KR100269515B1 - The surface modification of mg-based alloy of high discharge capacity for improvement in cycle life - Google Patents

The surface modification of mg-based alloy of high discharge capacity for improvement in cycle life Download PDF

Info

Publication number
KR100269515B1
KR100269515B1 KR1019980015197A KR19980015197A KR100269515B1 KR 100269515 B1 KR100269515 B1 KR 100269515B1 KR 1019980015197 A KR1019980015197 A KR 1019980015197A KR 19980015197 A KR19980015197 A KR 19980015197A KR 100269515 B1 KR100269515 B1 KR 100269515B1
Authority
KR
South Korea
Prior art keywords
alloy
hydrogen storage
cycle life
improvement
electrode
Prior art date
Application number
KR1019980015197A
Other languages
Korean (ko)
Other versions
KR19990081330A (en
Inventor
이재영
박정건
한상철
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019980015197A priority Critical patent/KR100269515B1/en
Publication of KR19990081330A publication Critical patent/KR19990081330A/en
Application granted granted Critical
Publication of KR100269515B1 publication Critical patent/KR100269515B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/466Magnesium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A method for producing cathode material for rechargeable nickel/hydrogen storage alloy battery is provided for improving cycle life of the magnesium-based alloy by a sintering and mechanical grinding method. CONSTITUTION: The method for producing cathode material for rechargeable nickel/hydrogen storage alloy (Ni/MH) battery comprises mechanically grinding surface of MgNi alloy to improve its property; mixing Ni or Cu powders to the improved alloy to cool and compress; and producing the final material by a sintering process to result in the improvement of cycle life of high capacity magnesium-based alloy electrode. The cathode material has frequently higher hydrogen storage capacity of about 510mAh/g simultaneously with the improvement of cycle life at recharging/discharging the battery.

Description

고용량 마그네슘계 합금의 전극수명 개량방법Electrode Life Improvement Method of High Capacity Magnesium Alloy

본 발명은 표면개량을 이용한 고용량 마그네슘 계 합금(Mg-based alloy)의 전극수명 향상방법에 관한 것이다. 보다 상세하게는 니켈/수소저장합금(Ni/MH) 2차전지용 음극재료의 하나로 수소저장용량이 510mAh/g로서 기존 합금들 보다 크지만 알칼리성 수용액 내에서 전극의 충/방전 시 수명(cycle life) 특성이 나쁜 마그네슘함유 합금의 수명을 향상시키는 방법에 관한 것이다.The present invention relates to a method for improving electrode life of high-capacity magnesium-based alloy using surface modification. More specifically, it is one of the anode materials for nickel / hydrogen storage alloy (Ni / MH) secondary batteries, which has a hydrogen storage capacity of 510 mAh / g, which is larger than that of existing alloys, but has a cycle life during charging / discharging of electrodes in alkaline aqueous solution. The present invention relates to a method for improving the service life of a magnesium-containing alloy having poor properties.

종래의 Ni/MH 전지용 음극재료개발은 AB5형 수소저장합금과 AB2형 라베스 상(Laves phase)계 수소저장합금에 집중되어 왔으며 그 결과 각각 200-300mAh/g 의 전기화학적 방전용량을 가지는 미시메탈-니켈(MmNi5)계와 300 - 400 mAh/g의 전기화학적 방전용량을 가지는 지르코늄 계(Zr-based), 티타늄 계(Ti-based) 합금들이 개발되었다. 그러나 최근 소형 전자기기와 전기자동차용 고용량, 고성능 전지개발을 위해서 기존의 합금계 보다 더욱 높은 방전용량을 가지는 제 3 세대 Ni/MH 전지에 대한 연구가 활발히 진행되고 있다. 현재까지, Ni/MH 전지의 성능은 음극을 구성하고 있는 수소저장합금(metal hydride : MH)에 의해 크게 좌우된다고 알려져 있다. 따라서, 2차전지용 전극재료로서 수소저장합금이 사용되기 위해서는 높은 수소저장용량(hydrogen storage capacity), 우수한 고속 충방전특성(high rate dischargeability), 긴 수명(cycle life) 등의 우수한 수소화 반응특성 및 낮은 제조원가가 요구되고 있다.The development of anode materials for Ni / MH batteries has been focused on AB 5 hydrogen storage alloys and AB 2 Laves phase hydrogen storage alloys. As a result, they have electrochemical discharge capacities of 200-300mAh / g, respectively. Zirconium-based (Zr-based) and titanium-based (Ti-based) alloys have been developed that have a micrometal-nickel (MmNi 5 ) based and an electrochemical discharge capacity of 300-400 mAh / g. Recently, however, researches on third generation Ni / MH batteries having higher discharge capacities than conventional alloys have been actively conducted to develop high capacity and high performance batteries for small electronic devices and electric vehicles. To date, the performance of Ni / MH batteries is known to be largely dependent on the metal hydride (MH) constituting the negative electrode. Therefore, in order to use the hydrogen storage alloy as an electrode material for a secondary battery, excellent hydrogenation characteristics such as high hydrogen storage capacity, excellent high rate dischargeability, and long cycle life and low life cycle are required. Manufacturing cost is required.

Mg-Ni계 수소저장합금은 이론적으로 매우 높은 수소저장용량(약 999mAh/g)을 보유하고 있어 이를 전극재료로 이용하기 위한 연구가 활발히 진행되어 왔다. Mg-Ni 계 수소저장합금은 평형압력이 매우 낮고 상온에서 반응속도가 매우 느리기 때문에 전극재조 시 실제 방전이 거의 되지 않지만 무질서한 구조를 갖게되면 큰 방전용량을 나타내는 특성을 나타내고 있다. 사프루(Sapru)등에 의하면 Mg48Ni52의 조성을 갖는 박막을 스퍼터링(sputtering)법을 이용하여 제조한 후 전극실험을 한 결과 566mAh/g의 매우 높은 방전용량을 얻을 수 있었다고 보고하였고 레이(Y.Q.Lei)등과 타수오키(Tatsuoki)등도 기계적분쇄(mechanical grinding) 방법을 이용하여 무질서한 구조를 갖는 합금을 제조할 경우 방전용량이 약 450-550mAh/g 으로 매우 크게 나타남을 보고한 바 있다. 실제로 레이(Y.Q.Lei, Zeitschrift Fur Physika1ische. Bd. 183, S . 379∼384,1994)등은 Mg-Ni계 합금의 수명 특성을 향상시키기 위하여 Ni을 여러원소로 소량 합금치환하여 특성을 살펴본 바 합금치환 시 최대용량이 감소하게되고 수명특성이 크게 향상되지 않는 경향을 보였다고 하였으나 이와쿠라(C. Iwakura Chem. Commun.,1996 p.1831-1832)은 기계적분쇄를 통해 제조된 합금에 흑연(graphite)을 추가하고 기계적분쇄시 방전용량이 증가되었음을 보고하였으나 수명의 향상효과는 미비했다. 현재까지 보고된 Mg-Ni계 수소저장합금의 전극수명은 10사이클 이내에 70%이상 용량감소가 나타나는 것으로 실제 2차전지의 전극재료로 사용하기는 어렵다는 것을 알 수 있다.Mg-Ni-based hydrogen storage alloys have a very high hydrogen storage capacity (about 999mAh / g) in theory, and studies have been actively conducted to use them as electrode materials. Mg-Ni-based hydrogen storage alloy has a very low equilibrium pressure and a very slow reaction rate at room temperature, so it is hardly actually discharged at the time of electrode fabrication, but shows a large discharge capacity when it has a disordered structure. According to Sapru et al., A thin film having a composition of Mg 48 Ni 52 was fabricated by sputtering and then electrode test was conducted to obtain a very high discharge capacity of 566 mAh / g. Tatsuoki et al. Also reported that when the alloy having a disordered structure is manufactured by using mechanical grinding, the discharge capacity is about 450-550mAh / g. Indeed, YQLei, Zeitschrift Fur Physika 1ische. Although the maximum capacity was decreased and the life characteristics did not tend to be improved, Iwakura (C. Iwakura Chem. Commun., 1996 p. 1831-1832) showed that graphite was added to the alloy produced by mechanical grinding. In addition, it was reported that the discharge capacity was increased during mechanical grinding, but the effect of improving the service life was insignificant. The electrode life of Mg-Ni-based hydrogen storage alloys reported so far shows a capacity reduction of more than 70% within 10 cycles.

본 발명은 Mg-Ni계 수소저장합금의 경우 기존의 전극용 수소저장합금에 비해 큰 수소저장용량과 저렴한 합금 제조가격등 장점이 많지만 전해질내에서 충/방전할 경우 수십 싸이클 이내에 Mg계 수소저장합금 전극표면에 Mg(OH)2와 같은 산화피막이 형성되어 활물질이 감소하고 접촉저항(contact resistance) 및 전하전달저항(charge transfer resistance)이 증가하여 합금의 퇴화가 발생하여 방전용량이 크게 감소되므로 전극용 재료로 사용하기에는 부적합한 현실이다. 따라서, Mg-Ni계 수소저장합금을 전극용 재료로 사용하기 위해서는 전해질내에서 충/방전시 퇴화가 발생하지 않는 긴 수명을 갖도록 하기 위하여 제조된 합금의 표면을 Ni, Cu등의 원소들과 혼합한 후 소결, 기계적분쇄법을 이용하여 전해질내에서 퇴화가 급속히 발생하는 MgNi 합금에 대하여 수명을 향상시킬 수 있는 표면 개량방법이 본 발명의 과제이다.In the present invention, Mg-Ni-based hydrogen storage alloy has many advantages, such as a large hydrogen storage capacity and a cheap alloy manufacturing price, compared to the conventional hydrogen storage alloy for electrodes, but Mg-based hydrogen storage alloy within tens of cycles when charged and discharged in electrolyte An oxide film such as Mg (OH) 2 is formed on the surface of the electrode, which reduces the active material and increases the contact resistance and charge transfer resistance. This is an unsuitable reality to use as a material. Therefore, in order to use Mg-Ni-based hydrogen storage alloy as an electrode material, the surface of the alloy is mixed with elements such as Ni and Cu in order to have a long life without deterioration during charge / discharge in the electrolyte. After the sintering and mechanical grinding method, the surface improvement method that can improve the life for the MgNi alloy rapidly degenerate in the electrolyte is a problem of the present invention.

도 1 (a)와 (b)는 MgNi 합금의 SEM분석결과로서,1 (a) and (b) are SEM results of the MgNi alloy,

(a)는 합금의 형상(image)을 나타낸 것이고,(a) shows the image of the alloy,

(b)는 EDX 분석결과를 나타낸 것이다.(b) shows the result of EDX analysis.

도 2 는 MgNi 합금의 XRD 분석결과이다.2 is an XRD analysis result of MgNi alloy.

도 3 은 MgNi 합금의 충/방전에 따른 퇴화거동을 나타낸 것이다.Figure 3 shows the degeneration behavior of the MgNi alloy according to the charge / discharge.

도 4 는 MgNi 합금을 Ni과 소결한 후 충/방전에 따른 퇴화거동을 나타낸 것이다.Figure 4 shows the degradation behavior according to the charge / discharge after sintering the MgNi alloy with Ni.

본 발명에 사용된 합금의 제조는 아르곤 분위기하에서 기계적분쇄법으로 제조하였다. 제조한 합금의 구조는 XRD분석을 통하여 관찰하였으며 SEM 및 EDS분석를 통하여 입자크기 및 조성을 관찰하였다. 제조된 합금은 Cu 분말과 혼합한 후 냉간압착하여 펠릿형(pellet type)의 전극으로 제작하였다. 표면개량을 위해 기계적분쇄법에 의해 제조된 합금을 Ni분말과 혼합하여 냉간압착한 다음 소결법을 통하여 전극을 제조하였다. 제조한 전극은 반쪽전지(half cell)실험을 행하였으며 충/방전전류밀도는 300mA/g이었으며 3시간 충전하였다.The alloy used in the present invention was prepared by mechanical grinding under argon atmosphere. The structure of the prepared alloy was observed by XRD analysis, and the particle size and composition were observed by SEM and EDS analysis. The prepared alloy was mixed with Cu powder and cold pressed to produce a pellet-type electrode. For the surface improvement, the alloy prepared by mechanical grinding method was mixed with Ni powder and cold pressed, and then the electrode was manufactured by sintering method. The prepared electrode was subjected to a half cell experiment, and the charge / discharge current density was 300 mA / g and charged for 3 hours.

도1은 MgNi 합금의 SEM분석결과이다. (a)와(b)에 나타난 것과 같이 기계적분쇄 후 입자크기가 수 마이크로미터(um) 정도로 매우 미세하게 분쇄되었고 EDX 분석결과 Mg/Ni 비가 약 1로 균일한 합금이 일어난 것을 알 수 있다.1 is a SEM analysis result of MgNi alloy. As shown in (a) and (b), after the mechanical grinding, the particle size was pulverized very finely about several micrometers (um), and the EDX analysis showed that the uniform alloy had a Mg / Ni ratio of about 1.

도2는 MgNi 합금의 XRD 분석결과이다. 초기에 장입한 Ni(a)과 Mg2Ni(b)에서 나타나는 결정 피크들이 사라지고 무질서한 구조에서 전형적으로 나타나는 넓은 피크를 관찰할 수 있다.2 is an XRD analysis result of MgNi alloy. Crystal peaks appearing at the initial loading of Ni (a) and Mg 2 Ni (b) disappeared and wide peaks typically seen in disordered structures can be observed.

도3은 MgNi 합금의 충/방전 사이클에 따른 용량변화를 나타낸 것이다. 최대 방전용량이 약 500mAh/g으로 매우 큰 방전용량을 나타내며 첫 싸이클에 최대의 방전용량을 나타내는 것으로부터 할성화(activation) 특성이 매우 우수함을 알 수 있다. 그러나 두 번째 사이클부터 방전용량이 크게 감소하고 25 사이클만에 60%의 큰 방전용량의 감소현상을 나타낸다.Figure 3 shows the capacity change according to the charge / discharge cycle of the MgNi alloy. The maximum discharge capacity is about 500 mAh / g, which shows a very large discharge capacity and the maximum discharge capacity in the first cycle, indicating that the activation characteristics are very good. However, the discharge capacity is greatly reduced from the second cycle, and the large discharge capacity is reduced by 60% in 25 cycles.

도4는 MgNi 합금을 Ni과 혼합하여 소결법으로 표면개량한 후 충/방전에 따른 퇴화거동을 나타낸 것이다. Ni과 소결한 전극의 경우 최대용량이 크게 감소하지 않으면서 수명 특성이 크게 향상되었다.Figure 4 shows the degradation behavior according to the charge / discharge after mixing the MgNi alloy with Ni and surface improvement by the sintering method. In the case of the sintered electrode with Ni, the lifespan characteristics were greatly improved without a significant decrease in the maximum capacity.

< 실시예 ><Example>

본 발명의 합금을 제조하기 위해 Mg2Ni과 Ni을 1:1 (mol 분율)로 정확히 평량하여 스텐레스 볼(stainless steel ball)과 함께 기계적분쇄 장치의 쳄버내에 장입한 후 10-3torr의 진공도에서 60분간 진공처리를 한다. 이때 교반기(stir type) 시스템(독일의 Zoz GmbH사에서 제작)를 사용하였고 볼의 직경은 4.762mm였으며 볼과 합금(ball/alloy)의 비는 40으로 하였고 모든 작업은 글로브 상자(glove box)내에서 수행하였다. 진공처리 후 쳄버내에 Ar을 주입시킨 다음 500rpm으로 4시간, 200rpm으로 1시간을 1사이클로 하여 총 16사이클 (총 80시간) 반복하여 분쇄하였다. 최종 얻어진 합금의 크기는 SEM분석결과 1-10um로 매우 미세하게 분쇄되었음을 알 수 있었으며 XRD분석을 통하여 무질서한 구조를 가지고 있음을 확인할 수 있었다.In order to prepare the alloy of the present invention, Mg 2 Ni and Ni are precisely weighed at 1: 1 (mol fraction), charged with stainless steel balls in a chamber of a mechanical grinding device, and then vacuumed at a vacuum of 10 -3 torr. Vacuum for 60 minutes. At this time, a stir type system (manufactured by Zoz GmbH, Germany) was used, the diameter of the ball was 4.762 mm, the ratio of ball and alloy was 40, and all work was performed in a glove box. Was performed in. After vacuum treatment, Ar was injected into the chamber, and then, 16 cycles (80 hours total) were repeated for 4 hours at 500 rpm and 1 hour at 200 rpm. The size of the final alloy was found to be very finely crushed to 1-10um as a result of SEM analysis, and it was confirmed that the alloy had a disordered structure through XRD analysis.

충/방전 특성실험을 위한 전극제조방법은 다음과 같다. 표면개량을 하지 않은 경우 도전제(Current collector)로서 Cu를 사용하였고 Cu/alloy의 비를 3으로 하여 혼합한 후 10t의 압력으로 압착하여 펠릿형으로 제조하였다. 소결법에 의한 표면개량을 하는 경우 mechanical grinding에 의해 제조된 MgNi 합금을 Ni 분말과혼합한 후 10t의 압력으로 압착하여 펠릿형으로 제조한다. 제조된 펠릿을 진공 열처리로에서 10-3torr의 진공도로 30분간 진공처리한 후 200-300oC의 온도를 유지하며 5-20분간 열처리 후 급냉시킨다.The electrode manufacturing method for the charge / discharge characteristics test is as follows. When the surface was not improved, Cu was used as a conductive collector, and the Cu / alloy ratio was 3, mixed, and then pressed into a pressure of 10 to prepare a pellet. In the case of surface improvement by the sintering method, the MgNi alloy prepared by mechanical grinding is mixed with Ni powder and pressed into a pellet at 10t. The prepared pellets were vacuum treated at a vacuum heat treatment furnace at a vacuum of 10 -3 torr for 30 minutes and then quenched after 5-20 minutes of heat treatment while maintaining a temperature of 200-300 o C.

충/방전 특성실험은 다음과 같다. 기준전극(reference electrode)으로는 Hg/HgO를 대극(counter electrode)으로 백금선을 사용하였고 전해질은 30wt%의 KOH용액을 사용하여 반쪽전지를 구성하였다. 충전 전류는 300mAh/g이고 방전 전류는 100mAh/g이며 충전시간은 3시간, 충전 및 방전이후 정지시간(rest time)은 1분을 주었으며, 방전시 차단전압(cutoff voltage)은 -0.6V(기준전극으로 Hg/HgO사용)이었다.The charge / discharge characteristics test is as follows. Hg / HgO was used as the reference electrode and platinum wire was used as the counter electrode, and the electrolyte was composed of a half cell using 30 wt% KOH solution. Charge current is 300mAh / g, discharge current is 100mAh / g, charge time is 3 hours, rest time after charge and discharge is 1 minute, and cutoff voltage at discharge is -0.6V Hg / HgO was used as the electrode).

본 발명의 기계적분쇄법 제조된 합금을 Ni, Cu등 다른 원소와 혼합한 후 소결법을 이용하여 표면개량한 결과 수명 특성이 크게 향상되고 수소저장용량이 큰 Mg-Ni계 수소저장합금의 수명이 향상되는 효과가 있다.Mechanical Grinding Method of the Invention After the alloy is mixed with other elements such as Ni and Cu, the surface is improved by the sintering method. It is effective.

Claims (1)

Ni/MH 2차전지의 음극재료의 전극수명 개량방법에 있어서,In the electrode life improvement method of the negative electrode material of the Ni / MH secondary battery, 기계적 분쇄법으로 표면개량한 MgNi 합금에 Ni 또는 Cu 분말을 혼합하여 냉각압착한 후 소결법에 의하여 전극을 제조하는 것을 특징으로 하는 고용량 마그네슘계 합금의 전극수명 개량방법.A method of improving electrode life of a high-capacity magnesium-based alloy, which comprises manufacturing an electrode by sintering after mixing Ni or Cu powder with a surface-improved MgNi alloy by mechanical grinding.
KR1019980015197A 1998-04-28 1998-04-28 The surface modification of mg-based alloy of high discharge capacity for improvement in cycle life KR100269515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980015197A KR100269515B1 (en) 1998-04-28 1998-04-28 The surface modification of mg-based alloy of high discharge capacity for improvement in cycle life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980015197A KR100269515B1 (en) 1998-04-28 1998-04-28 The surface modification of mg-based alloy of high discharge capacity for improvement in cycle life

Publications (2)

Publication Number Publication Date
KR19990081330A KR19990081330A (en) 1999-11-15
KR100269515B1 true KR100269515B1 (en) 2000-10-16

Family

ID=19536815

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980015197A KR100269515B1 (en) 1998-04-28 1998-04-28 The surface modification of mg-based alloy of high discharge capacity for improvement in cycle life

Country Status (1)

Country Link
KR (1) KR100269515B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891298A (en) * 2012-08-14 2013-01-23 青岛大学 Surface modification method for Mg-Ni-Nd system hydrogen storage electrode alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152659B (en) * 2021-11-30 2023-11-21 鄂尔多斯应用技术学院 Rapid test method for cycle life of hydrogen storage alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990198A (en) * 1988-09-05 1991-02-05 Yoshida Kogyo K. K. High strength magnesium-based amorphous alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990198A (en) * 1988-09-05 1991-02-05 Yoshida Kogyo K. K. High strength magnesium-based amorphous alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891298A (en) * 2012-08-14 2013-01-23 青岛大学 Surface modification method for Mg-Ni-Nd system hydrogen storage electrode alloy

Also Published As

Publication number Publication date
KR19990081330A (en) 1999-11-15

Similar Documents

Publication Publication Date Title
US4551400A (en) Hydrogen storage materials and methods of sizing and preparing the same for electrochemical applications
EP0750050A1 (en) Hydrogen-absorbing alloy and alkaline secondary cell using the same
Zhao et al. Ti2Ni alloy: a potential candidate for hydrogen storage in nickel/metal hydride secondary batteries
US6444362B2 (en) Hydrogen absorbing alloy powder and process for producing same
Knosp et al. Evaluation of Zr (Ni, Mn) 2 Laves Phase Alloys as Negative Active Material for Ni‐MH Electric Vehicle Batteries
Cui et al. Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt.% Ti2Ni
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
KR100269515B1 (en) The surface modification of mg-based alloy of high discharge capacity for improvement in cycle life
CN1272461C (en) Non crystal state hydrogen storge composite material and its producing method
KR0137797B1 (en) Manufacturing method of electrode for the secondary battery using the hydrogen storage alloy
KR100329118B1 (en) Improvement on the Cycle Life of Mechanically Alloyed Mg-based Alloy Prepared by Element Substitution
KR100207618B1 (en) Negative electrode manufacturing method and secondary battery having it
JP3079890B2 (en) Hydrogen storage alloy powder and nickel-hydrogen battery
Dawei et al. Effects of annealing on microstructures and electrochemical properties of La0. 8Mg0. 2Ni2. 4Mn0. 10Co0. 55Al0. 10 alloy
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3373989B2 (en) Hydrogen storage alloy powder and manufacturing method
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP2005105356A (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and hermetically sealed-type nickel hydrogen storage battery
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH02306541A (en) Manufacture of hydrogen storage alloy electrode for alkaline storage battery
CA1269083A (en) Hydrogen storage materials and methods of sizing and preparing the same for electrochemical applications
CN1297021C (en) Cathode material in use for nickel-hydrogen battery in high capacity
JPH10102174A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
KR0158034B1 (en) Method for manufacturing electrode for the secondary battery by using the v-ti alloy
JPH0953130A (en) Production of hydrogen storage alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030627

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee