JP2980371B2 - Hydrogen storage alloy for secondary batteries - Google Patents

Hydrogen storage alloy for secondary batteries

Info

Publication number
JP2980371B2
JP2980371B2 JP2340615A JP34061590A JP2980371B2 JP 2980371 B2 JP2980371 B2 JP 2980371B2 JP 2340615 A JP2340615 A JP 2340615A JP 34061590 A JP34061590 A JP 34061590A JP 2980371 B2 JP2980371 B2 JP 2980371B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
storage alloy
weight
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2340615A
Other languages
Japanese (ja)
Other versions
JPH04210440A (en
Inventor
雅秋 山本
雅史 藤原
秀樹 松永
モモ子 竹村
和太 武野
博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP2340615A priority Critical patent/JP2980371B2/en
Publication of JPH04210440A publication Critical patent/JPH04210440A/en
Application granted granted Critical
Publication of JP2980371B2 publication Critical patent/JP2980371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、アルカリ二次電池用負極材料として用いら
れる二次電池用水素吸蔵合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a hydrogen storage alloy for a secondary battery used as a negative electrode material for an alkaline secondary battery.

(従来の技術) LaNi5系水素吸蔵合金を負極として用いたアルカリ二
次電池は、同一容積のニッケル・カドミウム二次電池に
比べ、高容量・高エネルギー密度であることが知られて
いる。かかるアルカリ二次電池は、前記水素吸蔵合金の
電解液との反応による腐食や、充放電に伴う水素吸蔵・
放出の繰り返しによる微粉化が充放電サイクル寿命を低
下させるため、前記水素吸蔵合金の特性が最終的な電池
特性を決定する。
(Prior Art) It is known that an alkaline secondary battery using a LaNi 5- based hydrogen storage alloy as a negative electrode has a higher capacity and a higher energy density than a nickel-cadmium secondary battery having the same volume. Such an alkaline secondary battery is subject to corrosion due to the reaction of the hydrogen storage alloy with an electrolytic solution, and hydrogen storage and storage due to charge and discharge.
Since the pulverization due to the repeated release lowers the charge / discharge cycle life, the characteristics of the hydrogen storage alloy determine the final battery characteristics.

このようなことから、水素吸蔵合金を多元化して特性
の改善を行うことが多数報告されている。代表的なもの
としては、LaNi5系水素吸蔵合金のNi部分をCo、Al、M
n、Fe、Crなどで置換することにより水素吸蔵・放出時
の水素平衡圧を減少させたり、合金の耐食性を向上させ
ることが知られている。また、LaNi5系水素吸蔵合金のL
a部分を他の希土類元素で置換することによって、二次
電池のサイクル寿命を向上させることが可能となること
も知られている。
For this reason, many reports have been made to improve the characteristics by diversifying the hydrogen storage alloy. As a typical example, the Ni portion of the LaNi 5 hydrogen storage alloy is represented by Co, Al, M
It is known that substitution with n, Fe, Cr, or the like reduces the hydrogen equilibrium pressure at the time of absorbing and releasing hydrogen, and improves the corrosion resistance of the alloy. In addition, L of the LaNi 5- based hydrogen storage alloy
It is also known that substituting part a with another rare earth element can improve the cycle life of the secondary battery.

ところで、水素吸蔵合金から負極を作製する場合に
は、予め水素化によって活性化した合金粉末を使用する
か、又は機械的に粉砕した合金を用いて電池製造後で出
荷以前に充電を行うことによって電気化学的に水素活性
化した合金粉末を使用する。いずれの合金粉末において
も、水素活性化(水素吸蔵)がなされるため、水素吸蔵
合金は体積膨張が生じる。しかしながら、前記LaNi5
水素吸蔵合金及びNiやLaを他の元素置換した水素吸蔵合
金は高純度で均質性が高いため、前記体積膨張に際して
歪みが集中する箇所がなく、むしろ製造時のわずかな条
件の差によって生じる合金成分の濃度むらに起因して割
れ、しかもその割れ方に大きな差が生じる。その結果、
前記水素化によって割れた水素吸蔵合金粒子の粒度分布
が著しく広がったり、製造ロットの違いにより平均粒径
が大幅に変化する恐れがある。従って、前記水素活性化
した水素吸蔵合金から作製した負極を組込んだアルカリ
二次電池は寿命等の特性がばらつくという問題があっ
た。
By the way, when producing a negative electrode from a hydrogen storage alloy, by using an alloy powder activated by hydrogenation in advance, or by using a mechanically pulverized alloy and charging it after battery production and before shipping. An electrochemically hydrogen activated alloy powder is used. Since hydrogen activation (hydrogen storage) is performed in any of the alloy powders, the hydrogen storage alloy undergoes volume expansion. However, the order LaNi 5 type hydrogen absorbing alloy and the hydrogen storage alloy of Ni and La and other elements substitutions have high homogeneity in high purity, it said volume is no portion where the strain is concentrated upon inflation, a rather slight in manufacturing Cracks are caused due to uneven concentration of alloy components caused by the difference in conditions, and a large difference occurs in the manner of the cracks. as a result,
The particle size distribution of the hydrogen-absorbing alloy particles cracked by the hydrogenation may be remarkably widened, or the average particle size may significantly change depending on the production lot. Therefore, the alkaline secondary battery incorporating the negative electrode produced from the hydrogen-activated hydrogen storage alloy has a problem that the characteristics such as the life are varied.

(発明が解決しようとする課題) 本発明は、上記従来の問題点を解決するためになされ
たもので、水素吸蔵時の体積膨脹に伴う割れの進行がほ
ぼ一定で、粒度分布の狭小、平均粒径の均一化を達成し
得る二次電池用水素吸蔵合金を提供しようとするもので
ある。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems, and the progress of cracks due to volume expansion at the time of hydrogen absorption is almost constant, and the particle size distribution is narrow and average. An object of the present invention is to provide a hydrogen storage alloy for a secondary battery capable of achieving a uniform particle size.

[発明の構成] (課題を解決するための手段) 本発明に係わる二次電池用水素吸蔵合金は、LnNixAy
(LnはYを含む希土類元素の少なくとも1種、AはCo、
Al、Fe、Si、Cr、Cu、Mnの少なくとも1種、x、yはそ
れぞれ4.5<x+y<5.5、x>2.5を示す)で表される
水素吸蔵合金において、粒界にPb又はPb化合物が析出さ
れていることを特徴とするものである。
[Constitution of the Invention] (Means for Solving the Problems) The hydrogen storage alloy for a secondary battery according to the present invention is LnNi x A y
(Ln is at least one rare earth element containing Y, A is Co,
Al, Fe, Si, Cr, Cu, at least one of Mn, x and y each represent 4.5 <x + y <5.5, x> 2.5), in the hydrogen storage alloy represented by Pb or Pb compound at the grain boundary It is characterized by being precipitated.

前記水素吸蔵合金を表わす一般式中のLnの組成は、La
40〜50重量%、Ce0〜10重量%、Pr5〜15重量%、Nd30〜
45重量%、その他の希土類元素及び不純物0〜5重量%
とすることが望ましい。また、同一般式中のAはCo、M
n、Alの3元素で構成されていることがより望ましい。
The composition of Ln in the general formula representing the hydrogen storage alloy is La
40-50% by weight, Ce 0-10% by weight, Pr 5-15% by weight, Nd30-
45% by weight, other rare earth elements and impurities 0-5% by weight
It is desirable that A in the general formula is Co, M
More preferably, it is composed of three elements of n and Al.

前記水素吸蔵合金を表わす一般式中のx、yを限定し
た理由は、それらが前記範囲を逸脱すると水素吸蔵能力
の維持、耐食性の向上を図ることができなくなるからで
ある。
The reason why x and y in the general formula representing the hydrogen storage alloy are limited is that if they depart from the above range, it becomes impossible to maintain the hydrogen storage capacity and improve the corrosion resistance.

前記粒界に析出されるPb化合物としては、例えばPbLn
(LnはYを含む希土類元素の少なくとも1種)の金属間
化合物を挙げることができる。
As the Pb compound precipitated at the grain boundary, for example, PbLn
(Ln is at least one rare earth element containing Y).

前記合金中に含まれるPb量は、10〜1500ppm、より好
ましくは20〜1000ppmの範囲とすることが望ましい。こ
の理由は、前記Pb量を10ppm未満にすると水素吸蔵時の
体積膨張に伴うPbまたはPb化合物を起点とした割れを十
分に誘発することが困難となるばかりか、合金成分の濃
度不均質などによる強度差に基づいて割れが生じるため
割れの数は増加する恐れがある。一方、前記Pb量が1500
ppmを越えると水素吸蔵時の体積膨張に伴う割れ発生が
著しくなり、該水素吸蔵合金から作製した負極を二次電
池に組込んだ場合、電解液との接触面積が必要以上に増
加して水素吸蔵合金の腐食進行を早める恐れがある。
The amount of Pb contained in the alloy is preferably in the range of 10 to 1500 ppm, more preferably 20 to 1000 ppm. The reason for this is that if the Pb content is less than 10 ppm, it is not only difficult to sufficiently induce cracks originating from Pb or a Pb compound due to volume expansion during hydrogen absorption, but also due to the non-uniform concentration of alloy components and the like. Since cracks are generated based on the difference in strength, the number of cracks may increase. On the other hand, the Pb amount is 1500
If the concentration exceeds ppm, cracks due to volume expansion during hydrogen storage become remarkable, and when a negative electrode made of the hydrogen storage alloy is incorporated in a secondary battery, the contact area with the electrolyte increases more than necessary and hydrogen There is a risk of accelerating the progress of corrosion of the storage alloy.

なお、前記水素吸蔵合金中にPb又はPbを含む析出物が
存在している状態は、以下の方法で検証すること可能で
ある。
The state in which Pb or a precipitate containing Pb exists in the hydrogen storage alloy can be verified by the following method.

.前記水素吸蔵合金に対して少なくとも1回の水素吸
蔵・放出を含む粉砕工程により75μm以下の粒子を調製
する。つづいて、この粒子を硝酸0.2重量%、乳酸0.2重
量%、酢酸0.6重量%の水溶液に浸漬する。かかる浸漬
により水素吸蔵合金の5〜15重量%を溶解した時の溶出
物中に占めるPb又はPb化合物の含有量をW1、合金全体に
占めるPbの含有量をW2、これらPb含有量の割合(W1/
W2)をR1、溶出物全重量の合金重量に対する割合をR2
した時に下記式(1)を満足することを検証する。
. Particles having a size of 75 μm or less are prepared by a pulverizing step including at least one hydrogen storage / release for the hydrogen storage alloy. Subsequently, the particles are immersed in an aqueous solution of 0.2% by weight of nitric acid, 0.2% by weight of lactic acid and 0.6% by weight of acetic acid. The content of Pb or Pb compound in the eluted material when 5 to 15% by weight of the hydrogen storage alloy is dissolved by such immersion is W 1 , the content of Pb in the entire alloy is W 2 , Ratio (W 1 /
It is verified that the following formula (1) is satisfied when W 2 ) is R 1 and the ratio of the total weight of the eluate to the alloy weight is R 2 .

R2<R1 …(1) .前記水素吸蔵合金に対して0℃、10気圧の水素圧下
で1回の水素化粉砕を行なって得られた合金粒子をメッ
シュ間隔が25μmの篩にかける。かかる篩にかけた時の
通過率が40重量%以下であることを検証する。
R 2 <R 1 (1). The alloy particles obtained by subjecting the hydrogen storage alloy to hydrogenation and pulverization once at 0 ° C. under a hydrogen pressure of 10 atm are sieved through a sieve having a mesh interval of 25 μm. It is verified that the passing rate when passing through such a sieve is 40% by weight or less.

また、本発明に係わる別の二次電池用水素吸蔵合金
は、LnNixAy(LnはYを含む希土類元素の少なくとも1
種、AはCo、Al、Fe、Si、Cr、Cu、Mnの少なくとも1
種、x、yはそれぞれ4.5<x+y<5.5、x>2.5)で
表される水素吸蔵合金において、研磨面1mm2中に1μm
以上の長軸を有し、1重量%以上のPb又はPb化合物を含
む粒が平均300個以下存在することを特徴とするもので
ある。
Further, another hydrogen storage alloy for a secondary battery according to the present invention is LnNi x A y (where Ln is at least one of rare earth elements containing Y).
Species, A is at least one of Co, Al, Fe, Si, Cr, Cu, and Mn
1μm species, x, y respectively 4.5 <x + y <5.5, the hydrogen storage alloy represented by x> 2.5), during the polishing surface 1 mm 2
It has a long axis as described above, and is characterized in that there are an average of 300 or less grains containing 1% by weight or more of Pb or a Pb compound.

前記研磨面1mm2中に存在する粒の長軸を限定したの
は、次のような理由によるものである。前記長軸を1μ
m未満にすると、水素吸蔵時の割れの起点となり難く、
別の要因例えば合金構成元素の分布むらによる硬度の僅
かな差によって割れを生じる場合が多くなるため合金の
微粉化が著しくなり、該水素吸蔵合金から作製した負極
を二次電池に組込んだ場合、電解液との接触面積が必要
以上に増大して水素吸蔵合金の腐食進行を早める。より
好ましい粒の長軸は、1〜20μmの範囲である。
The major axis of the grains existing in the polished surface 1 mm 2 was limited for the following reason. 1μ
If it is less than m, it is unlikely to be a starting point of cracks when storing hydrogen,
Another factor, for example, a small difference in hardness due to uneven distribution of alloy constituent elements often causes cracking, so that alloy pulverization becomes remarkable, and when a negative electrode manufactured from the hydrogen storage alloy is incorporated in a secondary battery In addition, the contact area with the electrolyte is increased more than necessary, and the progress of corrosion of the hydrogen storage alloy is accelerated. A more preferred long axis of the grains is in the range of 1 to 20 μm.

前記研磨面1mm2中に存在する粒の個数を限定した理由
は、その個数が300個を越えると水素吸蔵時の体積膨張
に伴う割れ発生が著しくなり、該水素吸蔵合金から作製
した負極を二次電池に組込んだ場合、電解液との接触面
積が必要以上に増加して水素吸蔵合金の腐食進行を早め
るからである。より好ましい粒の存在数は、20〜200個
の範囲である。
The reason for limiting the number of grains present in the polishing surface 1 mm 2, the number is cracking is significantly associated with exceeding the volume expansion during the hydrogen occluding 300, two negative electrode produced from the hydrogen storage alloy This is because when the battery is incorporated in a secondary battery, the contact area with the electrolytic solution increases more than necessary, thereby accelerating the progress of corrosion of the hydrogen storage alloy. A more preferred number of grains is in the range of 20 to 200.

(作用) 本発明に係わる水素吸蔵合金によれば、LnNixAyで表
され、粒界にPb又はPb化合物が析出された構成となって
いるため、水素活性化工程における水素吸蔵時の体積膨
張に際し、前記Pb又はPb化合物の析出箇所が歪みとして
作用し、当該箇所に集中して割れを生じる。即ち、水素
吸蔵合金の水素吸蔵時の体積膨張に伴う割れ口を前記Pb
又はPb化合物の析出箇所により制御することができる。
その結果、水素吸蔵時の体積膨張に伴う割れの進行をほ
ぼ一定でき、粒度分布の狭小、平均粒径の均一化を達成
できる。従って、かかる水素吸蔵合金から作製した負極
を用いることによって、該負極の表面積、つまりアルカ
リ電解液との接触面積の増加率を一定にでき、電解液と
の反応による水素吸蔵合金の腐食劣化速度を一定に保持
できるため、サイクル寿命が長く、かつ安定した特性を
有するアルカリ二次電池を得ることができる。
(Function) According to the hydrogen storage alloy according to the present invention, since it is represented by LnNi x A y and has a structure in which Pb or a Pb compound is precipitated at the grain boundary, the volume at the time of hydrogen storage in the hydrogen activation step is obtained. Upon expansion, the precipitation site of Pb or the Pb compound acts as strain, and cracks are concentrated at the site. That is, the crack caused by the volume expansion of the hydrogen storage alloy during hydrogen storage
Alternatively, it can be controlled by the location where the Pb compound is deposited.
As a result, the progress of cracks due to volume expansion during hydrogen storage can be substantially constant, and a narrow particle size distribution and a uniform average particle size can be achieved. Therefore, by using the negative electrode made from such a hydrogen storage alloy, the surface area of the negative electrode, that is, the rate of increase of the contact area with the alkaline electrolyte can be kept constant, and the corrosion deterioration rate of the hydrogen storage alloy due to the reaction with the electrolyte can be reduced. Since it can be kept constant, an alkaline secondary battery having a long cycle life and stable characteristics can be obtained.

また、本発明に係わる別の水素吸蔵合金によればLnNi
xAyで表され、研磨面1mm2中に1μm以上の長軸を有
し、1重量%以上のPb又はPb化合物を含む粒が平均300
個以下存在する構成となっているため、水素活性化工程
における水素吸蔵時の体積膨張に際し、前記所定成分の
粒の箇所が歪みとして作用し、当該箇所に集中して割れ
を生じる。即ち、水素吸蔵合金の水素吸蔵時の体積膨張
に伴う割れ口を前記粒の析出箇所により制御することが
できる。その結果、水素吸蔵時の体積膨張に伴う割れの
進行をほぼ一定でき、粒度分布の狭小、平均粒径の均一
化を達成できる。従って、かかる水素吸蔵合金から作製
した負極を用いることによって、該負極の表面積、つま
りアルカリ電解液との接触面積の増加率を一定にでき、
電解液との反応による水素吸蔵合金の腐食劣化速度を一
定に保持できるため、サイクル寿命が長く、かつ安定し
た特性を有するアルカリ二次電池を得ることができる。
According to another hydrogen storage alloy according to the present invention, LnNi
is represented by x A y, have more long axis 1μm in the polishing surface 1 mm 2, the grains mean 300 containing 1% by weight or more of Pb or Pb compounds
Since the number of particles is less than or equal to the number, the particles of the predetermined component act as strains during volume expansion at the time of hydrogen storage in the hydrogen activation step, and cracks are concentrated at the positions. That is, the cracks associated with the volume expansion of the hydrogen storage alloy during hydrogen storage can be controlled by the locations where the grains are deposited. As a result, the progress of cracks due to volume expansion during hydrogen storage can be substantially constant, and a narrow particle size distribution and a uniform average particle size can be achieved. Therefore, by using the negative electrode manufactured from such a hydrogen storage alloy, the surface area of the negative electrode, that is, the rate of increase of the contact area with the alkaline electrolyte can be constant,
Since the corrosion deterioration rate of the hydrogen storage alloy due to the reaction with the electrolyte can be kept constant, an alkaline secondary battery having a long cycle life and stable characteristics can be obtained.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail.

実施例1 まず、純水99.9%の希土類元素Ln(La;45重量%、Ce;
10重量%、Pr;10重量%、Nd;40重量%)、Ni、Co、Mn、
Alを構成成分とし、高周波溶解によってLnNi4.2Co0.2Mn
0.3Al0.3の組成を有する合金を作製し、定量分析により
Pb含有量が10ppm以下であることを確認した。また、Pb
を含有する合金として純度99.9%の希土類元素Ln(La;4
5重量%、Ce;10重量%、Pr;10重量%、Nd;40重量%)、
Ni、Co、Mn、Al、Pbを構成成分とし、高周波溶解によっ
てLnNi4.2Co0.2Mn0.3Al0.3の組成を有する合金を作製
し、定量分析によりPb含有量が約2000ppmであることを
確認した。
Example 1 First, a rare earth element Ln (La; 45% by weight, Ce;
10% by weight, Pr; 10% by weight, Nd; 40% by weight), Ni, Co, Mn,
Al as a component, LnNi 4.2 Co 0.2 Mn by high frequency melting
An alloy having a composition of 0.3 Al 0.3 was prepared and quantitatively analyzed.
It was confirmed that the Pb content was 10 ppm or less. Also, Pb
As a rare earth element Ln (La; 4; 99.9% pure)
5% by weight, Ce; 10% by weight, Pr; 10% by weight, Nd; 40% by weight),
Ni, and Co, Mn, Al, and constituents Pb, to prepare an alloy having a composition of LnNi 4.2 Co 0.2 Mn 0.3 Al 0.3 by high frequency melting, it was confirmed that the Pb content of about 2000ppm by quantitative analysis.

次いで、前記2種の合金の単独、又は混合によりPb含
有量を調整したものを不活性雰囲気中でアーク溶解し、
Pb含有量がそれぞれ10ppm以下、50ppm、200ppm、500pp
m、1000ppm、2000ppmであるような合金試料を2個ずつ
作製し、不活性雰囲気下1000℃、10時間のアニールを行
った。これら12試料について、一部を機械的に粉砕し、
篩分けを行って25〜75μmの粒子を取り出し、これら合
金粒子96重量%とポリテトラフロロエチレン4重量部と
を混合した後、ニッケル網に混練圧着して水素吸蔵合金
負極を作製した。つづいて、これら水素吸蔵合金負極を
セパレータを介してニッケル・カドミウム電池用のニッ
ケル極と共に巻回して電極群を作製し、これら電極群を
内圧測定用センサを備えた容器に装填し、8mol/のKOH
電解液を注入し、正極容量1000mAh、負極容量1500mAhの
二次電池を組み立てた。
Next, the two alloys alone or the Pb content was adjusted by mixing and arc melting in an inert atmosphere,
Pb content is less than 10ppm, 50ppm, 200ppm, 500pp respectively
Two alloy samples each having m, 1000 ppm, and 2000 ppm were prepared, and annealed at 1000 ° C. for 10 hours in an inert atmosphere. Some of these 12 samples were mechanically crushed,
After sieving, particles of 25 to 75 μm were taken out, 96% by weight of these alloy particles and 4 parts by weight of polytetrafluoroethylene were mixed, kneaded and pressed on a nickel mesh to prepare a hydrogen storage alloy negative electrode. Subsequently, these hydrogen storage alloy negative electrodes were wound through a separator together with a nickel electrode for a nickel-cadmium battery to form an electrode group, and these electrode groups were loaded into a container equipped with a sensor for measuring internal pressure, and 8 mol / mol. KOH
The electrolyte was injected, and a secondary battery having a positive electrode capacity of 1000 mAh and a negative electrode capacity of 1500 mAh was assembled.

一方、前記各合金粒子を約0.5g秤量し、これら合金粒
子を硝酸0.2重量%、乳酸0.2重量%、酢酸0.6重量%の
水溶液100mlに10分間浸漬し、溶出物中に占めるPbの含
有量(W1)を測定すると共に、溶出物全重量の合金重量
に対する割合(R2)を測定した。また、前記12試料の残
りを用いて分析を行い、合金全体に占めるPbの含有量
(W2)を測定した。これらの結果を後掲する第1表に示
すと共に、前記溶出物中に占めるPbの含有量の合金全体
のPbの含有量に対する割合(W1/W2)をR1として示し
た。
On the other hand, about 0.5 g of each of the alloy particles was weighed, and these alloy particles were immersed in 100 ml of an aqueous solution of 0.2% by weight of nitric acid, 0.2% by weight of lactic acid and 0.6% by weight of acetic acid for 10 minutes. While measuring W 1 ), the ratio (R 2 ) of the total weight of the eluate to the weight of the alloy was measured. In addition, analysis was performed using the rest of the 12 samples, and the Pb content (W 2 ) in the entire alloy was measured. These results are shown in Table 1 below, and the ratio (W 1 / W 2 ) of the content of Pb in the eluate to the content of Pb in the entire alloy is shown as R 1 .

得られた二次電池について、充電;1000mA、90分間、
放電;1000mA,カットオフ電圧1Vの条件にて充放電を繰り
返し、充電末期における電池内圧が15kg/cm2を越すのに
要したサイクル数を測定した。その結果を前述した合金
粒子の各種測定結果と共に後掲する第1表に併記した。
About the obtained secondary battery, charging; 1000 mA, 90 minutes,
Discharge; charge and discharge were repeated under the conditions of 1000 mA and a cutoff voltage of 1 V, and the number of cycles required for the battery internal pressure to exceed 15 kg / cm 2 at the end of charging was measured. The results are shown in Table 1 below together with the various measurement results of the alloy particles described above.

後掲する第1表から明らかなように、溶出物中に占め
るPbの含有量をW1、合金全体に占めるPbの含有量をW2
これらPb含有量の割合(W1/W2)をR1、溶出物全重量の
合金重量に対する割合をR2とした時に、次式 R2<R1 を満足し、合金中野Pb量が10〜15000ppmである適量のPb
を析出した合金粒子から作製した水素吸蔵合金負極を組
み込んだ二次電池(第1表中のNo.3〜10)は、前記式を
満足しない二次電池(第1表中のNo.1、2、11、12)に
比べて優れたサイクル寿命を有することがわかる。
As is clear from Table 1 below, the content of Pb in the eluted material is W 1 , the content of Pb in the entire alloy is W 2 ,
When the ratio of the Pb content (W 1 / W 2 ) is R 1 and the ratio of the total weight of the eluted material to the alloy weight is R 2 , the following formula is satisfied: R 2 <R 1, and the Pb content of the alloy is 10%. Appropriate amount of Pb which is ~ 15000ppm
The secondary batteries (Nos. 3 to 10 in Table 1) incorporating the hydrogen-absorbing alloy negative electrode produced from the alloy particles having precipitated thereon are secondary batteries (Nos. 1 and 2 in Table 1) that do not satisfy the above formula. It can be seen that it has an excellent cycle life as compared with 2, 11, 12).

実施例2 実施例1と同様な方式で作製したLnNi4.2Co0.2Mn0.3A
l0.3の組成でPb含有量の異なる2種の合金を用い、これ
ら合金の割合を変えて混合した後、不活性雰囲気中でア
ーク溶解し、更に不活性雰囲気下1000℃、10時間のアニ
ールを行ってPb含有量のことなる12種の試料を作製し
た。これら12種の試料の一部を分析してPb含有量を測定
したところ、後掲する第2表に示す結果となり、しかも
主要構成物の濃度変動が殆どないことが確認された。つ
づいて、残部を真空中80〜90℃で脱ガスした後、冷却し
て9〜10気圧の水素圧下で水素の吸蔵・放出を行い、更
に篩分けを行って25〜75μmの粒子を採取した。かかる
工程により後掲する第2表に示す25メッシュの篩の通過
量を有する12種の合金粒子が得られた。
Example 2 LnNi 4.2 Co 0.2 Mn 0.3 A produced in the same manner as in Example 1.
l Two kinds of alloys with different compositions of Pb with a composition of 0.3 were used, mixed at different proportions of these alloys, arc melted in an inert atmosphere, and then annealed at 1000 ° C for 10 hours in an inert atmosphere. By doing so, 12 kinds of samples having different Pb contents were prepared. When the Pb content was measured by analyzing a part of these 12 kinds of samples, the results shown in Table 2 below were obtained, and it was confirmed that there was almost no fluctuation in the concentration of the main constituents. Subsequently, the remaining part was degassed at 80 to 90 ° C. in a vacuum, then cooled to absorb and release hydrogen under a hydrogen pressure of 9 to 10 atm, and further sieved to collect particles of 25 to 75 μm. . Through these steps, 12 kinds of alloy particles having a passing amount of a 25-mesh sieve shown in Table 2 below were obtained.

次いで、前記各合金粒子96重量%とポリテトラフロロ
エチレン4重量%とを混合した後、ニッケル網に混練圧
着して水素吸蔵合金負極を作製した。つづいて、これら
水素吸蔵合金負極をセパレータを介してニッケル・カド
ミウム電池用のニッケル極と共に巻回して電極群を作製
し、これら電極群を内圧測定用センサを備えた容器に装
填し、8mol/のKOH電解液を注入し、正極容量1000mA
h、負極容量1500mAhの二次電池を組み立てた。
Next, 96% by weight of each of the alloy particles and 4% by weight of polytetrafluoroethylene were mixed and kneaded and pressed on a nickel net to prepare a hydrogen storage alloy negative electrode. Subsequently, these hydrogen storage alloy negative electrodes were wound through a separator together with a nickel electrode for a nickel-cadmium battery to form an electrode group, and these electrode groups were loaded into a container equipped with a sensor for measuring internal pressure, and 8 mol / mol. Inject KOH electrolytic solution, positive electrode capacity 1000mA
h, a secondary battery having a negative electrode capacity of 1500 mAh was assembled.

得られた二次電池について、充電;1000mA、90分間、
放電;1000mA,カットオフ電圧1Vの条件にて充放電を繰り
返し、充電末期における電池内圧が15kg/cm2を越すのに
要したサイクル数を測定した。その結果を後掲する第2
表に併記した。
About the obtained secondary battery, charging; 1000 mA, 90 minutes,
Discharge; charge and discharge were repeated under the conditions of 1000 mA and a cutoff voltage of 1 V, and the number of cycles required for the battery internal pressure to exceed 15 kg / cm 2 at the end of charging was measured. The result 2
Also shown in the table.

後掲する第2表から明らかなように、間隔25μmのメ
ッシュの篩の通過量が40重量%以下の合金粒子、つまり
粒界にPbを所定量析出した合金粒子から作製した水素吸
蔵合金負極を組み込んだ二次電池(第2表中のNo.3、
4、8)は、前記通過量が40重量%を越える合金粒子を
用いた二次電池(第2表のNo.1、2、5、7、9、10、
11、12)に比べて優れたサイクル寿命を有することがわ
かる。
As is clear from Table 2 below, a hydrogen storage alloy negative electrode produced from alloy particles having a passage amount of 40% by weight or less through a mesh sieve having a spacing of 25 μm, that is, alloy particles in which a predetermined amount of Pb is precipitated at grain boundaries, is used. Installed secondary batteries (No. 3 in Table 2,
Nos. 4, 8) are secondary batteries (No. 1, 2, 5, 7, 9, 10, 10 in Table 2) using alloy particles having a passing amount of more than 40% by weight.
It can be seen that it has a superior cycle life as compared to 11 and 12).

実施例3 実施例1と同様な方法によりPbが約2000ppm含むLnNi
3.9Co0.5Mn0.3Al0.3合金と、Pbが10ppm以下含むLnNi3.9
Co0.5Mn0.3Al0.3合金を作製し、これら合金の割合を変
えて混合した後、不活性雰囲気中でアーク溶解し、更に
不活性雰囲気下1000℃、10時間のアニールを行ってPb含
有量のことなる12種の試料を作製した。これら12種の試
料の一部を分析してPb含有量を測定したところ、後掲す
る第3表に示す結果となり、しかも主要構成物の濃度変
動が殆どないことが確認された。つづいて、残部を真空
中80〜90℃で脱ガスした後、冷却して9〜10気圧の水素
圧下で水素の吸蔵・放出を行い、更に篩分けを行って25
〜75μmの粒子を採取した。かかる工程により後掲する
第3表に示す25メッシュの篩の通過量を有する12種の合
金粒子が得られた。
Example 3 LnNi containing about 2000 ppm of Pb by the same method as in Example 1.
3.9 Co 0.5 Mn 0.3 Al 0.3 alloy and LnNi 3.9 containing 10 ppm or less of Pb
After preparing Co 0.5 Mn 0.3 Al 0.3 alloys, changing the proportions of these alloys and mixing them, arc melting was performed in an inert atmosphere, and annealing was performed at 1000 ° C. for 10 hours under an inert atmosphere to reduce the Pb content. Twelve different samples were made. When the Pb content was measured by analyzing a part of these 12 kinds of samples, the results shown in Table 3 below were obtained, and it was confirmed that there was almost no fluctuation in the concentration of the main constituents. Subsequently, the remaining part is degassed in a vacuum at 80 to 90 ° C., cooled, absorbed and released of hydrogen under a hydrogen pressure of 9 to 10 atm, and further sieved.
7575 μm particles were collected. Through these steps, 12 kinds of alloy particles having a passing amount of a 25-mesh sieve shown in Table 3 below were obtained.

次いで、前記各合金粒子96重量%とポリテトラフロロ
エチレン4重量部とを混合した後、ニッケル網に混練圧
着して水素吸蔵合金負極を作製した。つづいて、これら
水素吸蔵合金負極をセパレータを介してニッケル・カド
ミウム電池用のニッケル極と共に巻回して電極群を作製
し、これら電極群を内圧測定用センサを備えた容器に装
填し、8mol/のKOH電解液を注入し、正極容量1000mA
h、負極容量1500mAhの二次電池を組み立てた。
Next, 96% by weight of each of the alloy particles and 4 parts by weight of polytetrafluoroethylene were mixed and kneaded and pressed on a nickel mesh to prepare a hydrogen storage alloy negative electrode. Subsequently, these hydrogen storage alloy negative electrodes were wound through a separator together with a nickel electrode for a nickel-cadmium battery to form an electrode group, and these electrode groups were loaded into a container equipped with a sensor for measuring internal pressure, and 8 mol / mol. Inject KOH electrolytic solution, positive electrode capacity 1000mA
h, a secondary battery having a negative electrode capacity of 1500 mAh was assembled.

得られた二次電池について、充電;1000mA、90分間、
放電;1000mA,カットオフ電圧1Vの条件にて充放電を繰り
返し、充電末期における電池内圧が15kg/cm2を越すのに
要したサイクル数を測定した。その結果を後掲する第3
表に併記した。
About the obtained secondary battery, charging; 1000 mA, 90 minutes,
Discharge; charge and discharge were repeated under the conditions of 1000 mA and a cutoff voltage of 1 V, and the number of cycles required for the battery internal pressure to exceed 15 kg / cm 2 at the end of charging was measured. 3
Also shown in the table.

後掲する第3表から明らかなように、間隔25μmのメ
ッシュの篩の通過量が40重量%以下の合金粒子、つまり
粒界にPbを所定量析出した合金粒子から作製した水素吸
蔵合金負極を組み込んだ二次電池(第3表中のNo.2、
3、6、8、9)は、前記通過量が40重量%を越える合
金粒子を用いた二次電池(第3表中のNo1、4、5、
7、10〜12)に比べて優れたサイクル寿命を有すること
がわかる。
As is clear from Table 3 below, a hydrogen storage alloy negative electrode prepared from alloy particles having a passing amount of 40% by weight or less through a mesh sieve having a spacing of 25 μm, that is, alloy particles in which a predetermined amount of Pb is precipitated at grain boundaries, is used. Installed secondary battery (No. 2 in Table 3,
Nos. 3, 6, 8, and 9) are secondary batteries (Nos. 1, 4, 5, and 5 in Table 3) using alloy particles whose passing amount exceeds 40% by weight.
7, 10 to 12).

実施例4 実施例1と同様な方法で作製した LnNi4.2Co0.2Mn0.3Al0.3の組成でPb含有量の異なる2種
の合金を用い、これら合金を単独又は混合によりの割合
を変えて混合した後、不活性雰囲気中でアーク溶解し、
Pb含有量がそれぞれ10ppm以下、50ppm、200ppm、500pp
m、1000ppm、2000ppmであるような合金試料を5個ずつ
作製し、不活性雰囲気下1000℃、10時間のアニールを行
った。これら30試料について、一部を機械的に粉砕し、
篩分けを行って25〜75μmの粒子を取り出し、これら合
金粒子96重量%とポリテトラフロロエチレン4重量部と
を混合した後、ニッケル網に混練圧着して水素吸蔵合金
負極を作製した。つづいて、これら水素吸蔵合金負極を
セパレータを介してニッケル・カドミウム電池用のニッ
ケル極と共に巻回して電極群を作製し、これら電極群を
内圧測定用のセンサを備えた容器に装填し、8mol/のK
OH電解液を注入し、正極容量1000mAh、負極容量1500mAh
の二次電池を組み立てた。
Using Example 4 in the same manner as in Example 1 LnNi 4.2 Co 0.2 Mn 0.3 Al 0.3 2 kinds of alloys having different Pb content in the composition of the prepared in, and mixed by changing a more proportion of these alloys alone or mixed After that, arc melting in an inert atmosphere,
Pb content is less than 10ppm, 50ppm, 200ppm, 500pp respectively
Five alloy samples each having m, 1000 ppm, and 2000 ppm were prepared, and annealed at 1000 ° C. for 10 hours in an inert atmosphere. Some of these 30 samples were mechanically crushed,
After sieving, particles of 25 to 75 μm were taken out, 96% by weight of these alloy particles and 4 parts by weight of polytetrafluoroethylene were mixed, kneaded and pressed on a nickel mesh to prepare a hydrogen storage alloy negative electrode. Subsequently, these hydrogen storage alloy negative electrodes were wound together with a nickel electrode for a nickel-cadmium battery through a separator to form an electrode group, and these electrode groups were loaded into a container equipped with a sensor for measuring internal pressure, and 8 mol / mol. K
Inject OH electrolyte, positive electrode capacity 1000mAh, negative electrode capacity 1500mAh
Was assembled.

一方、前記各合金粒子中のPbの含有量を測定した。ま
た、前記各合金粒子の表面を研磨した後、走査型電子顕
微鏡で観察し、合金の研磨面1mm2当りのPbを含む析出粒
子の長軸長さ及び析出粒子の個数を調べた。これらの結
果を後掲する第4表に示した。
On the other hand, the content of Pb in each of the alloy particles was measured. After the surfaces of the alloy particles were polished, the particles were observed with a scanning electron microscope to determine the major axis length and the number of precipitated particles containing Pb per 1 mm 2 of the polished surface of the alloy. The results are shown in Table 4 below.

得られた二次電池について、充電;1000mA、90分間、
放電;1000mA,カットオフ電圧1Vの条件にて充放電を繰り
返し、充電末期における電池内圧が15kg/cm2を越すのに
要したサイクル数を測定した。その結果を後掲する第4
表に前述した合金粒子の各種の測定結果と共に併記し
た。
About the obtained secondary battery, charging; 1000 mA, 90 minutes,
Discharge; charge and discharge were repeated under the conditions of 1000 mA and a cutoff voltage of 1 V, and the number of cycles required for the battery internal pressure to exceed 15 kg / cm 2 at the end of charging was measured. The result 4
The table is also shown together with the various measurement results of the alloy particles described above.

後掲する第4表から明らかなように、研磨面1mm2中に
1μm以上の長軸を有し、1重量%以上のPbを含む析出
粒子が平均300個以下存在する合金粒子から作製した水
素吸蔵合金負極を組み込んだ二次電池は優れたサイクル
寿命を有することがわかる。
As is clear from Table 4 below, hydrogen prepared from alloy particles having a major axis of 1 μm or more in a polished surface of 1 mm 2 and having an average of 300 or less precipitated particles containing 1% by weight or more of Pb exist. It can be seen that the secondary battery incorporating the storage alloy negative electrode has excellent cycle life.

[発明の効果] 以上詳述した如く、本発明に係わる水素吸蔵合金よれ
ば水素吸蔵時の体積膨脹に伴う割れの進行がほぼ一定
で、粒度分布の狭小、平均粒径の均一化を達成でき、ひ
いてはかかる水素吸蔵合金により作製した負極を用いる
ことによって優れたサンクル寿命を有する二次電池を得
ることができる等顕著な効果を奏する。
[Effects of the Invention] As described in detail above, according to the hydrogen storage alloy according to the present invention, the progress of cracks due to volume expansion during hydrogen storage is almost constant, and a narrow particle size distribution and a uniform average particle size can be achieved. Further, by using the negative electrode made of such a hydrogen storage alloy, a remarkable effect such as a secondary battery having an excellent sunkle life can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永 秀樹 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (72)発明者 竹村 モモ子 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合研究所内 (72)発明者 武野 和太 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 遠藤 博 神奈川県川崎市幸区小向東芝町1番地 東芝リサーチコンサルディング株式会社 内 (56)参考文献 特開 平2−277737(JP,A) 特開 平1−162741(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 19/00 F H01M 4/38 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideki Matsunaga 1st place, Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture (72) Inventor Momoko Takemura 1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Address Toshiba Research Institute, Inc. (72) Inventor Kazuta Takeno 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (72) Inventor Hiroshi Endo Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture No. 1 Toshiba Research Consulting Co., Ltd. (56) References JP-A-2-277737 (JP, A) JP-A-1-162741 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB Name) C22C 19/00 F H01M 4/38

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LnNixAy(LnはYを含む希土類元素の少な
くとも1種、AはCo、Al、Fe、Si、Cr、Cu、Mnの少なく
とも1種、x、yはそれぞれ4.5<x+y<5.5、x>2.
5を示す)で表される水素吸蔵合金において、粒界にPb
又はPb化合物が析出されていることを特徴とする二次電
池用水素吸蔵合金。
1. LnNi x A y (Ln is at least one kind of rare earth element containing Y, A is at least one kind of Co, Al, Fe, Si, Cr, Cu and Mn, and x and y are each 4.5 <x + y <5.5, x> 2.
In the hydrogen storage alloy represented by (Fig. 5), Pb
Alternatively, a hydrogen storage alloy for a secondary battery, wherein a Pb compound is precipitated.
【請求項2】合金中に含まれるPb量が10〜1500ppmであ
ることを特徴とする請求項1記載の二次電池用水素吸蔵
合金。
2. The hydrogen storage alloy according to claim 1, wherein the amount of Pb contained in the alloy is 10 to 1500 ppm.
【請求項3】LnNixAy(LnはYを含む希土類元素の少な
くとも1種、AはCo、Al、Fe、Si、Cr、Cu、Mnの少なく
とも1種、x、yはそれぞれ4.5<x+y<5.5、x>2.
5)で表される水素吸蔵合金において、研磨面1mm2中に
1μm以上の長軸を有し、1重量%以上のPb又はPb化合
物を含む粒が平均300個以下存在することを特徴とする
二次電池用水素吸蔵合金。
3. LnNi x A y (Ln is at least one kind of rare earth element containing Y, A is at least one kind of Co, Al, Fe, Si, Cr, Cu and Mn, and x and y are each 4.5 <x + y. <5.5, x> 2.
5) The hydrogen storage alloy represented by 5), characterized in that the polished surface has a major axis of 1 μm or more in 1 mm 2 , and that there is an average of 300 or less grains containing 1% by weight or more of Pb or a Pb compound. Hydrogen storage alloy for secondary batteries.
JP2340615A 1990-11-30 1990-11-30 Hydrogen storage alloy for secondary batteries Expired - Fee Related JP2980371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340615A JP2980371B2 (en) 1990-11-30 1990-11-30 Hydrogen storage alloy for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2340615A JP2980371B2 (en) 1990-11-30 1990-11-30 Hydrogen storage alloy for secondary batteries

Publications (2)

Publication Number Publication Date
JPH04210440A JPH04210440A (en) 1992-07-31
JP2980371B2 true JP2980371B2 (en) 1999-11-22

Family

ID=18338672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340615A Expired - Fee Related JP2980371B2 (en) 1990-11-30 1990-11-30 Hydrogen storage alloy for secondary batteries

Country Status (1)

Country Link
JP (1) JP2980371B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698881B1 (en) * 1992-12-04 1995-01-13 Accumulateurs Fixes Hydrurable material for negative electrode of nickel-hydride accumulator.
JPH1025529A (en) * 1996-03-28 1998-01-27 Shin Etsu Chem Co Ltd Hydrogen storage alloy containing rare earth element, its production, alkali storage battery cathode using the alloy, and alkali storage battery
JPH09298059A (en) * 1996-05-01 1997-11-18 Japan Metals & Chem Co Ltd Hydrogen storage alloy for battery

Also Published As

Publication number Publication date
JPH04210440A (en) 1992-07-31

Similar Documents

Publication Publication Date Title
EP3561092A1 (en) Hydrogen storage alloy
EP0450590B1 (en) Hydrogen storage alloy electrode and process for producing the electrode
EP2653576B1 (en) Hydrogen-absorbing alloy powder, negative electrode, and nickel hydrogen secondary battery
WO2013118806A1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JP3201247B2 (en) Sealed alkaline storage battery
EP0755898B1 (en) Hydrogen storage alloy and electrode therefrom
EP1075032B1 (en) Hydrogen absorbing alloy and nickel-metal hydride rechargeable battery
JP2980371B2 (en) Hydrogen storage alloy for secondary batteries
US5962156A (en) Nickel-metal hydride storage battery and alloy for configuring negative electrode of the same
JP7014937B1 (en) Hydrogen storage alloy
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JP2022052729A (en) Hydrogen storage alloy for alkaline storage battery
JP3491872B2 (en) Hydrogen storage alloy electrode
JP3184609B2 (en) Metal oxide / hydrogen battery and manufacturing method thereof
JP3011454B2 (en) Hydrogen storage alloy for secondary batteries
JP7451000B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP7439316B1 (en) Hydrogen storage alloy powder for nickel metal hydride battery negative electrode
JPH09298059A (en) Hydrogen storage alloy for battery
JP2680566B2 (en) Hydrogen storage electrode
JP3343417B2 (en) Metal oxide / hydrogen secondary battery
JP3183680B2 (en) Metal oxide / hydrogen battery
JPH02301965A (en) Secondary battery
JPH0799055A (en) Hydrogen secondary battery
CN114946051A (en) Hydrogen-absorbing alloy for alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees