JPH08138666A - Hydrogen storage alloy - Google Patents

Hydrogen storage alloy

Info

Publication number
JPH08138666A
JPH08138666A JP6308045A JP30804594A JPH08138666A JP H08138666 A JPH08138666 A JP H08138666A JP 6308045 A JP6308045 A JP 6308045A JP 30804594 A JP30804594 A JP 30804594A JP H08138666 A JPH08138666 A JP H08138666A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
discharge capacity
storage alloy
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6308045A
Other languages
Japanese (ja)
Inventor
Iwane Nagase
石根 長瀬
Takasumi Shimizu
孝純 清水
Makoto Matsuyama
誠 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP6308045A priority Critical patent/JPH08138666A/en
Publication of JPH08138666A publication Critical patent/JPH08138666A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a hydrogen storage alloy which is useful for a negative electrode of an alkaline storage battery and has high discharge capacity and an excellent cycle life characteristic. CONSTITUTION: Regarding a Zr-V-Ni-Mn-Cr hydrogen storage alloy which absorbs and desorbs hydrogen in reversible way; the alloy composition is made to have 13.9-20.3 atomic % of the content of Mn, one of the component elements. and 3.4-9.8 atomic % of the content of Cr. Preferably, the alloy phase of the hydrogen storage alloy belongs to a Laves-phase of an intermetallic compound and the crystal structure is made to be C<15> -type cubic structure or C<14> -type hexagonal structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水素吸蔵合金の組成
に関するものである。さらに詳しくは、この発明は、ア
ルカリ蓄電池の負極として大きな放電容量を有し、且つ
サイクル寿命特性に優れた水素吸蔵合金を製造すること
のできる新しい水素吸蔵合金の組成に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the composition of hydrogen storage alloys. More specifically, the present invention relates to a composition of a new hydrogen storage alloy capable of producing a hydrogen storage alloy having a large discharge capacity as an anode of an alkaline storage battery and excellent cycle life characteristics.

【0002】[0002]

【従来の技術とその課題】近年、水素吸蔵合金はアルカ
リ蓄電池の負極として注目されており、大きな放電容量
を有する電極材料として水素吸蔵合金の開発が進められ
ている この電極用水素吸蔵合金については、その特性
・性能が組成、結晶構造、さらには製造方法に大きく依
存することから、新しい合金の開発に際し、これらの諸
点について、多面的に検討されている。
2. Description of the Related Art In recent years, hydrogen storage alloys have been attracting attention as negative electrodes for alkaline storage batteries, and hydrogen storage alloys are being developed as electrode materials having a large discharge capacity. Since their properties and performances largely depend on the composition, the crystal structure, and the manufacturing method, these points have been studied in various aspects in the development of new alloys.

【0003】これまでにも各種の工夫、改善が提案され
ているが、通常は、各種の水素吸蔵合金の構成元素成分
を高温溶解し、これを冷却した後に合金塊を粉砕し、成
型するか、あるいはその混合物を得られた粉末を導電剤
および樹脂結着剤と混合して集電体に結合させて電極と
して用いている。しかしながら、これまでの水素吸蔵合
金では、その多くのものが電極として放電容量は大きい
が、サイクル寿命特性が良くないものがほとんどであっ
た。
Although various ideas and improvements have been proposed so far, usually, it is necessary to melt the constituent elemental components of various hydrogen storage alloys at high temperature, cool the alloyed components, and then crush the alloy ingots to form them. Alternatively, the powder obtained as a mixture thereof is mixed with a conductive agent and a resin binder and bonded to a current collector to be used as an electrode. However, most of the hydrogen storage alloys used so far have large discharge capacities as electrodes, but most have poor cycle life characteristics.

【0004】このような欠点を改善するものとして、合
金の構成組成、あるいは結晶構造の点については、その
合金相が金属間化合物のラーベス相を有し、結晶構造が
立方晶のC15型、あるいはC14型のものが提案され
(特開昭63−284758号公報、特開平1−102
855号公報、特開平2−65060号公報)、放電容
量等の性能の点において改善が図られているものの、そ
の性能向上には依然として改善の余地がある。
In order to improve such a defect, regarding the composition of the alloy or the crystal structure, the alloy phase has a Laves phase of an intermetallic compound, and the crystal structure is C15 type of cubic crystal, or A C14 type has been proposed (JP-A-63-284758, JP-A-1-102).
855, JP-A-2-65060), and improvement in performance such as discharge capacity has been attempted, but there is still room for improvement in performance improvement.

【0005】この発明は以上の通りの従来技術の問題を
鑑み、これらの欠点を解消して、放電容量が大きく、且
つ、これまで欠点とされていたサイクル寿命特性も優れ
た水素吸蔵合金を提供することを目的としている。
In view of the problems of the prior art as described above, the present invention solves these drawbacks and provides a hydrogen storage alloy having a large discharge capacity and excellent cycle life characteristics, which have been a drawback so far. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】水素吸蔵合金の組成を、
合金相として金属間化合物のラーベス相に属る結晶構造
が立方晶のC15型または六方晶のC14型であり、合
金組成としてZra−Vb−Nic−Mnd−Creと
することにより達成できる。 a=30〜35at%、b=6〜8at%、c=30〜
38at% d=13.9〜20.3at%、e=3.4〜9.8a
t%
[Means for Solving the Problems] The composition of a hydrogen storage alloy is
The crystal structure belonging to the Laves phase of the intermetallic compound as the alloy phase is cubic C15 type or hexagonal C14 type, and can be achieved by setting the alloy composition to Zra-Vb-Nic-Mnd-Cre. a = 30 to 35 at%, b = 6 to 8 at%, c = 30 to
38 at% d = 13.9 to 20.3 at%, e = 3.4 to 9.8a
t%

【0007】この発明は、Mn及びCrと共に、V、Z
r、Ni、更には不可避的不純物を含有する合金をその
態様の一つともしている。以上の水素吸蔵合金について
は、より具体的には、Zr Ni Mn
Crの組成のものを例示することができる。原子比
(at%)は、通常は、a=30〜35、b=6〜8、
c=30〜38、d=13.9〜20.3、f=3.4
〜9.8程度とするのが望ましい。
The present invention relates to Mn and Cr as well as V, Z
An alloy containing r, Ni, and unavoidable impurities is also one of its modes. Regarding the above hydrogen storage alloy, more specifically, Zr a V b Ni c Mn d
The composition of Cr f can be exemplified. The atomic ratio (at%) is usually a = 30 to 35, b = 6 to 8,
c = 30-38, d = 13.9-20.3, f = 3.4
It is desirable to set it to about 9.8.

【0008】次ぎに各成分元素量の限定理由を述べる。
MnとCrについては、Mnの含有量を13.9〜2
0.3(at%)、Crの含有量を3.4〜9.8(a
t%)にするのが好ましい。Mnの含有量が20.3
(at%)より多いとアルカリ電解液中での合金の耐蝕
性が低下し、サイクル寿命が短くなる。また、Mnの含
有量が13.9(at%)より少ないと、放電容量が低
下し実用的ではない。Crの含有量が9.8(at%)
より多いと、アルカリ電解液中で合金表面に形成された
Crの不働態被膜が過剰になり電気化学反応を妨げるた
め、高率放電での放電容量が減少する。また、Crの含
有量が3.4(at%)より少ないと、Crの不働態被
膜が合金表面をアルカリ電解液から保護しないため、合
金のアルカリ電解液中への溶出量が多くなり、サイクル
寿命が短くなる。
Next, the reasons for limiting the amount of each component element will be described.
Regarding Mn and Cr, the content of Mn is 13.9 to 2
0.3 (at%), the content of Cr is 3.4 to 9.8 (a
t%) is preferable. Mn content is 20.3
If it is more than (at%), the corrosion resistance of the alloy in the alkaline electrolyte is lowered and the cycle life is shortened. Further, if the Mn content is less than 13.9 (at%), the discharge capacity decreases, which is not practical. Cr content is 9.8 (at%)
If the amount is larger, the passive film of Cr formed on the alloy surface in the alkaline electrolyte becomes excessive and interferes with the electrochemical reaction, so that the discharge capacity at high rate discharge is reduced. Further, when the Cr content is less than 3.4 (at%), the passivation film of Cr does not protect the alloy surface from the alkaline electrolyte, so that the amount of the alloy eluted into the alkaline electrolyte increases and the cycle The life is shortened.

【0009】ZrおよびNiについては、その割合が過
小もしくは過剰の場合は、安定した放電容量を持つラー
ベス相C15型立方晶の結晶構造を形成することは困難
となる。Vは、放電容量を向上させるためのものである
が、過小の場合は、放電容量が減少し、且つ、常温のア
ルカリ電解液中での耐蝕性が低下する。また、過剰の場
合は、高温のアルカリ電解液中での耐蝕性が低下する。
Niが過小の場合は、合金の導電性、耐蝕性が低下し、
過剰の場合は、放電容量が減少する。
When the proportions of Zr and Ni are too small or too large, it is difficult to form a Laves phase C15 type cubic crystal structure having a stable discharge capacity. V is for improving the discharge capacity, but when it is too small, the discharge capacity decreases and the corrosion resistance in the alkaline electrolyte at room temperature decreases. On the other hand, when the amount is excessive, the corrosion resistance in the high temperature alkaline electrolyte is lowered.
If Ni is too small, the conductivity and corrosion resistance of the alloy will decrease,
In the case of excess, the discharge capacity decreases.

【0010】また、この発明の合金電極材は次の工程に
より製造される。もちろん、厳密にはこの工程に限定さ
れることはなく、様々な態様が可能である。まず、所定
の合金組成となるように、各構成元素を電気アーク炉ま
たは高周波誘導炉にて溶解し、アトマイズ法により合金
粉末を得る。次に、合金粉末を均質化するために真空中
もしくは不活性ガス中において熱処理する。熱処理条件
は、例えば真空中で、800〜1100℃程度の温度で
0.5〜20時間程度処理することが好ましい。
The alloy electrode material of the present invention is manufactured by the following steps. Of course, it is not strictly limited to this step, and various modes are possible. First, each constituent element is melted in an electric arc furnace or a high frequency induction furnace so as to have a predetermined alloy composition, and an alloy powder is obtained by an atomizing method. Next, the alloy powder is heat-treated in a vacuum or in an inert gas to homogenize it. The heat treatment conditions are preferably, for example, vacuum treatment at a temperature of about 800 to 1100 ° C. for about 0.5 to 20 hours.

【0011】この均質化熱処理後、水素化粉砕または機
械粉砕をし、分級して平均粒径20〜150μm程度に
することができ、より好ましくは、平均粒径30〜75
μm程度とする。粒径が小さすぎると合金が酸化しやす
くなり、また、大きすぎると、合金がアルカリ電解液中
で微粉化した場合、電極の破壊が起こる。得られた粉粒
体を、例えばポリテトラフルオロエチレン等のバインダ
ー樹脂を用いて所定の電極形状にプレス成型等により成
型する。任意の形状への成型が可能である。
After this homogenizing heat treatment, hydrogenation pulverization or mechanical pulverization can be carried out and classification can be carried out to obtain an average particle size of about 20 to 150 μm, more preferably an average particle size of 30 to 75.
It is about μm. If the particle size is too small, the alloy will be easily oxidized, and if too large, the electrode will be broken when the alloy is pulverized in the alkaline electrolyte. The obtained powder or granule is molded into a predetermined electrode shape by press molding or the like using a binder resin such as polytetrafluoroethylene. It can be molded into any shape.

【0012】溶解、均質化、粉砕、分級、成型について
は、様々な装置とその条件が採用され得ることは多言を
要しない。
Regarding melting, homogenizing, crushing, classifying, and molding, it is not necessary to say that various devices and conditions can be adopted.

【0013】[0013]

【作用】この発明は、上記の通り、水素吸蔵合金の含有
元素のMnの含有量を13.9〜20.3(at%)、
Crの含有量を3.4〜9.8(at%)とする合金組
成である。この組成にしたことより、アルカリ電解液中
でCrの不働態被膜層を合金表面上に形成し、合金表面
をアルカリ電解液から保護するため、合金のアルカリ電
解液中への溶出を抑制する。また、従来の組成よりアル
カリ電解液中へ溶出しやすいとされるMn量を従来の組
成より減少させた。以上の2点を改良したことにより、
放電容量の減少を少なくし、従来の合金では実現するこ
とのできなかった放電容量が大きく、且つサイクル寿命
特性に優れた電極材としての水素吸蔵合金を製造するこ
とが可能となる。
According to the present invention, as described above, the content of Mn of the elements contained in the hydrogen storage alloy is 13.9 to 20.3 (at%),
The alloy composition has a Cr content of 3.4 to 9.8 (at%). With this composition, a passivation coating layer of Cr is formed on the alloy surface in the alkaline electrolyte and the alloy surface is protected from the alkaline electrolyte, so that elution of the alloy into the alkaline electrolyte is suppressed. Further, the amount of Mn, which is more likely to be eluted into the alkaline electrolyte than the conventional composition, is reduced as compared with the conventional composition. By improving the above two points,
It becomes possible to produce a hydrogen storage alloy as an electrode material with a small discharge capacity reduction, a large discharge capacity that could not be realized with conventional alloys, and an excellent cycle life characteristic.

【0014】以下、実施例を示し、さらに詳しくこの発
明について説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【実施例】【Example】

実施例1〜5 合金組成がZr32.26.8Ni37.3Mn
20.3Cr3.4、Zr32.26.8Ni
37.3Mn18.7Cr5.0、Zr32.2
6.8Ni37.3Mn17.1Cr8.6、Zr
32.26.8Ni37.3Mn15.5
8.2、Zr32.26.8Ni37.3Mn
13.9Cr9.8、のABラーベス相C15型結晶
構造を有する合金材を、0.01〜0.2Torrの真
空度に排気した溶解炉において、アルゴンまたはヘリウ
ム雰囲気中で溶解及び噴霧した合金を、真空中で熱処理
(1080℃、保持10時間)した後、水素化粉砕し
た。また比較のために、Zr32.26.8Ni
37.3Mn23.7の組成の合金も同様な方法で製造
した(比較例1)。
Examples 1-5 The alloy composition is Zr 32.2 V 6.8 Ni 37.3 Mn.
20.3 Cr 3.4 , Zr 32.2 V 6.8 Ni
37.3 Mn 18.7 Cr 5.0 , Zr 32.2 V
6.8 Ni 37.3 Mn 17.1 Cr 8.6 , Zr
32.2 V 6.8 Ni 37.3 Mn 15.5 C
r 8.2 , Zr 32.2 V 6.8 Ni 37.3 Mn
An alloy material having an AB 2 Laves phase C15 type crystal structure of 13.9 Cr 9.8 was melted and sprayed in an argon or helium atmosphere in a melting furnace evacuated to a vacuum degree of 0.01 to 0.2 Torr. The alloy was heat-treated in vacuum (1080 ° C., hold for 10 hours) and then hydro-ground. Also, for comparison, Zr 32.2 V 6.8 Ni
An alloy having a composition of 37.3 Mn 23.7 was also manufactured by the same method (Comparative Example 1).

【0015】200メッシュ以下の合金粉を調製し、こ
の水素吸蔵合金粉を、Ni粉及び結着材としてPTFE
(ポリテトラフルオロエチレン)と、重量比で1:3:
0.167の割合で混合し、金型を用いてプレス成型し
た。この成型体にリード線を接続し、アルカリ蓄電池セ
ルの負極として使用した。電解質は30%KOHを使用
した。尚、正極には発泡ニッケルを用い、参照電極には
Hg/HgO電極を用いた。測定装置は北斗電工製のP
otentio−Galvano statを用いて半
電池式で測定した。
An alloy powder of 200 mesh or less was prepared, and this hydrogen storage alloy powder was used as Ni powder and PTFE as a binder.
(Polytetrafluoroethylene) in a weight ratio of 1: 3:
The mixture was mixed at a ratio of 0.167 and press-molded using a mold. A lead wire was connected to this molded body and used as a negative electrode of an alkaline storage battery cell. The electrolyte used was 30% KOH. Foamed nickel was used for the positive electrode and an Hg / HgO electrode was used for the reference electrode. Measuring device is P manufactured by Hokuto Denko
It was measured in a half-cell system using an otentio-Galvano stat.

【0016】表1は、測定温度25℃、充放電電流量1
7mA/gにおける放電容量の結果を示したものであ
る。また、図1及び表2は測定温度45℃、充放電電流
量110mA/gの条件で行ったサイクル寿命試験の結
果を示したもので、図1は各組成の放電容量とサイクル
数の相関図、表2は1サイクル当たりの放電容量の減少
量を示したものである。測定温度の45℃は合金の腐食
を常温の25℃より顕著にし、結果を加速させるために
設定した温度である。
Table 1 shows a measurement temperature of 25 ° C. and a charge / discharge current amount of 1
It shows the result of the discharge capacity at 7 mA / g. Further, FIG. 1 and Table 2 show the results of a cycle life test conducted under the conditions of a measurement temperature of 45 ° C. and a charge / discharge current amount of 110 mA / g. FIG. 1 is a correlation diagram of the discharge capacity and the number of cycles of each composition. Table 2 shows the amount of decrease in discharge capacity per cycle. The measurement temperature of 45 ° C. is a temperature set in order to make the corrosion of the alloy more noticeable than the normal temperature of 25 ° C. and accelerate the result.

【0017】 [0017]

【0018】表1より、測定温度25℃、充放電電流量
17mA/gでの放電容量は、比較例と同様に380m
Ah/g以上の値を示し、実施例2では、417mAh
/gという高容量を得られる。また、図1及び表2よ
り、測定温度45℃、充放電電流量110mA/gの条
件で行ったサイクル寿命試験での、1サイクル当たりの
放電容量減少量は、比較例1に対し、実施例1、実施例
2では約3倍、実施例5では約10倍少ない。この結果
から明らかなように、この発明の組成の合金を負極とす
る場合には、比較例の組成と同等以上の放電容量が得ら
れ、且つ、比較例より、サイクル寿命特性が良好である
ことが分かる。
From Table 1, the discharge capacity at a measuring temperature of 25 ° C. and a charging / discharging current amount of 17 mA / g is 380 m, which is the same as that of the comparative example.
A value of Ah / g or more is shown, and in Example 2, 417 mAh
High capacity of / g can be obtained. In addition, from FIG. 1 and Table 2, the discharge capacity reduction amount per cycle in the cycle life test performed under the conditions of the measurement temperature of 45 ° C. and the charging / discharging current amount of 110 mA / g was the same as that of Comparative Example 1. In Example 1 and Example 2, it is about 3 times, and in Example 5, it is about 10 times. As is clear from these results, when the alloy having the composition of the present invention is used as the negative electrode, a discharge capacity equal to or higher than that of the composition of the comparative example is obtained, and the cycle life characteristic is better than that of the comparative example. I understand.

【0019】[0019]

【発明の効果】この発明により、アルカリ蓄電池の負極
として有用な、放電容量が大きく、且つ、サイクル寿命
特性に優れた水素吸蔵合金を製造することが可能とな
る。
According to the present invention, it becomes possible to produce a hydrogen storage alloy useful as a negative electrode of an alkaline storage battery, which has a large discharge capacity and is excellent in cycle life characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電容量とサイクル数との相関図である(測定
温度45℃、充放電電流量110mA/g)。
FIG. 1 is a correlation diagram between discharge capacity and cycle number (measurement temperature 45 ° C., charge / discharge current amount 110 mA / g).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素を可逆的に吸蔵・放出する、合金相と
して金属間化合物のラーベス相に属す結晶構造が立方晶
のC15型または六方晶のC14型であり、合金組成と
してZra−Vb−Nic−Mnd−Creおよび不可
避的不純物からなる水素吸蔵合金。 a=30〜35at%、b=6〜8at%、c=30〜
38at%、d=13.9〜20.3at%、e=3.
4〜9.8%
1. A crystal structure belonging to the Laves phase of an intermetallic compound as an alloy phase capable of reversibly occluding and releasing hydrogen, is a cubic C15 type or a hexagonal C14 type, and has an alloy composition of Zra-Vb-. A hydrogen storage alloy comprising Nic-Mnd-Cre and inevitable impurities. a = 30 to 35 at%, b = 6 to 8 at%, c = 30 to
38 at%, d = 13.9 to 20.3 at%, e = 3.
4 to 9.8%
JP6308045A 1994-11-08 1994-11-08 Hydrogen storage alloy Pending JPH08138666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6308045A JPH08138666A (en) 1994-11-08 1994-11-08 Hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6308045A JPH08138666A (en) 1994-11-08 1994-11-08 Hydrogen storage alloy

Publications (1)

Publication Number Publication Date
JPH08138666A true JPH08138666A (en) 1996-05-31

Family

ID=17976225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6308045A Pending JPH08138666A (en) 1994-11-08 1994-11-08 Hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH08138666A (en)

Similar Documents

Publication Publication Date Title
JP2001240927A (en) Hydrogen storage alloy for negative electrode of battery capable of increasing service capacity and improving low temperature high ratio service capacity by small number of charging and discharging times by high ratio initial activating treatment
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPH08138666A (en) Hydrogen storage alloy
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JP3035605B2 (en) Hydrogen storage electrode
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JP3432847B2 (en) Hydrogen storage alloy electrode
JP3301792B2 (en) Hydrogen storage alloy electrode
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP3255007B2 (en) Hydrogen storage alloy for batteries and method for producing the same
JPH08302437A (en) Hydrogen storage alloy
JP3454780B2 (en) Alkaline storage battery
JPH11191412A (en) Alkaline storage battery
JPH10102174A (en) Hydrogen storage alloy, its production, and nickel-hydrogen secondary battery
JP3258728B2 (en) Hydrogen storage alloy electrode for metal / hydride secondary batteries
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2916156B2 (en) Manufacturing method of sheet electrode and battery
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JP3306154B2 (en) Hydrogen storage alloy and method for producing the same
JPH1036930A (en) Hydrogen storage alloy
JPH10106621A (en) Hydrogen storage alloy and nickel-hydrogen secondary battery
JPH11213996A (en) Hydrogen storage alloy electrode material