JPH0265060A - Hydrogen storage electrode - Google Patents
Hydrogen storage electrodeInfo
- Publication number
- JPH0265060A JPH0265060A JP63215427A JP21542788A JPH0265060A JP H0265060 A JPH0265060 A JP H0265060A JP 63215427 A JP63215427 A JP 63215427A JP 21542788 A JP21542788 A JP 21542788A JP H0265060 A JPH0265060 A JP H0265060A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hydrogen storage
- electrode
- elements
- good
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 49
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 39
- 239000001257 hydrogen Substances 0.000 title claims abstract description 38
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 65
- 239000000956 alloy Substances 0.000 claims abstract description 65
- 229910052742 iron Inorganic materials 0.000 claims abstract description 12
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 229910001068 laves phase Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910000905 alloy phase Inorganic materials 0.000 claims abstract description 6
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract 3
- 229910052802 copper Inorganic materials 0.000 claims abstract 3
- 239000013078 crystal Substances 0.000 claims description 11
- 229910000628 Ferrovanadium Inorganic materials 0.000 claims description 9
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- 229910000765 intermetallic Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910052776 Thorium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 150000004678 hydrides Chemical class 0.000 claims 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims 2
- 229910052797 bismuth Inorganic materials 0.000 claims 2
- 229910052737 gold Inorganic materials 0.000 claims 2
- 229910052709 silver Inorganic materials 0.000 claims 2
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 229910052718 tin Inorganic materials 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910003126 Zr–Ni Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合金
を用いた水素吸蔵電極、アルカリ蓄電池とくに正極にニ
ッケル極、空気極、酸化銀極等を用いるアルカリ蓄電池
などの負極として用いる、水素吸蔵電極に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to hydrogen storage electrodes using hydrogen storage alloys that reversibly store and release hydrogen, and alkaline storage batteries, particularly positive electrodes such as nickel electrodes, air electrodes, silver oxide electrodes, etc. This invention relates to hydrogen storage electrodes used as negative electrodes in alkaline storage batteries and the like.
従来の技術
汎用の2次電池としては、一般に鉛蓄電池とアルカリ蓄
電池とが広く使われている。これらのうち、アルカリ蓄
電池の中で最もよく使われているのは、ニッケルーカド
ミウム蓄電池である。しかし、昨今のポータプル機器の
発展に伴ない、重量または体積当り、より高エネルギー
密度で、低公害の蓄電池(2次電池)が要望されている
。BACKGROUND OF THE INVENTION Lead storage batteries and alkaline storage batteries are generally widely used as general-purpose secondary batteries. Of these, the most commonly used alkaline storage battery is the nickel-cadmium storage battery. However, with the recent development of portable devices, there is a demand for storage batteries (secondary batteries) with higher energy density and lower pollution per weight or volume.
最近、新しい電池系として、注目されているのが水素を
可逆的に吸蔵・放出する水素吸蔵合金を負極とし、正極
にはニッケル酸化物を用いたアルカリ蓄電池にッケルー
水素2次電池)である。Recently, new battery systems that have been attracting attention include alkaline storage batteries and nickel-hydrogen secondary batteries, which use a hydrogen storage alloy that reversibly absorbs and releases hydrogen as the negative electrode and nickel oxide as the positive electrode.
これは実質的に放電可能な容量密度がカドミウムより大
きく、デンドライトの形成がなく、シかも製造法や構成
法に関してはほぼ従来と同じ方法を採用することができ
る。従って、高エネルギー密度で長寿命、低公害の2次
電池として有望である。This material has a substantially higher dischargeable capacity density than cadmium, does not form dendrites, and can be manufactured using almost the same methods as conventional methods. Therefore, it is promising as a secondary battery with high energy density, long life, and low pollution.
水素吸蔵電極用の水素吸蔵合金としては、今までT i
−N i系、Zr−Ni系、La(またはMm)−N
i系、もしくはこれらの合金をベースとし、他の元素で
置換あるいは添加した合金(例えばJournal o
f Less−Common Metals 129
(1987)13−30や同131(1987)311
−319 など)がある。Until now, Ti
-Ni system, Zr-Ni system, La (or Mm)-N
i-based or alloys based on these alloys and substituted or added with other elements (e.g. Journal o
f Less-Common Metals 129
(1987) 13-30 and 131 (1987) 311
-319 etc.).
発明が解決しようとする課題
しかしながら、従来の組成合金では水素吸蔵合金として
適し、組成ずれや偏析のない均質な合金は得難く、材料
価格も比較的高いものであった。Problems to be Solved by the Invention However, with conventional compositional alloys, it is difficult to obtain a homogeneous alloy suitable as a hydrogen storage alloy without compositional deviation or segregation, and the material cost is relatively high.
本発明は、■含有ラーベス相合金における上記の問題点
に鑑み、良好な特性の合金を探索した結果得られたもの
で、特に信頼性が高く、コストが安く、安全で、放電容
量や寿命などの電極性能が優れた蓄電池を提供しうる水
素吸蔵合金を用いた電極を得ることを目的とする。The present invention was obtained as a result of searching for an alloy with good characteristics in view of the above-mentioned problems in Laves phase alloys containing ■. The purpose of the present invention is to obtain an electrode using a hydrogen storage alloy that can provide a storage battery with excellent electrode performance.
課題を解決するための手段 本発明は、一般式ABα(ただし、AはZ r。Means to solve problems The present invention is based on the general formula ABα (where A is Zr).
TL Hf、 Ta、 Y+ Cat Mg
、 La+ CatPr、Mm、Nb、Nd、Mo
、AI、Siから選んだ1種または2種以上の元素、B
はVおよびFeあるいはVおよびFeを含み、残部NL
Cr+ Mn+ Go+ Cut Zn+
AL Sit Nb+MO,W% Mg+ C
a、 Y、 Ta、 Pd+ Ag+Au+
cd、 In+ 5nIBL La+ Ca
t Mm+ Pr+ Nd+ Th、Smから
選んだ1種または2種以上の元素、α=1.5〜2.5
、Mmは希土類元素の混合物を示し、またAとBは異種
元素)で表され、合金相が実質的に金属間化合物のラー
ベス相である合金の製造出発原材料としてフェロバナジ
ウム(V−Fe合金)を用いた電極、すなわち電池特性
が極めて良好で、低価格、信頼性にも優れた水素吸蔵電
極を提供するものである。TL Hf, Ta, Y+ Cat Mg
, La+ CatPr, Mm, Nb, Nd, Mo
, AI, one or more elements selected from Si, B
contains V and Fe or V and Fe, and the remainder NL
Cr+ Mn+ Go+ Cut Zn+
AL Sit Nb+MO, W% Mg+ C
a, Y, Ta, Pd+ Ag+Au+
cd, In+ 5nIBL La+ Ca
t Mm+ Pr+ Nd+ One or more elements selected from Th and Sm, α=1.5 to 2.5
, Mm indicates a mixture of rare earth elements, and A and B are different elements), and ferrovanadium (V-Fe alloy) is used as a starting material for producing an alloy whose alloy phase is substantially the Laves phase of an intermetallic compound. The object of the present invention is to provide an electrode using the hydrogen storage electrode, that is, a hydrogen storage electrode with extremely good battery characteristics, low cost, and excellent reliability.
作用
前記合金を主成分とした水素吸蔵電極は、アルカリ蓄電
池で起こる通常の電気化学的な条件下で、従来のものに
比べて、均質性がよく組成ずれが無いため、アルカリ蓄
電池としての諸特性が極めて良好であり、また原材料費
が安く、製造時の作業性も良いものである。Effect Hydrogen storage electrodes mainly composed of the above-mentioned alloy have better homogeneity and no compositional deviation than conventional ones under normal electrochemical conditions that occur in alkaline storage batteries, so they have various characteristics as alkaline storage batteries. It has extremely good quality, low raw material costs, and good workability during manufacturing.
実施例 以下、具体的実施例について述べる。Example Specific examples will be described below.
(実施例1)
市販のフェロバナジウムおよびZ L N 11
Ti、Hf、Ta、Y、Ca、Mg+La、Ce、Mm
、Nb+ Nd、 Sm+ Mo+ AL
Sit V+ Cr+Mn+ Fe+Col
Cut Zn+ Sit Nb+ Mo+W、
Cd などを原材料とし、ABa系合金の中がら一般式
ZrαVβNirMδ(ただし、α、β。(Example 1) Commercially available ferrovanadium and Z L N 11
Ti, Hf, Ta, Y, Ca, Mg+La, Ce, Mm
, Nb+ Nd, Sm+ Mo+ AL
Sit V+ Cr+Mn+ Fe+Col
Cut Zn+ Sit Nb+ Mo+W,
Using Cd etc. as a raw material, the general formula ZrαVβNirMδ (where α, β.
γ、δは、それぞれZr1VN Nis M元素の原
子比で、α=0.5〜1.5、β=0.01〜1.2、
γ=0.4〜2.5、δ=o、oi〜1.8で、かつβ
+γ+δ=1.2〜3.7、M:Fe単独またはFeお
よびMg+ Cat Y+ Hf+ Nb+
Ta。γ and δ are the atomic ratio of Zr1VN Nis M element, respectively, α=0.5 to 1.5, β=0.01 to 1.2,
γ=0.4~2.5, δ=o, oi~1.8, and β
+γ+δ=1.2-3.7, M: Fe alone or Fe and Mg+ Cat Y+ Hf+ Nb+
Ta.
Cr+ Mo+ W+ Mn+ Go+ p
a、 Cat Ag+Atb Zrb cd、
Alt St、 In+ Sn+ BL
La+ Cat Mm+ Pr+ NcL
Th+ Smから選んだ1種以上の元素)で表され
る合金系を選び、その中から第2表の組成の合金を合成
した。Cr+ Mo+ W+ Mn+ Go+ p
a, Cat Ag+Atb Zrb cd,
Alt St, In+ Sn+ BL
La+ Cat Mm+ Pr+ NcL
An alloy system represented by Th + one or more elements selected from Sm was selected, and alloys having the compositions shown in Table 2 were synthesized from among them.
具体的な手順は、まず第1表の組成になるように7エロ
バナジウム等の原材料を秤量し、アルゴンアーク溶解炉
や、真空または不活性ガス中での高周波誘導加熱炉で直
接溶解した。溶解した合金試料の一部は、原子組成、結
晶構造、結晶格子定数、均質性等の合金分析用に使用し
、残りは水素ガス中での水素吸蔵、放出量測定用(主と
してP(圧力)−C(組成)−丁(温度)測定)および
電極性能評価用(単極試験と密閉形試験)に用いた。Specifically, raw materials such as 7erovanadium were weighed to have the composition shown in Table 1, and directly melted in an argon arc melting furnace or a high frequency induction heating furnace in vacuum or inert gas. A part of the melted alloy sample is used for alloy analysis such as atomic composition, crystal structure, crystal lattice constant, homogeneity, etc., and the rest is used for measuring hydrogen absorption and release in hydrogen gas (mainly P (pressure)). -C (composition) - (temperature) measurement) and for electrode performance evaluation (single electrode test and closed type test).
なお、第1表は、本発明の水素吸蔵合金の原材料となる
バナジウム(V)単体金属およびフェロバナジウム合金
の組成と価格比の一例を比較して示したものである。第
1表のごとく、単体バナジウム金属は精製に煩雑な行程
を必要とするため、単位重量当りの価格がフェロバナジ
ウムに比べて約3〜4倍も高い。また、従来のVおよび
Feを含むラーベス相のABa系合金の製造法では、こ
の高価なバナジウムに電解鉄、ジルコニウムおよびモン
ドニッケル等を所望の配合比だけ加えて調製し、合金を
製造していた。一方、原材料として、フェロバナジウム
を用いる本発明の水素吸蔵合金の製造手順は、従来の高
周波炉やアーク炉を用いる溶解法と全く同様の操作方法
でよい。Table 1 shows an example of the composition and price ratio of vanadium (V) elemental metal and ferrovanadium alloy, which are raw materials for the hydrogen storage alloy of the present invention. As shown in Table 1, elemental vanadium metal requires a complicated process for refining, so its price per unit weight is about 3 to 4 times higher than that of ferrovanadium. In addition, in the conventional manufacturing method of Laves phase ABa-based alloys containing V and Fe, alloys were manufactured by adding electrolytic iron, zirconium, Mond nickel, etc. in the desired mixing ratio to this expensive vanadium. . On the other hand, the manufacturing procedure for the hydrogen storage alloy of the present invention using ferrovanadium as a raw material may be performed in exactly the same manner as the conventional melting method using a high frequency furnace or an arc furnace.
分析の結果から、第1表の合金のうち、No、l〜6は
、均質で、主たる合金相がc!44型またはC15型ラ
ーベス相であることを確認した。組成ずれもほとんど無
かった。そして、これらの合金は水素ガスでの通常のP
−C−T特性結果では水素吸蔵量が従来のものより大き
く、反応速度、平衡圧のヒステリシスなどの特性も良好
であった。合金No、7〜11は比較のために示した従
来の水素吸蔵電極用合金である。すなわちNo、7はV
の原子比が大きすぎる合金、No、8はZrの原子比が
小さすぎる合金、No、9はNiの原子比が小さすぎる
合金、No、10はM元素の原子比が大きすぎる合金で
、その結果合金相が金属間化合物のラーベス相で、その
結晶構造が6方対称のCI4型または立方対称のC1S
型で、特に6方対称の014型については結晶格子定数
a、Cがそれぞれa=4.8〜5.2A (オングスト
ローム)、c = 7.9〜8.3A(オングストロー
ム)、また立方対称のC15型については結晶格子定数
aが6.92〜7.7OA(オングストローム)である
合金の範囲に入らないものである。From the analysis results, among the alloys in Table 1, Nos. 1 to 6 are homogeneous, and the main alloy phase is c! It was confirmed that it was a 44-type or C15-type Laves phase. There was almost no compositional deviation. And these alloys are normal P in hydrogen gas.
-C-T characteristic results showed that the hydrogen storage capacity was larger than that of conventional products, and the properties such as reaction rate and equilibrium pressure hysteresis were also good. Alloy Nos. 7 to 11 are conventional alloys for hydrogen storage electrodes shown for comparison. In other words, No. 7 is V
No. 8 is an alloy in which the atomic ratio of Zr is too small. No. 9 is an alloy in which the atomic ratio of Ni is too small. No. 10 is an alloy in which the atomic ratio of M element is too large. The resulting alloy phase is the Laves phase of an intermetallic compound, and its crystal structure is CI4 type with hexagonal symmetry or C1S type with cubic symmetry.
In particular, for the 014 type with hexagonal symmetry, the crystal lattice constants a and C are a = 4.8 to 5.2 A (angstrom) and c = 7.9 to 8.3 A (angstrom), respectively, and the cubic symmetric type The C15 type does not fall within the range of alloys with a crystal lattice constant a of 6.92 to 7.7 OA (angstroms).
No、11はN001と同じ合金組成ではあるがフェロ
バナジウムを使用しなかったものの代表例である。No. 11 is a typical example of an alloy having the same alloy composition as No. 001, but without using ferrovanadium.
この表に示した合金についてアルカリ蓄電池用負極とし
ての性能を、まず負極のみの半電池試験によって評価し
た。その評価方法および結果を第1図および以下に記す
。まず、溶解によって得られた合金を300メツシユ以
下の粒子に粉砕し、この合金粉末的5gを、結着剤とし
てのポリエチレン粉末0.5gと、導電剤としてのカー
ボニルニッケル粉末2gと共に充分混合攪拌し、これを
導電性芯材としてのニッケルメツシュ(線径0.2 m
m+16メツシユ)を中心にして充填し、プレスによ
り加圧し板状に成型した。これを120℃、約1時間真
空中に置き、加熱してポリエチレンを溶融した後、リー
ドを取り付は水素吸蔵電極とした。The performance of the alloys shown in this table as negative electrodes for alkaline storage batteries was first evaluated by a half-cell test using only the negative electrode. The evaluation method and results are shown in FIG. 1 and below. First, the alloy obtained by melting was pulverized into particles of 300 mesh or less, and 5 g of this alloy powder was thoroughly mixed and stirred with 0.5 g of polyethylene powder as a binder and 2 g of carbonyl nickel powder as a conductive agent. , this was used as a nickel mesh (wire diameter 0.2 m) as a conductive core material.
m+16 mesh) was filled in the center and pressed with a press to form a plate shape. This was placed in a vacuum at 120° C. for about 1 hour, heated to melt the polyethylene, and then a lead was attached as a hydrogen storage electrode.
2次電池用負極として評価するために、正極(対極)に
市販のニッケルーカドミウム蓄電池に使われている焼結
式ニッケル極を選び、この正極の量を水素吸蔵合金負極
より電気容量的に過剰になるよう構成し、ボリアミド不
織布をセパレータとし、比重1.30の苛性カリ水溶液
に水酸化リチウムを20g/Q加えた溶液を電解液とし
て、一定電流での充電と放電を20°Cで繰り返した。In order to evaluate it as a negative electrode for secondary batteries, we selected a sintered nickel electrode used in commercially available nickel-cadmium storage batteries as the positive electrode (counter electrode), and the amount of this positive electrode was made to be larger than the hydrogen storage alloy negative electrode in terms of electrical capacity. Using a polyamide nonwoven fabric as a separator and a solution prepared by adding 20 g/Q of lithium hydroxide to a caustic potassium aqueous solution with a specific gravity of 1.30 as an electrolyte, charging and discharging at a constant current were repeated at 20°C.
このときの充電電気量は、500mAX 5時間であり
、放電は300mAで行い、0.8V以下をカットした
。結果の一例として、充Φ放電10サイクル目の開放系
での放電容量を第2表に、また充・放電サイクル寿命特
性第2表
を第1図に示す。同図は横軸に充電台放電サイクル数(
oo)を、縦軸に開放系での1g当りの放電容量を、好
ましくない合金例(第1表中)と共に示したものである
。なお、第1図中の番号は第2表の合金No、 と一
致している。これから明らかなように、本発明による水
素吸蔵電極は、No。The amount of electricity charged at this time was 500 mAX for 5 hours, the discharge was performed at 300 mA, and 0.8 V or less was cut off. As an example of the results, Table 2 shows the discharge capacity in an open system at the 10th charging/discharging cycle, and Table 2 shows the charging/discharging cycle life characteristics in FIG. In the figure, the horizontal axis is the number of charging stand discharge cycles (
oo), the vertical axis shows the discharge capacity per 1 g in an open system, along with unfavorable alloy examples (in Table 1). Note that the numbers in FIG. 1 match the alloy numbers in Table 2. As is clear from this, the hydrogen storage electrode according to the present invention is No.
1とNo、 11. No、 1〜No、 6
とN007〜No、10との比較より従来合金と比べて
、大きい放電容量を有し、耐久性(サイクル寿命特性)
が優れていることがわかる。また急速な充Φ放電特性も
優れていた。1 and No, 11. No, 1~No, 6
Comparing with and No. 10, it has a larger discharge capacity and durability (cycle life characteristics) than conventional alloys.
It turns out that it is excellent. It also had excellent rapid charging and discharging characteristics.
本発明の水素吸蔵電極に係る合金は第2表に示すもの以
外に、多(の合金組成がある。この場合、当然、合金相
が実質的に金属間化合物のラーベス相に属し、その結晶
構造が6方対称のC14型または(および)立方対称の
C15型で、特に6方対称のC14型については結晶格
子定数a1 Cがそれぞれa=4.8〜5.2A(オン
グストローム)、c=7.9〜8.3A (オングスト
ローム)、立方対称のC15型については結晶格子定数
aが6.92〜7.70A(オングストローム)であっ
た。In addition to those shown in Table 2, the alloy related to the hydrogen storage electrode of the present invention has a poly(alloy composition).In this case, naturally, the alloy phase substantially belongs to the Laves phase of the intermetallic compound, and its crystal structure is the C14 type with hexagonal symmetry or (and) the C15 type with cubic symmetry, and especially for the C14 type with hexagonal symmetry, the crystal lattice constants a1C are a=4.8 to 5.2A (angstrom) and c=7, respectively. The crystal lattice constant a of the C15 type with cubic symmetry was 6.92 to 7.70 A (angstrom).
一般式ZraVβNiγMδ(ただし、α、β。General formula ZraVβNiγMδ (where α, β.
γ、δは、それぞれZ 1% VN N i1M元
素の原子比で、α=0.5〜1.5、β=0.01〜1
゜2、γ=0.4〜2,5、δ=0.01〜1.8で、
かつβ+γ+δ=1.2〜3.7、M:Fe単独または
FeおよびMg、 Ca、 Y、 Hf、 N
b+ Ta、Cr+ Mo、 w、 Mn、
Co+ Pd。γ and δ are the atomic ratio of Z 1% VN N i 1M element, respectively, α = 0.5 to 1.5, β = 0.01 to 1
゜2, γ = 0.4 ~ 2.5, δ = 0.01 ~ 1.8,
and β+γ+δ=1.2-3.7, M: Fe alone or Fe and Mg, Ca, Y, Hf, N
b+ Ta, Cr+ Mo, w, Mn,
Co+Pd.
Cut Ag+ Au+ Zn、 Cd+
Al+ Sit In+ Sn、 BL L
a、 Ce+ Mm+ Pr、 NcLTh+
Smから選んだ1種以上の元素)で表わされる合金に関
し、原子比βが0.01より小さいか、または、1.2
より大きい合金は放電容量が小さく、また原子比δが0
.01より小さいか、または1.8より大きい合金も放
電容1が小さい。Cut Ag+ Au+ Zn, Cd+
Al+ Sit In+ Sn, BL L
a, Ce+ Mm+ Pr, NcLTh+
(one or more elements selected from Sm), the atomic ratio β is less than 0.01 or 1.2
Larger alloys have lower discharge capacity and atomic ratio δ of 0.
.. Alloys smaller than 01 or larger than 1.8 also have a small discharge capacity 1.
また原子比αが0. 5より小さい合金は充電容量が不
十分で、1.5より大きい合金は放電容量が小さい。更
に原子比γが0.4より小さい合金は耐久性の点で問題
があり、また2、5より大きい合金は充電容量が小さい
。そして(β+γ+δ)の値が1.2より小さい合金は
放電容■が小さく、3.7より大きい合金は充電容量が
小さい。これらの理由はZrの含有量αおよびVの含有
量βは、特に充電電気量に関与し、Zrおよび■が多い
程、充電電気量は大きいが、安定な水素化物を形成する
ため放電率が小さく、結果的に放電電気量が少なくなる
。またNiff1は、特に充放電サイクル特性(耐久性
)に関係し、NI量多いほど、長寿命だが、充電電気量
が少なくなる傾向がある。そしてM元素の含有量δは特
に充・放電サイクル特性と放電電位に関与し、Mが多い
ほどこれらの特性は向上するが、充電電気量が減少する
。かつ、Feを必須元素とする効果は、合金の均質性、
及び低価格化であり、工業的、経済的に効果大である。Also, the atomic ratio α is 0. Alloys smaller than 5 have insufficient charge capacity, and alloys larger than 1.5 have low discharge capacity. Furthermore, alloys with an atomic ratio γ smaller than 0.4 have problems in terms of durability, and alloys with an atomic ratio γ larger than 2 or 5 have a small charging capacity. Alloys with a value of (β+γ+δ) smaller than 1.2 have a small discharge capacity (■), and alloys with a value larger than 3.7 have a small charging capacity. The reason for these is that the Zr content α and the V content β are particularly involved in the charging amount of electricity, and the more Zr and As a result, the amount of electricity discharged is small. Further, Niff1 is particularly related to charge/discharge cycle characteristics (durability), and the larger the amount of NI, the longer the life span, but the amount of charged electricity tends to decrease. The content δ of the M element is particularly involved in charge/discharge cycle characteristics and discharge potential, and as the amount of M increases, these characteristics improve, but the amount of electricity charged decreases. Moreover, the effect of making Fe an essential element is due to the homogeneity of the alloy,
It is also highly effective industrially and economically.
このように水素吸蔵合金の出発原材料として、FeとV
からなるフェロバナジウムを用いて合成した合金は、均
質性が極めて良く、これを主成分とした水素吸蔵電極は
、アルカリ蓄電池用負極としての性能も、FeとV金属
単独を原材料とするものよりも優れ、プロセスも簡便で
あった。In this way, Fe and V are used as starting materials for hydrogen storage alloys.
The alloy synthesized using ferrovanadium, which consists of ferrovanadium, has extremely good homogeneity, and hydrogen storage electrodes containing this as the main component also have better performance as negative electrodes for alkaline storage batteries than those made from Fe and V metals alone. It was excellent and the process was simple.
(実施例2)
次にこれらの水素吸蔵合金電極を使用して、単2型の円
筒密閉型のニッケルー水素2次電池を構成し評価した。(Example 2) Next, using these hydrogen storage alloy electrodes, a AA-sized sealed cylindrical nickel-hydrogen secondary battery was constructed and evaluated.
前記の単極試験と同様に、合金を300メツシユ以下に
粉砕し、ポリビニルアルコール等の結着剤と共にペース
トにし、ニッケルメッキを施したパンチングメタル板に
塗着して乾燥し、幅3.9cmt 長さ26cmに裁
断し、リード板を所定の2カ所にスポット溶接によって
取り付け、水素吸蔵合金を得た。相手極としては、公知
の発泡式ニッケル極を選び、同じく幅3.90m1
長さ22cmとして用いた。セパレータには、ポリアミ
ト不織布、電解液は比重1.20の苛性カリ水溶液に水
酸化リチウムを20g/l 加えた溶液を用いた。公
称容量は3.0Ahである。Similar to the single electrode test described above, the alloy was crushed to 300 meshes or less, made into a paste with a binder such as polyvinyl alcohol, applied to a nickel-plated punched metal plate, dried, and made into a paste with a width of 3.9 cm and a length of 3.9 cm. It was cut to a length of 26 cm, and lead plates were attached to two predetermined locations by spot welding to obtain a hydrogen storage alloy. As the mating electrode, a well-known foamed nickel electrode was selected, also with a width of 3.90 m1.
It was used with a length of 22 cm. A polyamide nonwoven fabric was used as the separator, and a solution prepared by adding 20 g/l of lithium hydroxide to a caustic potassium aqueous solution having a specific gravity of 1.20 was used as the electrolyte. The nominal capacity is 3.0 Ah.
これらの電池を通常の20°Cでの充放電サイクル試験
によって評価した。充電は、0.IC(10時間率)で
15時間、放電は0.2C(5時間率)で、終止電圧0
.9Vとして、充放電サイクルを繰り返した。その結果
を第2図に示す。なお、図中の番号は第2表の合金No
、 と一致している。These batteries were evaluated by a conventional charge/discharge cycle test at 20°C. Charging is 0. IC (10 hour rate) for 15 hours, discharge at 0.2C (5 hour rate), final voltage 0
.. The charge/discharge cycle was repeated at 9V. The results are shown in FIG. In addition, the numbers in the figure correspond to the alloy No. in Table 2.
, is consistent with .
本発明の水素吸蔵合金電極で構成した電池は、いずれも
500サイクル以上繰り返してもほぼ3゜0〜3.2A
hの放電容量を維持し、はとんど性能の低下が認められ
なかった。All of the batteries constructed with the hydrogen storage alloy electrode of the present invention have approximately 3.0 to 3.2 A even after 500 cycles or more.
h discharge capacity was maintained, and almost no deterioration in performance was observed.
発明の効果
本発明の水素吸蔵電極は、電極素材である合金の均質性
が良く、偏析もなく、ロット間のバラツキが少ないため
品質が安定で、信頓性が高(、その結果、放電容量やサ
イクル寿命などの電極性能が優れた蓄電池を供給し得る
。また、原材料コストが低く、製造工程が簡便であるた
め低価格である。Effects of the Invention The hydrogen storage electrode of the present invention has good homogeneity of the alloy that is the electrode material, no segregation, and little variation between lots, resulting in stable quality and high reliability (as a result, the discharge capacity is It is possible to supply a storage battery with excellent electrode performance such as cycle life and cycle life.In addition, the raw material cost is low and the manufacturing process is simple, so the price is low.
第1図は本発明の一実施例の水素吸蔵電極を用いた電池
の放電サイクル寿命特性図、第2図は本発明に係る各皿
合金を負極に使用した電池の放電サイクル寿命特性図で
ある。
代理人の氏名 弁理士 粟野重孝 はか1名第1図
充 炊豐7丈イククレC′″b)FIG. 1 is a discharge cycle life characteristic diagram of a battery using a hydrogen storage electrode according to an embodiment of the present invention, and FIG. 2 is a discharge cycle life characteristic diagram of a battery using each plate alloy according to the present invention as a negative electrode. . Name of agent: Patent attorney Shigetaka Awano (1 person)
Claims (5)
Ta、Y、Ca、Mg、La、Ce、Pr、Mm、Nb
、Nd、Mo、Al、Siから選んだ1種または2種以
上の元素、BはVおよびFeあるいはVおよびFeを含
み、残部Ni、Cr、Mn、Co、Cu、Zn、Al、
Si、Nb、Mo、W、Mg、Ca、Y、Ta、Pd、
Ag、Au、Cd、In、Sn、Bi、La、Ce、M
m、Pr、Nd、Th、Smから選んだ1種または2種
以上の元素、α=1.5〜2.5、Mmは希土類元素の
混合物を示し、またAとBは異種元素)で表され、合金
相が実質的に金属間化合物のラーベス相に属し、その結
晶構造が6方対称のC14型または(および)立方対称
のC15型で、特に6方対称のC14型については結晶
格子定数a、cがそれぞれa=4.8〜5.2A(オン
グストローム)、c=7.9〜8.3A(オングストロ
ーム)、また立方対称のC15型については結晶格子定
数aが6.92〜7.70A(オングストローム)であ
る合金またはその水素化物を、主たる水素の吸蔵、放出
材料として備えた水素吸蔵電極。(1) General formula ABα (where A is Zr, Ti, Hf,
Ta, Y, Ca, Mg, La, Ce, Pr, Mm, Nb
, one or more elements selected from Nd, Mo, Al, Si, B contains V and Fe or V and Fe, the balance is Ni, Cr, Mn, Co, Cu, Zn, Al,
Si, Nb, Mo, W, Mg, Ca, Y, Ta, Pd,
Ag, Au, Cd, In, Sn, Bi, La, Ce, M
One or more elements selected from m, Pr, Nd, Th, Sm, α = 1.5 to 2.5, Mm represents a mixture of rare earth elements, and A and B are different elements). The alloy phase substantially belongs to the Laves phase of an intermetallic compound, and the crystal structure is the C14 type with hexagonal symmetry or (and) the C15 type with cubic symmetry, and especially the crystal lattice constant of the C14 type with hexagonal symmetry. a and c are respectively a=4.8-5.2A (angstrom) and c=7.9-8.3A (angstrom), and for the cubic symmetric C15 type, the crystal lattice constant a is 6.92-7. A hydrogen storage electrode comprising a 70A (angstrom) alloy or its hydride as a main hydrogen storage and release material.
−Fe合金)を使用した請求項1記載の水素吸蔵電極。(2) Ferrovanadium (V
-Fe alloy) according to claim 1.
有することを特徴とする請求項1記載の水素吸蔵電極。(3) The hydrogen storage electrode according to claim 1, wherein the alloy or its hydride contains at least Ni.
30原子%以上のZrを含有することを特徴とする請求
項1記載の水素吸蔵電極。(4) The hydrogen storage electrode according to claim 1, wherein the alloy or its hydride contains Zr as A in an amount of at least 30 atomic % or more.
αVβNiγMδ(ただし、α、β、γ、δは、それぞ
れZr、V、Ni、M元素の原子比で、α=0.5〜1
.5、β=0.01〜1.2、γ=0.4〜2.5、δ
=0.01〜1.8で、かつβ+γ+δ=1.2〜3.
7、M:Fe単独またはFeおよびMg、Ca、Y、H
f、Nb、Ta、Cr、Mo、W、Mn、Co、Pd、
Cu、Ag、Au、Zn、Cd、Al、Si、In、S
n、Bi、La、Ce、Mm、Pr、Nd、Th、Sm
から選んだ1種以上の元素)で表される請求項1、2、
3または4記載の水素吸蔵電極。(5) The alloy or its hydride substantially has the general formula Zr
αVβNiγMδ (where α, β, γ, and δ are the atomic ratios of Zr, V, Ni, and M elements, respectively, and α=0.5 to 1
.. 5, β=0.01-1.2, γ=0.4-2.5, δ
=0.01-1.8, and β+γ+δ=1.2-3.
7, M: Fe alone or Fe and Mg, Ca, Y, H
f, Nb, Ta, Cr, Mo, W, Mn, Co, Pd,
Cu, Ag, Au, Zn, Cd, Al, Si, In, S
n, Bi, La, Ce, Mm, Pr, Nd, Th, Sm
Claims 1, 2,
4. The hydrogen storage electrode according to 3 or 4.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63215427A JPH0265060A (en) | 1988-08-30 | 1988-08-30 | Hydrogen storage electrode |
US07/870,224 US5281390A (en) | 1988-06-28 | 1989-12-28 | Method of producing hydrogen-storing alloy and electrode making use of the alloy |
US07/796,819 US5268143A (en) | 1988-06-28 | 1991-11-25 | Method of producing hydrogen-storing alloy from a zirconium-tin starting material |
US08/261,305 US5490970A (en) | 1988-06-28 | 1994-06-16 | Method of producing hydrogen-storing alloy and electrode making use of the alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63215427A JPH0265060A (en) | 1988-08-30 | 1988-08-30 | Hydrogen storage electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0265060A true JPH0265060A (en) | 1990-03-05 |
Family
ID=16672159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63215427A Pending JPH0265060A (en) | 1988-06-28 | 1988-08-30 | Hydrogen storage electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0265060A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5149383A (en) * | 1990-04-03 | 1992-09-22 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storage alloy electrode |
US5851690A (en) * | 1994-10-05 | 1998-12-22 | Sanyo Electric Co., Ltd. | Hydrogen absorbing alloys |
US5962156A (en) * | 1996-02-20 | 1999-10-05 | Matsushita Electric Industrial Co., Ltd. | Nickel-metal hydride storage battery and alloy for configuring negative electrode of the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63284758A (en) * | 1987-05-15 | 1988-11-22 | Matsushita Electric Ind Co Ltd | Hydrogen-storing electrode |
JPH0210659A (en) * | 1988-06-28 | 1990-01-16 | Matsushita Electric Ind Co Ltd | Manufacture of hydrogen storage alloy |
-
1988
- 1988-08-30 JP JP63215427A patent/JPH0265060A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63284758A (en) * | 1987-05-15 | 1988-11-22 | Matsushita Electric Ind Co Ltd | Hydrogen-storing electrode |
JPH0210659A (en) * | 1988-06-28 | 1990-01-16 | Matsushita Electric Ind Co Ltd | Manufacture of hydrogen storage alloy |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5149383A (en) * | 1990-04-03 | 1992-09-22 | Matsushita Electric Industrial Co., Ltd. | Hydrogen storage alloy electrode |
US5851690A (en) * | 1994-10-05 | 1998-12-22 | Sanyo Electric Co., Ltd. | Hydrogen absorbing alloys |
US5962156A (en) * | 1996-02-20 | 1999-10-05 | Matsushita Electric Industrial Co., Ltd. | Nickel-metal hydride storage battery and alloy for configuring negative electrode of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920010422B1 (en) | Electrode and method of storage hidrogine | |
JPS60241652A (en) | Electrochemical electrode employing metal hydride | |
EP0506084B1 (en) | A hydrogen storage alloy and an electrode using the same | |
EP0413029B1 (en) | Method of producing hydrogen-occlusion alloy and electrode using the alloy | |
US5281390A (en) | Method of producing hydrogen-storing alloy and electrode making use of the alloy | |
JPH0821379B2 (en) | Hydrogen storage electrode | |
JP3123049B2 (en) | Hydrogen storage alloy electrode | |
JP2595967B2 (en) | Hydrogen storage electrode | |
JP2666249B2 (en) | Hydrogen storage alloy for alkaline storage batteries | |
US5753054A (en) | Hydrogen storage alloy and electrode therefrom | |
US5490970A (en) | Method of producing hydrogen-storing alloy and electrode making use of the alloy | |
JPH0265060A (en) | Hydrogen storage electrode | |
JPH0953136A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
US5268143A (en) | Method of producing hydrogen-storing alloy from a zirconium-tin starting material | |
JPH0650634B2 (en) | Hydrogen storage electrode | |
JPH05287422A (en) | Hydrogen occluding alloy electrode | |
US5468309A (en) | Hydrogen storage alloy electrodes | |
JP2715434B2 (en) | Hydrogen storage alloy electrode | |
JPH04301045A (en) | Hydrogen storage alloy electrode | |
JP2955351B2 (en) | Hydrogen storage alloy for secondary batteries | |
JPH07111151A (en) | Hydrogen storage electrode active material | |
JP2989356B2 (en) | Hydrogen storage alloy electrode | |
JPH04187735A (en) | Hydrogen storage alloy electrode | |
JPH03289041A (en) | Hydrogen storage alloy electrode | |
JPH0650633B2 (en) | Hydrogen storage electrode |