992-07-17

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3965209B2 (en) Low Co hydrogen storage alloy
JP2001040442A (en) Hydrogen storage alloy
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP3011454B2 (en) Hydrogen storage alloy for secondary batteries
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JPS62271348A (en) Hydrogen occlusion electrode
JP2980371B2 (en) Hydrogen storage alloy for secondary batteries
CN114946051A (en) Hydrogen-absorbing alloy for alkaline storage battery
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP2847952B2 (en) Sealed alkaline storage battery
JPH0799055A (en) Hydrogen secondary battery
JP3272012B2 (en) Hydrogen storage alloy
JPH0265060A (en) Hydrogen storage electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2001181763A (en) Hydrogen storage alloy
JPH06145849A (en) Hydrogen storage alloy electrode
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPH0393158A (en) Hydrogen storage alloy electrode
JP3276677B2 (en) Hydrogen storage alloy electrode
JP3583837B2 (en) Method for producing hydrogen storage alloy electrode
JPH0729570A (en) Hydrogen storage alloy for nickel/hydrogen battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees