JPS5846827B2 - Manufacturing method of hydrogen storage electrode - Google Patents

Manufacturing method of hydrogen storage electrode

Info

Publication number
JPS5846827B2
JPS5846827B2 JP52019654A JP1965477A JPS5846827B2 JP S5846827 B2 JPS5846827 B2 JP S5846827B2 JP 52019654 A JP52019654 A JP 52019654A JP 1965477 A JP1965477 A JP 1965477A JP S5846827 B2 JPS5846827 B2 JP S5846827B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
electrode
manufacturing
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52019654A
Other languages
Japanese (ja)
Other versions
JPS53103543A (en
Inventor
伸行 柳原
正一 池山
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52019654A priority Critical patent/JPS5846827B2/en
Publication of JPS53103543A publication Critical patent/JPS53103543A/en
Publication of JPS5846827B2 publication Critical patent/JPS5846827B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 本発明は、電池の負極活物質に用いられる水素を可逆的
に吸蔵・放出する合金を利用した電池の負極、いわゆる
水素吸蔵電極の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a battery negative electrode, a so-called hydrogen storage electrode, using an alloy that reversibly stores and releases hydrogen, which is used as a battery negative electrode active material.

この水素吸蔵電極は、蓄電池や燃料電池に用いられる。This hydrogen storage electrode is used in storage batteries and fuel cells.

従来、この種の水素吸蔵電極として、水素を吸蔵する合
金粉末を導電性支持体とともに、不活性気流中又は真空
中において合金の融点以下の温度で焼結して権威した焼
結電極がある。
Conventionally, as this type of hydrogen storage electrode, there is a sintered electrode made by sintering a hydrogen storage alloy powder together with a conductive support in an inert air stream or in a vacuum at a temperature below the melting point of the alloy.

この電極は合金の性質上その焼結強度が比較的小さいの
で、充放電を繰り返すと合金粒子相互間の結合部の崩壊
により粒子が脱落し、放電容量が低下する欠点を有する
Since this electrode has a relatively low sintering strength due to the nature of the alloy, it has the disadvantage that repeated charging and discharging causes the particles to fall off due to the collapse of the bonds between the alloy particles, resulting in a decrease in discharge capacity.

この傾向は、CaNi5系合金、LaNi5系合金にお
いて特に著しい。
This tendency is particularly remarkable in CaNi5-based alloys and LaNi5-based alloys.

本発明は、水素を吸蔵する電極活性物質である合金粉末
に、水素を吸蔵しない金属粉末を混合して焼結すること
により、前記金属による充放電反応に関与しない骨格を
形成して、合金粒子の脱落のない長寿命の水素吸蔵電極
を提供するものである。
In the present invention, metal powder that does not store hydrogen is mixed with alloy powder, which is an electrode active material that stores hydrogen, and is sintered to form a skeleton that does not participate in charge/discharge reactions caused by the metal. The present invention provides a long-life hydrogen storage electrode that does not come off.

ここに用いる金属は、耐電解液性であり、合金の焼結温
度で焼結可能なものがよく、用いる合金に応じて遷移金
属、その他導電性のある金属のなかから適宜選択する。
The metal used here is preferably one that is resistant to electrolyte and can be sintered at the sintering temperature of the alloy, and is appropriately selected from transition metals and other conductive metals depending on the alloy used.

合金がCaNi5系合金、LaNi5系合金、Ni2T
i系合金のようにニッケルを含む合金に対してはニッケ
ルが適している。
The alloy is CaNi5 alloy, LaNi5 alloy, Ni2T
Nickel is suitable for alloys containing nickel, such as i-based alloys.

以下、本発明をその実施例により説明する。Hereinafter, the present invention will be explained with reference to examples thereof.

市販のカルシウム(純度99.5%以上)122と市販
のニッケル(純度99.5%以上)881をとり、アー
ク溶解炉に入れ、炉内を10−5〜10 ’Torr
まで減圧にした後、アルゴンを流し、次にアークを飛ば
して加熱溶解させた。
Take commercially available calcium (purity 99.5% or higher) 122 and commercially available nickel (purity 99.5% or higher) 881, put them into an arc melting furnace, and heat the inside of the furnace to 10-5 to 10' Torr.
After reducing the pressure to 100%, argon was flowed, and then an arc was blown to heat and melt.

試料は数回反転させ、合金の均質化を図った。The sample was inverted several times to homogenize the alloy.

こうして得た合金をアルゴン雰囲気中で粉砕し、粒径数
μ〜数10μの粉末10ftをとり、これにニッケル粉
末を0.5〜5.O?のmで加え、よく混合した。
The alloy thus obtained is ground in an argon atmosphere, 10 ft of powder with a particle size of several microns to several tens of microns is taken, and 0.5 to 5.0 m of nickel powder is added to this. O? m and mixed well.

この混合物を、大きさ25X25mm、厚さ2.0mm
のニッケル製発泡メタルに充てんし、アルゴンガス気流
中で、1000℃の温度で2時間焼結して電極を得た。
This mixture was made into a size of 25 x 25 mm and a thickness of 2.0 mm.
The electrode was filled in a foamed nickel metal and sintered at a temperature of 1000° C. for 2 hours in an argon gas flow to obtain an electrode.

上記の電極を負極とし、これより容量の大きい公知の酸
化ニッケル電極を正極としてアルカリ蓄電池を構成し、
充放電試験をした。
An alkaline storage battery is constructed by using the above electrode as a negative electrode and a known nickel oxide electrode with a larger capacity as a positive electrode,
I did a charge/discharge test.

充放電々流は負極材料の合金とニッケル粉末との混合物
11当たり50mA、充放電速度は0.2Cであり、充
電電気量は負極容量の130%相当である。
The charging/discharging current was 50 mA per mixture 11 of the negative electrode material alloy and nickel powder, the charging/discharging rate was 0.2 C, and the amount of charging electricity was equivalent to 130% of the negative electrode capacity.

図は上記電池の放電容量と、陰極の合金に対するニッケ
ル粉末の添加割合との関係を示す。
The figure shows the relationship between the discharge capacity of the battery and the proportion of nickel powder added to the cathode alloy.

図中実線は初期の値、点線は50サイクル目の値を表す
In the figure, the solid line represents the initial value, and the dotted line represents the value at the 50th cycle.

なお放電容量は、負極の合金とニッケル粉末との混合物
11当たりの量で示した。
Note that the discharge capacity was expressed in terms of the amount per 11 of the mixture of the negative electrode alloy and nickel powder.

図から明らかなように、ニッケルの添加量が多(なるに
従って、充放電の初期の容量と50サイクル目のそれと
の差が小さく、従って充放電サイクルに伴う容量の劣化
が小さいことがわかる。
As is clear from the figure, as the amount of nickel added increases, the difference between the initial capacity of charge and discharge and that at the 50th cycle becomes smaller, and therefore, it can be seen that the deterioration of capacity due to charge and discharge cycles becomes smaller.

又ニッケル粉末の添加量が多くなるに従って容量の給体
値が小さくなるので、この点と寿命とを考慮すると、ニ
ッケルの添加量は合金粉末に対して5〜30重量%が好
ましい範囲である。
Furthermore, as the amount of nickel powder added increases, the supply value of the capacity decreases, so taking this point and the life into consideration, the amount of nickel added is preferably in the range of 5 to 30% by weight based on the alloy powder.

水素吸蔵電極は、充電時に水素を吸蔵し、放電時に水素
を放出するので、必然的に電極自体膨張、収縮を伴い、
従って焼結された合金粒子の体積変化を生じる。
Hydrogen storage electrodes store hydrogen during charging and release hydrogen during discharge, so the electrode itself inevitably expands and contracts.
This results in a volume change of the sintered alloy particles.

そして粒子間の結合力が上記の体積変化による応力に負
げると、粒子の脱落を生じることになる。
If the bonding force between the particles is affected by the stress caused by the above-mentioned volume change, the particles will fall off.

本発明の電極では、焼結された合金粒子の一部がニッケ
ル粒子で置換され、これが合金粒子と結合しており、か
つニッケル粒子は水素の吸蔵、放出に関与しないので、
強固な結合力を維持するのである。
In the electrode of the present invention, some of the sintered alloy particles are replaced with nickel particles, which are bonded to the alloy particles, and the nickel particles do not participate in the absorption and release of hydrogen.
It maintains a strong bond.

以上のように、本発明は充放電サイクル寿命の長い水素
吸蔵電極を提供するものである。
As described above, the present invention provides a hydrogen storage electrode with a long charge/discharge cycle life.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、合金粉末とニッケル粉末の混合物の焼結体から
なる電極と酸化ニッケル電極とを組合せたアルカリ蓄電
池の放電容量と、前記合金に対するニッケル粉末の添加
割合との関係を示す。
The drawing shows the relationship between the discharge capacity of an alkaline storage battery that combines an electrode made of a sintered body of a mixture of alloy powder and nickel powder and a nickel oxide electrode, and the addition ratio of nickel powder to the alloy.

Claims (1)

【特許請求の範囲】 1 水素を吸蔵する合金粉末と水素を吸蔵しない金蔵粉
末との混合物を焼結して焼結多孔体を形成することを特
徴とする水素吸蔵電極の製造法。 2 合金がニッケルを含む合金であり、かつ金属がニッ
ケルである特許請求の範囲第1項記載の水素吸蔵電極の
製造法。 3 合金に対する金属の混合割合が5〜30重量%であ
る特許請求の範囲第1項又は第2項記載の水素吸蔵電極
の製造法。
[Scope of Claims] 1. A method for manufacturing a hydrogen storage electrode, which comprises sintering a mixture of an alloy powder that stores hydrogen and a metal storage powder that does not store hydrogen to form a sintered porous body. 2. The method for manufacturing a hydrogen storage electrode according to claim 1, wherein the alloy is an alloy containing nickel, and the metal is nickel. 3. The method for manufacturing a hydrogen storage electrode according to claim 1 or 2, wherein the mixing ratio of the metal to the alloy is 5 to 30% by weight.
JP52019654A 1977-02-23 1977-02-23 Manufacturing method of hydrogen storage electrode Expired JPS5846827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52019654A JPS5846827B2 (en) 1977-02-23 1977-02-23 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52019654A JPS5846827B2 (en) 1977-02-23 1977-02-23 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS53103543A JPS53103543A (en) 1978-09-08
JPS5846827B2 true JPS5846827B2 (en) 1983-10-19

Family

ID=12005223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52019654A Expired JPS5846827B2 (en) 1977-02-23 1977-02-23 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPS5846827B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935001A (en) * 1982-08-23 1984-02-25 Mitsubishi Steel Mfg Co Ltd Preparation of hydrogen storing material
JPS59181460A (en) * 1983-03-31 1984-10-15 Res Dev Corp Of Japan Electrode of metal hydride
JP2680669B2 (en) * 1989-03-10 1997-11-19 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage battery
AU2001213092A1 (en) 2000-11-13 2002-05-21 Matsushita Electric Industrial Co., Ltd. Porous nickel foil for alkaline battery cathode, production method therefor and production device therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250909A (en) * 1975-10-21 1977-04-23 Natl Res Inst For Metals Process for producing porous ti-ni, ti-co alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250909A (en) * 1975-10-21 1977-04-23 Natl Res Inst For Metals Process for producing porous ti-ni, ti-co alloy

Also Published As

Publication number Publication date
JPS53103543A (en) 1978-09-08

Similar Documents

Publication Publication Date Title
JPS636746A (en) Electrochemical battery
JPS5846827B2 (en) Manufacturing method of hydrogen storage electrode
JPS618848A (en) Nickel-hydrogen storage battery
JPH0241864B2 (en)
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JPS61176067A (en) Hydrogen occlusion electrode
JPS60119079A (en) Hydrogen absorption electrode
JPH0763004B2 (en) Sealed alkaline storage battery
JPS6077357A (en) Electrode which can absorb hydrogen
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPH0690922B2 (en) Sealed alkaline storage battery
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS60175367A (en) Production of negative electrode for closed storage battery
JPS5949669B2 (en) Hydrogen storage electrode
JPH0434857A (en) Enclosed type alkaline battery and manufacture thereof
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPS61288372A (en) Hydrogen occlusion electrode
JPS6166367A (en) Manufacture of hydrogen-occlusion electrode
JPH063733B2 (en) Hydrogen storage electrode
JPS62108458A (en) Nickel-hydrogen secondary cell
JPH0586622B2 (en)
JPS61176065A (en) Hydrogen occlusion electrode
JPH0582125A (en) Hydrogen occluding alloy electrode