CN1272461C - Non crystal state hydrogen storge composite material and its producing method - Google Patents
Non crystal state hydrogen storge composite material and its producing method Download PDFInfo
- Publication number
- CN1272461C CN1272461C CNB2003101228271A CN200310122827A CN1272461C CN 1272461 C CN1272461 C CN 1272461C CN B2003101228271 A CNB2003101228271 A CN B2003101228271A CN 200310122827 A CN200310122827 A CN 200310122827A CN 1272461 C CN1272461 C CN 1272461C
- Authority
- CN
- China
- Prior art keywords
- composite material
- hydrogen storage
- rare earth
- weight
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 40
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 40
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims description 12
- 239000013078 crystal Substances 0.000 title 1
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 39
- 239000000956 alloy Substances 0.000 claims abstract description 39
- 238000003860 storage Methods 0.000 claims abstract description 30
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 15
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 15
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- 239000000126 substance Substances 0.000 claims abstract description 12
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 3
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 3
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 3
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 3
- 230000007704 transition Effects 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 36
- 238000000498 ball milling Methods 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 7
- 229910052987 metal hydride Inorganic materials 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 4
- 239000004615 ingredient Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 150000004681 metal hydrides Chemical class 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 238000005984 hydrogenation reaction Methods 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 description 38
- 229910052749 magnesium Inorganic materials 0.000 description 19
- 239000011575 calcium Substances 0.000 description 11
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- 230000008569 process Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 238000005280 amorphization Methods 0.000 description 2
- 238000000840 electrochemical analysis Methods 0.000 description 2
- 229910001325 element alloy Inorganic materials 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910018661 Ni(OH) Inorganic materials 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001068 laves phase Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Powder Metallurgy (AREA)
Abstract
一种非晶态储氢复合材料及其制造方法,其特征在于:该复合材料的化学通式为:RE1-xMxMg12-yNy+zNi,式中0≤x≤0.5,0≤y≤3,RE为稀土金属Ce、La、Pr、Nd、Sm、富铈混合稀土金属Mm、富镧混合稀土金属Ml中的一种或几种,M为能与氢反应生成金属氢化物的金属元素Ca、Ti、V、Zr中的一种,N为过渡元素Y、Ni、Co、Fe、Cr中的一种,0.5≤z≤1.5,z为Ni重量与RE1-xMxMg12-yNy重量的比值。同现有储氢电极合金比较,本发明的突出优点是实现了能在室温下电化学储氢,用这种材料制作的电极,具有异常高的放电容量,特别适用于高比能量镍氢电池。An amorphous hydrogen storage composite material and its manufacturing method, characterized in that: the general chemical formula of the composite material is: RE 1-x M x Mg 12-y N y +zNi, where 0≤x≤0.5, 0≤y≤3, RE is one or more of the rare earth metals Ce, La, Pr, Nd, Sm, cerium-rich mixed rare earth metal Mm, and lanthanum-rich mixed rare earth metal Ml, and M is capable of reacting with hydrogen to form metal hydrogenation One of the metal elements Ca, Ti, V, Zr, N is one of the transition elements Y, Ni, Co, Fe, Cr, 0.5≤z≤1.5, z is the weight of Ni and RE 1-x M The ratio of x Mg 12-y N y weight. Compared with the existing hydrogen storage electrode alloy, the outstanding advantage of the present invention is that it can electrochemically store hydrogen at room temperature. The electrode made of this material has an abnormally high discharge capacity, and is especially suitable for high specific energy nickel-hydrogen batteries. .
Description
技术领域:Technical field:
本发明涉及一种以镁、稀土金属和镍为主要成分的碱性二次电池负极活性物质,特别涉及一种非晶态储氢复合材料及其制造方法。The invention relates to an alkaline secondary battery negative electrode active material mainly composed of magnesium, rare earth metal and nickel, in particular to an amorphous hydrogen storage composite material and a manufacturing method thereof.
背景技术:Background technique:
镍一金属氢化物(Ni/MH)电池是以储氢电极合金作为负极活性物质的高容量碱性二次电池,迄今已实现大规模产业化。目前,几乎所有商品镍氢电池的负极活性物质都用稀土系AB5型储氢电极合金,它们都是在典型的二元LaNi5合金基础上发展起来的多元合金。LaNi5的理论电化学容量为372mAh·g-1,而市售的实用AB5型多元储氢电极合金放电容量仅280~320mAh·g-1,约为LaNi5理论放电容量的75~85%。Nickel-metal hydride (Ni/MH) battery is a high-capacity alkaline secondary battery with a hydrogen storage electrode alloy as the negative electrode active material, and has achieved large-scale industrialization so far. At present, the anode active materials of almost all commercial nickel-metal hydride batteries use rare earth AB 5 type hydrogen storage electrode alloys, which are multi-element alloys developed on the basis of typical binary LaNi 5 alloys. The theoretical electrochemical capacity of LaNi 5 is 372mAh·g -1 , while the discharge capacity of commercially available practical AB 5 multi-element hydrogen storage electrode alloy is only 280-320mAh·g -1 , which is about 75-85% of the theoretical discharge capacity of LaNi 5 .
由于计算机、通讯设备、音像设备等电子产品及电动车辆的迅速发展与普及,对二次电池的高容量、小型化与轻量化提出了更高要求。若干新的改进材料已被提出,其中一些钛系AB2型Laves相电极合金放电容量达到380~420mAh·g-1,而钒基固溶体型的电极合金放电容量也可达350~420mAh·g-1,均明显高于稀土系AB5型多元合金。Due to the rapid development and popularization of electronic products such as computers, communication equipment, audio-visual equipment, and electric vehicles, higher requirements have been placed on the high capacity, miniaturization and light weight of secondary batteries. Several new and improved materials have been proposed, among which some titanium-based AB 2 -type Laves phase electrode alloys have a discharge capacity of 380-420mAh·g -1 , and vanadium-based solid solution-type electrode alloys have a discharge capacity of 350-420mAh· g- 1 , are significantly higher than the rare earth AB 5 multi-element alloy.
纯镁和镁基储氢合金是目前已出现的各类储氢合金中单位重量储氢密度最高的一类,纯镁达到7.6%;Mg2Ni合金为3.6%;而稀土与镁组成的稀土镁基合金(如典型的CeMg12,La2Mg17)重量储氢密度则介于纯镁与Mg2Ni之间,为4.5~6.0%,远高于稀土系AB5型合金1.4%的气固反应储氢容量。但是,所有常规方法制备和不经任何改性处理的纯镁或镁合金都无法在室温下实现气固反应可逆储氢或电化学可逆储氢。为此,已研究和提出了各种改进技术,其中,最有效的方法是把镁基合金制备成非晶结构,例如文献[1]利用机械合金化方法把Mg-Ni合金制备成非晶,从而实现了室温下的电化学储氢,文献[2、3]则提供一种通过球磨Mg2Ni与Ni的混合物制备成非晶,也实现了室温下的电化学储氢。Pure magnesium and magnesium-based hydrogen storage alloys have the highest hydrogen storage density per unit weight among all kinds of hydrogen storage alloys that have appeared so far. Pure magnesium reaches 7.6%; Mg 2 Ni alloy is 3.6%; The weight hydrogen storage density of magnesium-based alloys (such as typical CeMg 12 , La 2 Mg 17 ) is between pure magnesium and Mg 2 Ni, which is 4.5-6.0%, which is much higher than the 1.4% gas density of rare earth AB 5 alloys. Solid reaction hydrogen storage capacity. However, pure magnesium or magnesium alloys prepared by conventional methods and without any modification treatment cannot achieve gas-solid reaction reversible hydrogen storage or electrochemical reversible hydrogen storage at room temperature. For this reason, various improvement technologies have been researched and proposed, among which, the most effective method is to prepare the magnesium-based alloy into an amorphous structure. In this way, the electrochemical hydrogen storage at room temperature is realized, and literature [2, 3] provides an amorphous prepared by ball milling a mixture of Mg 2 Ni and Ni, which also realizes electrochemical hydrogen storage at room temperature.
发明内容:Invention content:
本发明的目的在于提供一种能在室温下大量电化学储氢的复合材料及其制造方法,该复合材料特别适用于作为高比能量镍氢电池的负极活性物质。本发明的储氢复合材料是由一种二元或多元的1∶12型金属化合物晶态稀土—镁基储氢合金与镍粉混合一起球磨而成的非晶态储氢复合材料,它既保持了原晶态结构稀土—镁基合金所具有的高储氢容量,又克服了原晶态合金无法在室温下进行电化学吸放氢的缺点。因此,以这种新的储氢复合材料代替稀土系AB5型电极合金作为镍氢电池的负极活性物质,可以使同一体积的电池额定容量大幅度提高,或者使同样额定容量的电池体积大幅度减小。The object of the present invention is to provide a composite material capable of electrochemically storing a large amount of hydrogen at room temperature and a manufacturing method thereof, and the composite material is particularly suitable as a negative electrode active material of a high specific energy nickel-hydrogen battery. The hydrogen storage composite material of the present invention is an amorphous hydrogen storage composite material formed by ball milling a binary or multi-component 1:12 metal compound crystalline rare earth-magnesium-based hydrogen storage alloy and nickel powder. The high hydrogen storage capacity of the rare earth-magnesium-based alloy with the original crystalline structure is maintained, and the disadvantage that the original crystalline alloy cannot electrochemically absorb and desorb hydrogen at room temperature is overcome. Therefore, using this new hydrogen storage composite material instead of the rare earth AB 5 type electrode alloy as the negative electrode active material of the nickel-metal hydride battery can greatly increase the rated capacity of the battery with the same volume, or greatly increase the volume of the battery with the same rated capacity. decrease.
一种非晶态储氢复合材料,其特征在于:该复合材料的化学通式为RE1-xMxMg12-yNy+zNi,式中0≤x≤0.5,0≤y≤3,RE为稀土金属Ce、La、Pr、Nd、Sm、富铈混合稀土金属Mm,富镧混合稀土金属Ml中的一种或几种,M为能与氢反应生成金属氢化物的金属元素Ca、Ti、V、Zr中的一种,N为过渡元素Y、Ni、Co、Fe、Mn、Cr中的一种,0.5≤z≤1.5,z为Ni重量与RE1-xMxMg12-yNy重量的比值。An amorphous hydrogen storage composite material, characterized in that: the general chemical formula of the composite material is RE 1-x M x Mg 12-y N y +zNi, where 0≤x≤0.5, 0≤y≤3 , RE is one or more of rare earth metals Ce, La, Pr, Nd, Sm, cerium-rich mixed rare earth metal Mm, and lanthanum-rich mixed rare earth metal Ml, and M is a metal element Ca that can react with hydrogen to form a metal hydride , one of Ti, V, Zr, N is one of the transition elements Y, Ni, Co, Fe, Mn, Cr, 0.5≤z≤1.5, z is the weight of Ni and RE 1-x M x Mg 12 -y N Ratio of y weights.
一种非晶态储氢复合材料的制造方法,其特征是采用如下步骤:A method for manufacturing an amorphous hydrogen storage composite material, characterized in that the following steps are used:
A)按照化学式RE1-xMxMg12-yNy中的成分及成分的重量百分比配料,置于氩气保护的真空感应炉中熔炼成晶态合金锭,将合金锭破碎成粒度小于75μm的合金粉;A) According to the ingredients in the chemical formula RE 1-x M x Mg 12-y N y and the weight percentage of the ingredients, put them in an argon-protected vacuum induction furnace to melt them into crystalline alloy ingots, and break the alloy ingots into particles smaller than 75μm alloy powder;
B)将上述合金粉和合金粉重量的0.5~1.5倍的镍粉一起装入球磨机球罐中球磨,球料比为20∶1,连续球磨30~50小时,获得非晶态储氢复合材料;镍粉的粒度小于75μm。B) Put the above alloy powder and nickel powder 0.5 to 1.5 times the weight of the alloy powder together into a ball mill ball tank for ball milling, the ball to material ratio is 20:1, and continue ball milling for 30 to 50 hours to obtain an amorphous hydrogen storage composite material ; The particle size of the nickel powder is less than 75 μm.
组成本发明的复合储氢材料的稀土—镁基储氢合金和镍粉都是容易非晶化的材料,特别是二者一起混合球磨起到了相互促进非晶化的效果,而且复合材料非晶程度越高,即复合材料中非晶态所占的比例越高则复合材料在室温下的电化学容量越高。球磨过程是一种机械研磨过程,其对晶态稀土—镁基合金转化为细小的高比面积的非晶态是十分重要的,而镍粉的参与球磨是必不可少的,由于镍粉的存在改变了研磨过程体系中的能量传递与分配,从而使稀土—镁基合金颗粒以及镍粉本身能在更短的时间内获得细小的非晶而不是纳米晶。镍粉增加使球磨成非晶时间缩短,复合材料的非晶化程度越高;而稀土—镁基合金在非晶复合材料中比例增加,所得的非晶复合材料的电化学储氢容量增加,故在保证获得全部非晶复合材料的情况下采用最低镍粉量可获得最高电化学储氢容量。当把这种细小的非晶复合材料制成电极样品在三电极系统中以50mAh·g-1恒电流进行放电容量测试,在25℃温度下,实测放电容量高达1000~1200mAh·g(RE1-xMxMg12-yNy)-1,为目前市售稀土系电极合金的2~3倍,测试时辅助电极为Ni(OH)2/NiOOH,参比电极为Hg/HgO,碱液为6MKOH,放电截止电位为-0.55V(相对于HgO/Hg电极)。The rare earth-magnesium-based hydrogen storage alloy and nickel powder that make up the composite hydrogen storage material of the present invention are materials that are easily amorphized. In particular, the mixing and ball milling of the two together has the effect of mutually promoting amorphization, and the composite material is amorphous. The higher the degree, that is, the higher the proportion of amorphous state in the composite material, the higher the electrochemical capacity of the composite material at room temperature. The ball milling process is a mechanical grinding process, which is very important for the transformation of crystalline rare earth-magnesium-based alloys into small amorphous states with high specific areas, and the participation of nickel powder in ball milling is essential. It changes the energy transmission and distribution in the grinding process system, so that the rare earth-magnesium-based alloy particles and nickel powder itself can obtain fine amorphous instead of nanocrystalline in a shorter time. The increase of nickel powder shortens the time of ball milling into amorphous, and the degree of amorphization of the composite material is higher; while the proportion of rare earth-magnesium-based alloy in the amorphous composite material increases, the electrochemical hydrogen storage capacity of the obtained amorphous composite material increases. Therefore, the highest electrochemical hydrogen storage capacity can be obtained by using the lowest amount of nickel powder while ensuring that all amorphous composite materials are obtained. When this tiny amorphous composite material is made into an electrode sample, the discharge capacity test is carried out at a constant current of 50mAh g -1 in a three-electrode system. At a temperature of 25° C , the measured discharge capacity is as high as 1000-1200mAh g -x M x Mg 12-y N y ) -1 , which is 2 to 3 times that of the currently available rare earth electrode alloys in the market. During the test, the auxiliary electrode is Ni(OH) 2 /NiOOH, the reference electrode is Hg/HgO, alkali The liquid is 6MKOH, and the discharge cut-off potential is -0.55V (relative to the HgO/Hg electrode).
实施例1:Example 1:
一种非晶态储氢复合材料,其化学通式为RE1-xMxMg12-yNy+zNi,式中RE为Ce,x=0,y=0,z为0.75,即Ni粉重量为CeMg12重量的75%,按化学式CeMg12计算Ce和Mg的重量配比,原材料中Ce为纯度98%的金属铈,Mg为纯度99%的金属镁,然后在有氩气保护的真空感应炉中进行冶炼,获得晶态CeMg12合金锭,将合金锭破碎为小于75μm的合金粉,並置于球磨机的球罐中,再加入CeMg12重量的75%镍粉与球料比为20∶1的磨球一起球磨,镍粉粒度小于75μm,球磨机主轴转速为225转/分,连续球磨50小时后即获得细小的非晶复合材料。把所得的复合材料制成电极,在碱性三电极系统中以50mAh·g-1恒电流进行放电容量测试,测试温度为25℃,放电截止电位为-0.55V,实得放电容量为1050mAh·g(CeMg12)-1。An amorphous hydrogen storage composite material whose general chemical formula is RE 1-x M x Mg 12-y N y +zNi, where RE is Ce, x=0, y=0, z is 0.75, namely Ni The powder weight is 75% of the weight of CeMg 12 , and the weight ratio of Ce and Mg is calculated according to the chemical formula CeMg 12. In the raw material, Ce is metal cerium with a purity of 98%, and Mg is metal magnesium with a purity of 99%. Carry out smelting in a vacuum induction furnace to obtain crystalline CeMg 12 alloy ingots, crush the alloy ingots into alloy powders less than 75 μm, and place them in the spherical tank of a ball mill, then add 75% of the weight of CeMg 12 nickel powder to a ball-to-material ratio of 20 :1 ball mill together, the particle size of the nickel powder is less than 75 μm, the spindle speed of the ball mill is 225 rpm, and the fine amorphous composite material can be obtained after continuous ball milling for 50 hours. The resulting composite material was made into an electrode, and the discharge capacity test was carried out in an alkaline three-electrode system with a constant current of 50mAh g -1 , the test temperature was 25°C, the discharge cut-off potential was -0.55V, and the actual discharge capacity was 1050mAh· g(CeMg 12 ) -1 .
实施例2:Example 2:
优选化学通式RE1-xMxMg12-yNy+zNi中,RE为Ce,x=0.2,M为Ca,N为Ni,y=1,z为1.5,即构成Ce0.8Ca0.2Mg11Ni+1.5Ni合金。按化学式Ce0.8Ca0.2Mg11Ni计算Ce、Ca、Mg、Ni的重量配比,原材料中Ca为纯度98%的金属钙,Ni为纯度99%的电解镍,其他原材料纯度同实施例1,在有氩气保护的真空感应炉中进行冶炼,得晶态Ce0.8Ca0.2Mg11Ni合金锭,然后破碎为小于75μm的合金粉,再与重量为合金粉量的150%镍粉一起球磨,镍粉粒度小于75μm,球磨工艺同实施例1,经40小时连续球磨混合料转变为非晶复合材料,测得的放电容量为1010mAh·g(Ce0.8Ca0.2Mg11Ni)-1。电化学测试方式与参数同实施例1。Preferably, in the general chemical formula RE 1-x M x Mg 12-y N y +zNi, RE is Ce, x=0.2, M is Ca, N is Ni, y=1, and z is 1.5, which constitutes Ce 0.8 Ca 0.2 Mg 11 Ni+1.5Ni alloy. Calculate the weight proportion of Ce, Ca, Mg, Ni by chemical formula Ce 0.8 Ca 0.2 Mg 11 Ni, in the raw material, Ca is metallic calcium with a purity of 98%, Ni is electrolytic nickel with a purity of 99%, and the purity of other raw materials is the same as in Example 1. Smelting in a vacuum induction furnace protected by argon to obtain crystalline Ce 0.8 Ca 0.2 Mg 11 Ni alloy ingots, then crushed into alloy powders less than 75 μm, and then ball milled with 150% nickel powder whose weight is the amount of alloy powder, The particle size of the nickel powder is less than 75 μm, and the ball milling process is the same as in Example 1. After 40 hours of continuous ball milling, the mixture is transformed into an amorphous composite material. The measured discharge capacity is 1010mAh·g(Ce 0.8 Ca 0.2 Mg 11 Ni) -1 . The electrochemical test method and parameters are the same as in Example 1.
实施例3:Example 3:
优选化学通式RE1-xMxMg12-yNy+zNi中,RE为Ce,x=0.2,M为Ca,N为Y,y=1,z=1.0,构成Ce0.8Ca0.2Mg11Y+1.0Ni混合材料,按化学式Ce0.8Ca0.2Mg11Y计算Ce、Ca、Mg和Y的重量配比,原材料中Y为纯度99%的金属钇,其他原材料纯度同实施例2,冶炼和球磨工艺同实施例1,镍粉重量与Ce0.8Ca0.2Mg11Y重量比为1.0,球磨时间为40小时,制成的非晶复合材料的放电容量为1150mAh·g(Ce0.8Ca0.2Mg11Ni)-1。电化学测试方式与参数同实施例1。Preferably, in the general chemical formula RE 1-x M x Mg 12-y N y +zNi, RE is Ce, x=0.2, M is Ca, N is Y, y=1, z=1.0, constitute Ce 0.8 Ca 0.2 Mg 11 Y+1.0Ni mixed material, calculate the weight ratio of Ce, Ca, Mg and Y according to the chemical formula Ce 0.8 Ca 0.2 Mg 11 Y, Y in the raw material is metal yttrium with a purity of 99%, and the purity of other raw materials is the same as that in Example 2. Smelting Same as embodiment 1 with ball milling process, nickel powder weight and Ce 0.8 Ca 0.2 Mg 11 Y weight ratio is 1.0, ball milling time is 40 hours, and the discharge capacity of the amorphous composite material made is 1150mAh g (Ce 0.8 Ca 0.2 Mg 11 Ni) -1 . The electrochemical test method and parameters are the same as in Example 1.
文献[1]:中国发明专利CN 1044175CDocument [1]: Chinese invention patent CN 1044175C
文献[2]:J.Alloys and Compounds,1998 Vol.267,pp76-78Literature [2]: J.Alloys and Compounds, 1998 Vol.267, pp76-78
文献[3]:J.Alloys and Compounds,1998,Vol.270,pp142-144Literature [3]: J.Alloys and Compounds, 1998, Vol.270, pp142-144
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101228271A CN1272461C (en) | 2003-12-21 | 2003-12-21 | Non crystal state hydrogen storge composite material and its producing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2003101228271A CN1272461C (en) | 2003-12-21 | 2003-12-21 | Non crystal state hydrogen storge composite material and its producing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1554796A CN1554796A (en) | 2004-12-15 |
CN1272461C true CN1272461C (en) | 2006-08-30 |
Family
ID=34338792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2003101228271A Expired - Fee Related CN1272461C (en) | 2003-12-21 | 2003-12-21 | Non crystal state hydrogen storge composite material and its producing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1272461C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9234264B2 (en) | 2004-12-07 | 2016-01-12 | Hydrexia Pty Limited | Magnesium alloys for hydrogen storage |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101289576B (en) * | 2007-04-20 | 2010-08-25 | 中国科学院大连化学物理研究所 | Composite material of conducting high polymers/alloy for nickel-hydrogen battery and preparation thereof |
CN101445895B (en) * | 2007-11-26 | 2011-01-26 | 比亚迪股份有限公司 | Rare earth-based amorphous alloy and preparation method thereof |
CN105271113A (en) * | 2015-10-16 | 2016-01-27 | 安徽工业大学 | Composite hydrogen storage material and preparation method thereof |
CN107686903B (en) * | 2017-09-03 | 2019-11-29 | 浙江中杭水泵股份有限公司 | A kind of Mg base hydrogen bearing alloy of ball-milling method preparation |
WO2022050268A1 (en) * | 2020-09-01 | 2022-03-10 | 株式会社三徳 | Hydrogen storage material, hydrogen storage container and hydrogen supply apparatus |
-
2003
- 2003-12-21 CN CNB2003101228271A patent/CN1272461C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9234264B2 (en) | 2004-12-07 | 2016-01-12 | Hydrexia Pty Limited | Magnesium alloys for hydrogen storage |
Also Published As
Publication number | Publication date |
---|---|
CN1554796A (en) | 2004-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007011572A1 (en) | Hydrogen storage alloys having improved cycle life and low temperature operating characteristics | |
JPS6145563A (en) | Active substance for hydrogen storage electrode, method of forming same and electrochemical application | |
CN1316537A (en) | Mg-base hydrogen-bearing alloy material and its preparing process and application | |
JP3965209B2 (en) | Low Co hydrogen storage alloy | |
CN1271025A (en) | Magnesium-base hydrogen storing alloy material | |
JP3828922B2 (en) | Low Co hydrogen storage alloy | |
CN111471894A (en) | Doped A5B19 type samarium-containing hydrogen storage alloy, battery and preparation method | |
CN1272461C (en) | Non crystal state hydrogen storge composite material and its producing method | |
JP2008184660A (en) | Hydrogen-storage alloy, and electrode for nickel-hydrogen battery | |
JP5703468B2 (en) | Hydrogen storage alloy, hydrogen storage alloy electrode and nickel metal hydride secondary battery | |
CN101436665B (en) | Amorphous state titanium- cuprum- nickel-base hydrogen-storing composite material | |
CN1044175C (en) | Magnesium base hydrogen-storing alloy electrode | |
CN1234891C (en) | New-type of hydrogen-storing alloy and its fast solidifying prepn process | |
JP2983426B2 (en) | Production method and electrode for hydrogen storage alloy | |
JPH06223827A (en) | Manufacture of hydrogen storage alloy powder for battery | |
CN1272462C (en) | Amorphous hydrogen storage composite material and its manufacturing method | |
Zhang et al. | Electrochemical hydrogen storage performances of the nanocrystalline and amorphous (Mg24Ni10Cu2) 100–xNdx (x= 0–20) alloys applied to Ni-MH battery | |
CN1769506A (en) | A preparation method of high-capacity rare earth-magnesium-based composite hydrogen storage alloy for MH-Ni battery | |
CN117821829B (en) | Ti-Fe-based electrode alloy for Ni-MH battery and preparation method thereof | |
CN1129196C (en) | Rare-earth alloys for hydrogen-bearing electrode and its preparing process | |
CN1148629A (en) | Spherical hydrogen-storage alloy and mfg. method thereof | |
CN1062996A (en) | The manufacture method of hydrogen-bearing alloy electrode | |
Zhang et al. | Cycle stability of La0. 7Mg0. 3Ni2. 55-xCo0. 45Cux (x= 0–0.4) electrode alloys | |
JPH07296810A (en) | Hydrogen storage alloy powder and nickel-hydrogen battery | |
CN1182609C (en) | Preparation method of nickel-metal hydride battery negative electrode alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |