JPH06215762A - Hydrogen absorbing electrode - Google Patents

Hydrogen absorbing electrode

Info

Publication number
JPH06215762A
JPH06215762A JP50A JP2208293A JPH06215762A JP H06215762 A JPH06215762 A JP H06215762A JP 50 A JP50 A JP 50A JP 2208293 A JP2208293 A JP 2208293A JP H06215762 A JPH06215762 A JP H06215762A
Authority
JP
Japan
Prior art keywords
rare earth
hydrogen storage
alloy
electrode
hydrogen absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Yasuhito Sugahara
泰人 須ケ原
Jiyunji Madono
遵次 真殿
Hisafumi Shintani
尚史 新谷
Tama Nakano
瑞 中野
Toshio Kobayashi
俊男 小林
Koji Nakamura
幸司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP50A priority Critical patent/JPH06215762A/en
Publication of JPH06215762A publication Critical patent/JPH06215762A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a hydrogen absorbing electrode which has a long cycle life and can keep high capacity in a low temperature range. CONSTITUTION:In a rare earth metal-based hydrogen absorbing alloy; MmNi5 (Mu is misch metal, a mixture of rare earth elements); having a CaCu5-type crystal structure, is used a hydrogen absorbing alloy wherein the rare earth elements consist of Ce and/or Pr and a part of Ni of the alloy is replaced with two or more elements selected from Co, Mn, Al, and Fe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素を可逆的に吸蔵放出
する水素吸蔵合金を用いてなる水素吸蔵電極に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen.

【0002】[0002]

【従来の技術】現在用いられている水素吸蔵電極用水素
吸蔵合金は市販のMm(ミッシュメタル、希土類元素の混
合物で、例えばCe 45、La 30、Nd 5、 Prその他の希土類
元素20各重量%)とNi,Co,Mn,Alなどを用いている
が、その理由として市販Mmを用いたMmNi5 合金では希土
類金属中のCe量が多いことから水素解離圧が電池使用温
度で1気圧程度にするためにNiの一部をCo,Mn,Al等の
元素で置換する必要がある。しかし、Niの一部をCoで置
換すると置換量が多いほど有効水素吸蔵量が少なくな
り、電極にした場合の放電容量も小さくなる。またAlは
置換量が多くなると有効水素吸蔵量が増すが、Alは原子
半径がNiに比べ大きく粒界に析出し易く、過度の置換は
Alのアルカリ電解液への溶出をもたらし、電極にした場
合サイクル寿命の低下をきたす。またMnも置換量が多く
なると有効水素吸蔵量が増すが、MnもAlと同じようにア
ルカリ電解液への溶出をもたらし、また電解液中で酸化
マンガンとなり電池内のセパレーターや電極表面等に付
着して電極の導電性を下げ、電池寿命の低下をもたら
す。
2. Description of the Related Art Currently used hydrogen storage alloys for hydrogen storage electrodes are commercially available Mm (Mish metal, a mixture of rare earth elements, such as Ce 45, La 30, Nd 5, Pr and other rare earth elements 20% by weight each). ) And Ni, Co, Mn, Al, etc. are used because the hydrogen dissociation pressure is about 1 atm at the battery operating temperature because the amount of Ce in the rare earth metal is large in the MmNi 5 alloy using commercially available Mm. To do so, it is necessary to replace part of Ni with elements such as Co, Mn, and Al. However, when a part of Ni is replaced by Co, the effective hydrogen storage amount decreases as the replacement amount increases, and the discharge capacity when used as an electrode also decreases. In addition, although the effective hydrogen storage amount of Al increases as the substitution amount increases, Al has a larger atomic radius than Ni and tends to precipitate at grain boundaries, and excessive substitution is not possible.
This results in the elution of Al into the alkaline electrolyte, resulting in a decrease in cycle life when used as an electrode. In addition, as the substitution amount of Mn increases, the effective hydrogen storage amount increases, but Mn also causes elution into the alkaline electrolyte like Al, and becomes manganese oxide in the electrolyte and adheres to the separator and electrode surface in the battery. As a result, the conductivity of the electrode is lowered, and the battery life is shortened.

【0003】[0003]

【発明が解決しようとする課題】従って、適度な水素解
離圧とサイクル寿命特性を得るに必要な各元素置換量を
決める必要があり、これらを考慮した合金にMmNi3.55Co
0.75Mn0.4Al0.3、MmNi3.5Co0.7Al0.8 等があるがMmNi
3.55Co0.75Mn0.4Al0.3は放電容量が250mAh/g〜270mAah/
g と実質的高容量蓄電池を構成するには十分な放電容量
であるがサイクル寿命が短い。MmNi3.5Co0.7Al0.8 はサ
イクル寿命が長いが放電容量は200mAh/g〜220mAh/gと実
質的高容量蓄電池を構成するには不十分である。本発明
はかかる問題点を解決した高放電容量、高サイクル寿命
の高性能蓄電池用水素吸蔵電極を提供しようとするもの
である。
[SUMMARY OF THE INVENTION Therefore, it is necessary to determine the respective element substitution amount required to obtain an appropriate hydrogen dissociation pressure and cycle life characteristics, MmNi 3.55 Co these were considered alloy
0.75 Mn 0.4 Al 0.3 , MmNi 3.5 Co 0.7 Al 0.8, etc., but MmNi
3.55 Co 0.75 Mn 0.4 Al 0.3 has a discharge capacity of 250mAh / g to 270mAah /
It has a sufficient discharge capacity to form a high capacity storage battery with g, but its cycle life is short. MmNi 3.5 Co 0.7 Al 0.8 has a long cycle life, but its discharge capacity is 200 mAh / g to 220 mAh / g, which is insufficient for constructing a substantially high capacity storage battery. The present invention is intended to provide a hydrogen storage electrode for a high-performance storage battery having a high discharge capacity and a long cycle life, which solves the above problems.

【0004】[0004]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために、 CaCu5型結晶構造を有する希土類
系水素吸蔵合金組成、特に希土類元素について深く検討
し、本発明を完成したもので、その要旨は、CaCu5型結
晶構造を有する希土類系水素吸蔵合金MmNi5 (ここにMm
はミッシュメタルで希土類元素の混合物)において、希
土類元素がCeおよび/またはPrからなり、Niの一部をC
o、Mn、Al、Fe の内2種以上の元素で置換した水素吸蔵合
金を用いることを特徴とする水素吸蔵電極にある。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have deeply studied a rare earth-based hydrogen storage alloy composition having a CaCu 5 type crystal structure, particularly a rare earth element, and completed the present invention. but, the gist, rare earth-based hydrogen storage alloy having a CaCu 5 type crystal structure MmNi 5 (here Mm
Is a misch metal and a mixture of rare earth elements), where the rare earth elements consist of Ce and / or Pr, and some of Ni is C
A hydrogen storage electrode is characterized by using a hydrogen storage alloy substituted with two or more elements selected from o, Mn, Al and Fe.

【0005】以下、本発明を詳細に説明する。本発明の
最大の特徴は、CaCu5 型結晶構造を有する希土類系水素
吸蔵合金MmNi5 (ここにMmはミッシュメタルで希土類元
素の混合物)において、希土類元素をCeおよび/または
Prの2種類に限定したことで、Ce 100、 Pr 100、 Ce/ N
d =99.9〜0.1 / 0.1〜99.9各重量%の各元素単独、ま
たは両者混合の場合が設定される。Ce、Pr以外の元素が
混入すると放電容量が低下し、サイクル寿命が低下す
る。図1は本発明の水素吸蔵合金電極を用いた蓄電池の
サイクル寿命と放電容量の関係を示したもので、これよ
り放電容量をある望ましい値以上確保できる好ましい組
成としては、Pr75〜 100重量%、最も好ましいのはCe25
重量%Pr75重量%である。また初期安定容量についても
同様の傾向を示した。Niについては、Niの一部をCo、Mn、
Al、Fe の内2種以上の元素で置換したものが良く、置換
量の範囲は、 0.5≦Co≦1.0 (以下原子比)、 0.1≦Mn
≦0.6 、0.2≦Al≦0.8 、 0.1≦Fe≦0.5 である。Coが
0.5未満ではサイクル寿命の低下となり、 1.0を越える
と電解液中への溶出が激しくなるので、上記範囲が良
い。Mnが0.1未満では容量不足となり、 0.6を越えると
電解液中への溶出が激しくなるので、上記範囲が良い。
Alが 0.2未満ではサイクル寿命の低下となり、 0.8を越
えると不活性となるので、上記範囲が良い。またFeが
0.1未満では容量低下となり、0.5 を越えるとサイクル
寿命の低下となるので、上記範囲が良い。具体的には、
CeNi3.5Co0.7Al0.8、PrNi3.5Co0.7Al0.8、(Ce50Pr50)Ni
3.5Co0.7Al0.8、(Ce25Pr75)Ni3.5Co0.7Al0.8、(Ce75Pr25)
Ni3.5Co0.7Al0.8 等が例示される。
The present invention will be described in detail below. The greatest feature of the present invention is that in the rare earth-based hydrogen storage alloy MmNi 5 having a CaCu 5 type crystal structure (where Mm is a misch metal and a mixture of rare earth elements), the rare earth element is Ce and / or
By limiting to two types of Pr, Ce 100, Pr 100, Ce / N
d = 99.9 to 0.1 / 0.1 to 99.9 Each weight% of each element is set alone or both are set. If elements other than Ce and Pr are mixed, the discharge capacity will decrease and the cycle life will decrease. FIG. 1 shows the relationship between the cycle life and the discharge capacity of a storage battery using the hydrogen storage alloy electrode of the present invention. As a preferable composition from which the discharge capacity can be secured to a certain value or more, Pr75 to 100% by weight, Most preferred is Ce25
% By weight Pr 75% by weight. The initial stable capacity also showed the same tendency. Regarding Ni, a part of Ni is Co, Mn,
It is preferable that two or more elements of Al and Fe are substituted, and the range of substitution amount is 0.5 ≦ Co ≦ 1.0 (hereinafter atomic ratio), 0.1 ≦ Mn
≦ 0.6, 0.2 ≦ Al ≦ 0.8, 0.1 ≦ Fe ≦ 0.5. Co is
If it is less than 0.5, the cycle life will be shortened, and if it exceeds 1.0, the elution into the electrolytic solution will be severe, so the above range is preferable. If the Mn is less than 0.1, the capacity will be insufficient, and if it exceeds 0.6, the elution into the electrolytic solution will be severe, so the above range is preferable.
When Al is less than 0.2, the cycle life is shortened, and when Al exceeds 0.8, it becomes inactive, so the above range is preferable. Also Fe
If it is less than 0.1, the capacity will decrease, and if it exceeds 0.5, the cycle life will decrease, so the above range is preferable. In particular,
CeNi 3.5 Co 0.7 Al 0.8 , PrNi 3.5 Co 0.7 Al 0.8 , (Ce 50 Pr 50 ) Ni
3.5 Co 0.7 Al 0.8 , (Ce 25 Pr 75 ) Ni 3.5 Co 0.7 Al 0.8 , (Ce 75 Pr 25 )
Examples include Ni 3.5 Co 0.7 Al 0.8 .

【0006】またこれら発明合金の PCT線図(圧力一組
成等温図、図示せず)が温度による解離圧変化が従来品
よりも小さいことから、該合金を用いた水素吸蔵電極が
温度変化による容量低下が少ないことを見出し、その温
度特性についても検討した結果、Mm系合金と比較して放
電容量が温度変化に対して、特に高温側で極めて安定性
の高いことが判った。
In addition, since the PCT diagram (pressure-composition isotherm diagram, not shown) of these alloys of the invention has a smaller change in dissociation pressure with temperature than that of the conventional product, the hydrogen storage electrode using the alloy has a capacity due to temperature change. It was found that the decrease was small, and the temperature characteristics were also examined. As a result, it was found that the discharge capacity was extremely stable against changes in temperature, especially at high temperatures, compared with Mm-based alloys.

【0007】この水素吸蔵合金の最も有効な用途はニッ
ケル−水素蓄電池用負極であって、その製造工程は次の
ようになる。先ずCe、Prの所定の含有量の希土類金属Mm
を各希土類金属を配合して高周波溶解炉で加熱溶解して
R合金として作製し、別にNi系各金属の所定量を配合し
て高周波溶解炉で加熱溶解してN合金を作製し、R合金
とN合金とを所定のの組成比になるように夫々の合金を
秤量し、高周波溶解炉で加熱溶解して合金とし、これを
機械的に75μm以下の大きさに粉砕して水素吸蔵合金粉
末とする。一例としてこの合金粉末をポリビニルアルコ
ール 1.5重量%水溶液でペースト状にし3×4cm2 の発
泡Ni多孔体に合金粉末2g分のペーストを充填し、乾燥
後加圧し厚さ 0.5〜1.0mm の板状負極電極とする。正極
は水酸化ニッケルで、隔膜(セパレータ)に不織布を、
電解液を6N-KOHとして蓄電池を組み立てる。
The most effective application of this hydrogen storage alloy is a negative electrode for a nickel-hydrogen storage battery, and its manufacturing process is as follows. First, the rare earth metal Mm with a specified content of Ce and Pr
Is mixed with each rare earth metal and heated and melted in a high-frequency melting furnace to produce an R alloy. Separately, a predetermined amount of each Ni-based metal is mixed and heated and melted in a high-frequency melting furnace to produce an N alloy. And N alloys are weighed so that they have a predetermined composition ratio, heated and melted in a high-frequency melting furnace to form alloys, which are mechanically pulverized to a size of 75 μm or less and hydrogen storage alloy powder And As an example, this alloy powder is made into a paste with a 1.5% by weight aqueous solution of polyvinyl alcohol, and a 3 × 4 cm 2 foamed Ni porous body is filled with 2 g of the paste of the alloy powder, dried and pressed to form a plate negative electrode having a thickness of 0.5 to 1.0 mm. Use as an electrode. The positive electrode is nickel hydroxide, and a non-woven fabric is used for the diaphragm.
Assemble the storage battery with 6N-KOH as the electrolyte.

【0008】[0008]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1〜5、比較例1〜4)Ce:Prの含有量を 10
0:0、75:25、50:50、25:75、0:100 重量比とし
た希土類金属R(Rは希土類元素のCe,Pr)を作製し、
夫々RNi3.5Co0.7Al0.8 の組成比になるようにそれぞれ
合金を秤量し、高周波溶解炉で加熱溶解して水素吸蔵合
金とし、これを機械的に75μm以下の大きさに粉砕して
各組成の水素吸蔵合金粉末を得た。これら合金粉末をポ
リビニルアルコール 1.5重量%水溶液で練ってペースト
状にし、3×4cm2 の発泡Ni多孔体に合金粉末2gを充
填、乾燥後加圧して厚さ 0.5〜1.0mm の負極電極を作製
した。正極には焼結式水酸化ニッケルを、電解液には6N
-KOHを使用した。充電は 180mAで5時間放電は 120mAで
1.0V/セルまでとした。またサイクル寿命は初期容量の
60%まで低下した点を寿命とした。上記5種類の水素吸
蔵合金を実施例1〜5とし、表1に試験結果を示した。
また、表2には20℃および0℃における低温放電容量を
記載した。比較例1〜4として従来の合金組成であるLa
系、Mm系水素吸蔵合金の合金組成と試験結果(試験条件
は実施例に同じ)を併記した。表1からも明らかなよう
にCe,Ndのみを用いた水素吸蔵電極は従来品に比べ著し
くサイクル寿命が長く2,000 サイクル以上の寿命が得ら
れる。図1には実施例1〜5の放電容量とサイクル寿命
の関係を図示した。また初期安定容量も実施例4(Pr 7
5) 、実施例5(Pr 100)では260mAh/gと実質的高容量蓄
電池を構成するに十分な放電容量である。表2より実施
例はいずれも従来品の比較例よりも低温特性が良好であ
った。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Examples 1 to 5, Comparative Examples 1 to 4) The content of Ce: Pr is 10
0: 0, 75:25, 50:50, 25:75, 0: 100 A rare earth metal R (R is a rare earth element Ce, Pr) in a weight ratio is prepared,
The alloys were weighed so that each had a composition ratio of RNi 3.5 Co 0.7 Al 0.8 , and melted by heating in a high-frequency melting furnace to obtain a hydrogen storage alloy, which was mechanically pulverized to a size of 75 μm or less and A hydrogen storage alloy powder was obtained. These alloy powders were kneaded with a 1.5% by weight aqueous solution of polyvinyl alcohol to form a paste, and 2g of the alloy powder was filled in a foamed Ni porous body of 3 x 4 cm 2 , dried and pressed to prepare a negative electrode having a thickness of 0.5 to 1.0 mm. . Sintered nickel hydroxide is used for the positive electrode and 6N for the electrolyte.
-Used KOH. Charge at 180mA for 5 hours discharge at 120mA
Up to 1.0V / cell. Also, the cycle life of the initial capacity
The point at which it decreased to 60% was defined as the life. The above-mentioned five types of hydrogen storage alloys are referred to as Examples 1 to 5, and Table 1 shows the test results.
Further, Table 2 shows low temperature discharge capacities at 20 ° C and 0 ° C. As Comparative Examples 1 to 4, La having a conventional alloy composition
Compositions and test results (test conditions are the same as those of the examples) of the H-type and Mm-type hydrogen storage alloys are also shown. As is clear from Table 1, the hydrogen storage electrode using only Ce and Nd has a remarkably long cycle life compared to the conventional product and a life of more than 2,000 cycles can be obtained. FIG. 1 illustrates the relationship between the discharge capacity and the cycle life of Examples 1 to 5. In addition, the initial stable capacity was measured in Example 4 (Pr 7
5) In Example 5 (Pr 100), the discharge capacity was 260 mAh / g, which was a sufficient discharge capacity to form a substantially high capacity storage battery. From Table 2, all of the examples have better low-temperature characteristics than the comparative example of the conventional product.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【発明の効果】本発明によればサイクル寿命が長く、低
い温度範囲で高容量を維持できる水素吸蔵電極を提供す
ることができ、産業上その利用価値は極めて高い。
According to the present invention, a hydrogen storage electrode having a long cycle life and capable of maintaining a high capacity in a low temperature range can be provided, and its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1〜5のサイクル寿命と放電容
量との関係を示す図面である。
FIG. 1 is a diagram showing a relationship between cycle life and discharge capacity in Examples 1 to 5 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 瑞 福井県武生市北府2丁目1番5号 信越化 学工業株式会社磁性材料研究所内 (72)発明者 小林 俊男 福井県武生市北府2丁目1番5号 信越化 学工業株式会社磁性材料研究所内 (72)発明者 中村 幸司 福井県武生市北府2丁目1番5号 信越化 学工業株式会社磁性材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Rui Nakano 2-1, 5 Kitafu, Takefu City, Fukui Prefecture Shinetsu Kagaku Kogyo Co., Ltd. Magnetic Materials Research Center (72) Inventor Toshio Kobayashi 2-chome, Kitafu, Fukui Prefecture No. 5 Shinetsu Kagaku Kogyo Co., Ltd. Magnetic Materials Research Center (72) Inventor Koji Nakamura 2-5-5 Kitafu, Takefu City, Fukui Prefecture Shin-Etsu Kagaku Kogyo Co., Ltd. Magnetic Materials Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 CaCu5型結晶構造を有する希土類系水素吸
蔵合金MmNi5 (ここにMmはミッシュメタルで希土類元素
の混合物)において、希土類元素がCeおよび/またはPr
からなり、Niの一部をCo、Mn、Al、Fe の内2種以上の元素
で置換した水素吸蔵合金を用いることを特徴とする水素
吸蔵電極。
1. In a rare earth-based hydrogen storage alloy MmNi 5 (where Mm is a misch metal and a mixture of rare earth elements) having a CaCu 5 type crystal structure, the rare earth elements are Ce and / or Pr.
A hydrogen storage electrode, comprising a hydrogen storage alloy in which a part of Ni is replaced by two or more elements selected from Co, Mn, Al and Fe.
JP50A 1993-01-14 1993-01-14 Hydrogen absorbing electrode Pending JPH06215762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06215762A (en) 1993-01-14 1993-01-14 Hydrogen absorbing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06215762A (en) 1993-01-14 1993-01-14 Hydrogen absorbing electrode

Publications (1)

Publication Number Publication Date
JPH06215762A true JPH06215762A (en) 1994-08-05

Family

ID=12072962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06215762A (en) 1993-01-14 1993-01-14 Hydrogen absorbing electrode

Country Status (1)

Country Link
JP (1) JPH06215762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865874A (en) * 1997-06-27 1999-02-02 Duracell Inc. Hydrogen storage alloy
US6197448B1 (en) 1997-05-30 2001-03-06 Duracell Inc. Hydrogen storage alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197448B1 (en) 1997-05-30 2001-03-06 Duracell Inc. Hydrogen storage alloy
US5865874A (en) * 1997-06-27 1999-02-02 Duracell Inc. Hydrogen storage alloy

Similar Documents

Publication Publication Date Title
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
JPH0719599B2 (en) Storage battery electrode
JPH0821379B2 (en) Hydrogen storage electrode
JP2752970B2 (en) Hydrogen storage electrode
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH06215762A (en) Hydrogen absorbing electrode
JPS63284758A (en) Hydrogen-storing electrode
JPH05287422A (en) Hydrogen occluding alloy electrode
JPS62249358A (en) Hydrogen storage electrode
JPH06215766A (en) Hydrogen absorbing electrode
JP2627963B2 (en) Hydrogen storage alloy electrode
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JPH04301045A (en) Hydrogen storage alloy electrode
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH08222210A (en) Metal oxide/hydrogen storage battery
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JPH06279900A (en) Hydrogen storage alloy and electrode using the alloy
JPH0582125A (en) Hydrogen occluding alloy electrode
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPH04176833A (en) Hydrogen storage alloy electrode
JPS61292855A (en) Metal oxide and hydrogen cell
JPH06215769A (en) Rare earth element-based hydrogen absorbing alloy electrode