JPH0238311A - 酸化物超電導体及びその製法 - Google Patents

酸化物超電導体及びその製法

Info

Publication number
JPH0238311A
JPH0238311A JP63191138A JP19113888A JPH0238311A JP H0238311 A JPH0238311 A JP H0238311A JP 63191138 A JP63191138 A JP 63191138A JP 19113888 A JP19113888 A JP 19113888A JP H0238311 A JPH0238311 A JP H0238311A
Authority
JP
Japan
Prior art keywords
powder
cuo
oxide superconductor
rare earth
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63191138A
Other languages
English (en)
Inventor
Saburo Nagano
三郎 永野
Shuya Yamada
山田 修也
Yoshinori Matsunaga
松永 佳典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63191138A priority Critical patent/JPH0238311A/ja
Publication of JPH0238311A publication Critical patent/JPH0238311A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば磁気浮上列車及び粒子加速器等の超電
導コイル部分や電子デバイス等に使用される高臨界電流
密度を有する酸化物超電導体及びその製法に関するもの
である。
近年、希土類元素、アルカリ土類元素及び酸化銅の混合
物からなる複合酸化物系超電導体はそのTcがNbTi
+ Nb3Sn等に代表される従来の超電導体と比べ著
しく高いものであることが、フィジカルレピューレター
ズ58(1978)第908頁から第910頁(Phy
sical Review Letters 58(1
978)pp908−910)などにおいて発表され、
冷媒として高価で橿低温(4,2k)の液体ヘリウムよ
りも比較的高温(77k)の液体窒素下での使用が充分
可能となった。それゆえに、この酸化物超電導体の各種
利用分野における実用化の百度に大きな前進がみられた
。これらの発表に伴い上記利用分野におけるバルク状又
は薄膜状の酸化物超電導体において、そのTcをさらに
常温まで高めようとする研究と並行して、77ににおけ
る臨界電流密度(Jc)を向上させる研究が盛んに行わ
れている。
REBazCu+Ot−/ (RE=希土類元素)系組
成の酸化物超電導体は、斜方晶系に属し、その単位の格
子パラメータは、はぼa=3.89人、b=3.82人
、c=11.67人であり、物理的な特性も大きな異方
性を有することが明確になっている。その為、5rTi
(h、MgOなどの単結晶基板上にエピタキシャル成長
させてC軸配向させた薄膜の場合、そのJcは1×10
h^/cm”(磁場がOTの時でかつ77kにおいて)
に達している。しかし乍ら、これに比べ通常の粉体固体
反応で製造した焼結体においては、I X 10”A/
cm” (磁場がOTの時でかつ77kにおいて)程度
とかなり小さい。この値は、磁界を印加することにより
さらに下がり、ITの時I X 10”A/cm”程度
となる。
このように、従来の酸化物超電導体の電流密度は金属系
の超電導体に比べ低く、実用的レベルに達していないの
が現状である。
一方、第2種の超電導体は特性上、下部臨界磁界()I
cI)で磁束が内部に侵入し、上部臨界磁界()Ice
)で磁束が流動するため超電導状態が破壊されてしまう
性質をもつ。臨界電流密度Jcを高める為には、このH
c、を上げることも重要な要素であり、一般にNb3S
n等の金属間化合物超電導体では、加工歪み、結晶粒界
、粒界析出物等がピニングとして作用し、磁束の流動を
抑制し、Jcを高めるという開発がなされてきた。
〔発明が解決しようとする問題点〕
酸化物系超電導体も第2種の超電導体に属し、1(c、
とHc、間では混合状態となっている。よって酸化物超
電導体においても、金属超電導体と同様にJcを高める
ためには、ピニングセンターを導入することが有効であ
ると考えられる。
しかし乍ら、酸化物部を導体は特異な結晶の種々の゛異
方性を有するため、組織配向を含めたピニングセンター
の探索がなされているが、未だ有効本発明者等は上記問
題点に対し検討を重ねた結果、REBa、Cu307−
/  系酸化物超電導体において、REBazCu30
y−/  結晶内部に常磁性体であるREzBaCu0
5が存在する包晶体多結晶組織とすることによって、R
E2BaCuO5がピニングセンターとして作用し、臨
界温度Tcを低下させることなり、Jcを高めることが
できることがわかった。また、このような組織は、出発
原料としてRE、BaCuO,とBaCuO,およびC
uOを用い、これらが焼成過程で包晶反応によってRE
BazCtl+Ot−/  になる 化学量論比よりも
過剰のRE2BaCuO5を配合することによって容易
に且つREJaCuOsが均一に分散した組織を作製す
ることができる。
以下、本発明を詳述する。
本発明の酸化物超電導体は成分としてREBazCui
O?−/ (RE=希土類元素であり、以下説明を省略
する)系酸化物超電導体と、常磁性体としてRE、Ba
CuO3とから成るもので、本発明の特徴は第1図に示
すようにREzBaCu05組成物1が実質上、REB
azCuzot−r  結晶粒子2の内部に存在する点
にあり、1?tEJacuos Mi成初物1いわゆる
ピニングセンターとして作用し、臨界電流密度Jcが向
上する。
本発明によれば、系内のRE2BaCuO5の量は具体
的には、8モル%以下、特に2〜5モルχの範囲が望ま
しく8モルχを超えると、焼成時の緻密化が進まず、ま
た系中のREBazCuz07−/  成分の量が少な
くなるため、Jcの向上は余り認められない。
また、本発明によれば、REBazCuaOl−/  
結晶はそれ自体異方性をもち、電気的特性も結晶軸方向
により異なることが知られている。Jcをより向上させ
るためには、REBazCua07−/  結晶粒子が
同一方向に緻密に積層した組織、いわゆるC軸配向した
組織とすることにより高いJcが得られる。
本発明の酸化物超電導体の製造方法は、基本的に下記式
(1) %式% に表わされる包晶反応に基づくものである。REZBa
cuos+BacuO2,CuOの各粉末を用いて焼成
を行うと、RE!JaCuOs結晶が液相成分である(
3BaCuO,+ 2CuO)と包晶反応が生じ、RE
zBaCu05結晶の外周よりREBazCu30.−
jへと変化スル。
この時、液相成分(3BaCuO,+ 2CuO)の量
が式(1)に基づく化学量論比より少ない場合、RE2
BaCuO5結晶のREBazCuJ7−/  結晶へ
の変換は中断され、結果として、第1図に示すようにR
HBazCu:+07−/結晶の内部にRE2BaCu
O,が残存した粒子の多結晶質となる。
具体的にはRE2BaCuO5粉末、BaCuOZ粉末
およびCuO粉末を下記式(2) %式%(2) で表わされるモル比でミル等により均一混合する。
所望により880〜920℃の温度で仮焼後、粉砕を繰
り返した仮焼粉末を用いる。
本発明において用いられるRE2BaCuO5粉末は通
常のYBa2Cu3O7−/  の合成粉を製造する際
に用いられる、固相反応法、共沈法、ゾル−ゲル法、気
相合成法のいずれでも合成できる。合成温度は900〜
1300℃である。これらの方法によれば、RE2Ba
cu05は柱状晶粉末となるが、特にアスペクト比(長
軸/短軸)が3以上、平均粒子径が1.0〜3.0μm
であることが望ましい。
一方、BaCuO2は例えばBaC0,とCuOを1、
モルずつ混合し、酸化雰囲気で880〜1000℃に加
熱することにより合成できるが、微粉化に際しては90
0℃程度が好ましく 、CuO粉末と共に、これら融液
成分は焼成時の液相生成温度を下げるために0.5〜2
.0 μlの微粉であることが望ましい。
尚、RE2BaCuO5に対するBaCuO2およびC
uOの添加はBaCuO,粉末とCuO粉末との組合わ
せに限定されず、BaC0,粉末とCuO粉末を前述し
た式(2)の組成になるように配合することもできる。
次に混合粉末あるいは仮焼粉末を用いて成形を行う。
成形は公知の手段、例えばプレス成形法、押出し成形法
、テープキャスティング法、射出成形法等が採用できる
が、これらの中でもドクターブレード法、引上げ法、押
出し法、ロールコンパクション法によれば、成形時にR
E2BaCuO5の粉末の配向が可能となることから、
焼結後の組織の配向を促進でき、特にJcの向上に対し
、有効である。また、伸線の製造に際し、Ag等の管内
に入れ、これを伸線加工することも同様な理由で有効で
ある。
得られた成形体は酸化雰囲気下で900〜1100℃、
好ましくは920〜1030℃の温度で0.5〜2hr
加熱保持した後、徐冷する。
この時、最高温度での保持時間は試料の形状により決定
され、肉薄あるいは細線の場合は保持時間を短く、形状
が大きくなるに従い、保持時間を長く設定する。
徐冷速度は前述の式(1)の包晶反応によって生成され
るREBazCu107〜? の結晶粒子の大きさに影
響するが、一般に50〜b れる。
このようにして得られた焼結体は結果として、RE2B
aCuO5常磁性組成物がREBazCuzO7−r 
 結晶内部に残存した状態となる。またREBazCu
30r−/  結晶粒界に残存し易いBaCuO2やC
uOは、その量はREzBacu05 との反応に対し
、使用される量より少ないことから、その殆どがRE2
BaCuO5と反応し粒界は実質上クリーンな状態とな
っており、これにより系全体のJcを高くすることがで
き、後述する実施例からも明らかな通り臨界温度(Tc
)が77に以上で臨界電流密度5000A/cn+” 
(ゼロ磁場、77k)以上が達成される。
尚、本発明におけ°るREBazCu+Ow−/  お
よびREZBacuosのREは一般的希土類元素であ
り具体的には、Y+ Lu+ Yb+ Tm、 Er+
 Ho+ oy、 Gd+ Eu、 Sm、 Ndが挙
げられる。
以下、本発明を次の例で説明する。
〔実施例1〕 YzOz:BaC0*:Cu0=1:1:1のモル数で
混合した粉末を大気中で1100℃で10時間仮焼し、
その後、メノー乳鉢で粉砕し、再び同条件で仮焼した。
乳鉢で解砕後、ボールミルにより粉砕し、最終的に平均
粒径(長軸方向)1.2μm、アスペクト比4の柱状晶
の粉末を得、X線回折によりREJaCuOsであるこ
とを確認した。
BaC0z:Cu0=1:1のモル比率で混合し、仮焼
温度900℃で10時間仮焼し、同様に粉砕して平均粒
径0.8 ptaのBaCuO2粉末を得た。
このY2BaCuO5とBaCu0sおよびCuOの各
粉末を第1表hhl〜6に示すモル比で混合し、成形用
バインダーとしてPVAを添加し、φ12no++のベ
レット状に成形した。この成形体を酸素気流中で970
℃10時間焼成を行った。尚、昇温速度は200℃/h
r降温速度は100℃/hrである。
得られた焼結体より1部、粉砕し、X線回折を行いY2
BaCuO5の最強の回折ピークである2θ=29.8
  °における回折ピーク高さと、YBa、Cu、Oy
の主ピークである2θ・32.8°の回折ピークの高さ
の比より検量線によりY、BaCuO,の残存量(χ)
を求めた。
なお、検量線は、1100℃で合成したY2BaCuO
5粉末及びYzO:+:BaCOx:Cu0=0.5:
2:3のモル比で混合した粉末を大気中で900℃で1
0時間仮焼し、粉砕後、再び同条件で仮焼して得たYB
azCuJ、−/  粉末とをYJaCuOsが2.4
,8.12モルχとなるように配合し、充分混合した後
、粉末X線回折を行い上に述べた回折ピークの高さ及び
その強度比を求めY、BaCuO,のモル数とピーク強
度比との検量線カーブを求めた。
また、試料に対し、4端子法により、温度に対する抵抗
変化を調べた結果、抵抗がゼロとなるオフセット温度(
K)を調べた。
さらに、試料の臨界電気密度(Jc)は振動試料型磁力
計によりトHヒステリシスカーブより求めた。
M−)!ヒステリシスカーブにおいて昇磁カーブと減磁
カーブとの磁化の差ΔN=μo−d  −Jcとして表
わされる。ここでμ0は真空の透磁率、dは板状サンプ
ルの巾の1/2 、Jcは電流密度である。
この関係式を用いてJcを求めた。
〔比較例〕
YBa2Cu3O7−/  粉末を固相粉末法で合成し
、粉砕成形後、実施例1と同じ条件で焼成し、第1表魚
11の試料と作製し、実施例1と同様に特性評価した。
〔実施例2〕 実施例1においてYJaCuOsに代えてYb2BaC
uO5を同様な方法で合成し、BaCuO2、 CuO
と第1表Nf17に示す組成でペレット状成形体をつく
りこれを酸素雰囲気中で950℃で10時間焼成し、実
施例1と同様な方法で特性評価を行った。
〔実施例3〕 実施例1において同じYJaCuOs+BaCu0s+
CuO粉末を用い、これらを第1表11m8〜1oに示
す組成に混合し、トルエン溶媒を用いバインダーとして
アクリル系共重合体及び可塑剤を添加し、ドクターブレ
ード法でテープ状に成形し、乾燥後、12 x 12X
0.8(n+m)形状に加工後、実施例1と同一条件で
焼成した。
得られたテープ状焼結体に対し、実施例1と同様に特性
評価を行った。
〔以下余白〕
第1表に示すように、従来のようにYBazCusOl
−/粉末を用いた系(l1hll ”)やY2BaCu
O5,BaCuO2+ CuOを化学量論的に配合した
(魚6)ではオフセ−/ )温度は90に以上であるが
、Jcは200A/cm”程度で低い。またBaCuO
2+CuOがY2BaCuO5に対して過剰に含まれる
場合も、粒界にBaCuO□、 CuOが残存しJcの
向上は望めなかった。
これに対し、患1〜4.7〜10の試料は焼結体の表面
X線回折ではREBa2Cu3O7−/  のみが検出
されたが、粉砕した粉末に対するX線回折ではREBa
zcuJ7−/  とともにREJaCuOsの残存相
が検出され、REJaCuOsがREBa2Cu3O7
−/  結晶内に存在することを確認した。また、トH
ヒステリシスカーブにおいてこれらの資料は阻11の試
料と比較していずれも△門が大きくなり、常磁性のRE
2BaCuO1がピニングとして作用した効果であると
考えられる。
一方、テープ成形した磁8〜10では焼結体組織がC軸
配向した積層構造であることが観察され、Jcの同上は
特に優れていた。
〔発明の効果〕
以上、詳述した通り、本発明によれば、常磁性体である
RE2BaCuO5組成物をREBazC+jsOt−
/  結晶粒内に残存させることによってREIBaC
uOsがピニングセンターとして作用し、臨界温度Tc
を低下させることなく、臨界電流密度を100OA/c
m”以上に高めることができる。本発明における製法に
よれば、ピニングセンターの均一分散性に非常に優れる
ために、例えば伸線等に適用した場合、効果のバラツキ
等を低減することができる。なおJcの向上に対しては
、組織のC軸配向化を同時に行うことが、より好ましい
こともわかった。
【図面の簡単な説明】
第1図は本発明における酸化物超電導体の組織構造を説
明するための図である。

Claims (3)

    【特許請求の範囲】
  1. (1)REBa_2Cu_3O_7_−_δ(RE=希
    土類元素)系酸化物超電導体結晶粒子の実質上内部に常
    磁性体であるRE_2BaCuO_5(RE=希土類元
    素)組成物が存在した包晶体の多結晶質からなる臨界温
    度Tcが80K以上の酸化物超電導体。
  2. (2)RE_2BaCuO_5組成物を0.5〜8モル
    %の割合で含有する特許請求の範囲第1項記載の酸化物
    超電導体。
  3. (3)RE_2BaCuO_5(RE=希土類元素)粉
    末、BaCuO_2粉末およびCuO粉末を下記式 RE_2BaCuO_5:BaCuO_2:CuO=1
    :3(1−x):2(1−x)但し、x≧0.01 で表わされるモル比で混合した混合粉末あるいはその仮
    焼粉末を成形後、900〜1100℃の酸化性雰囲気で
    焼成したことを特徴とする酸化物超電導体の製法。
JP63191138A 1988-07-29 1988-07-29 酸化物超電導体及びその製法 Pending JPH0238311A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63191138A JPH0238311A (ja) 1988-07-29 1988-07-29 酸化物超電導体及びその製法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191138A JPH0238311A (ja) 1988-07-29 1988-07-29 酸化物超電導体及びその製法

Publications (1)

Publication Number Publication Date
JPH0238311A true JPH0238311A (ja) 1990-02-07

Family

ID=16269520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191138A Pending JPH0238311A (ja) 1988-07-29 1988-07-29 酸化物超電導体及びその製法

Country Status (1)

Country Link
JP (1) JPH0238311A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736489A (en) * 1997-02-07 1998-04-07 Wright State University Method of producing melt-processed polycrystalline YBa2 Cu3 O.sub.
JP2013136815A (ja) * 2011-12-28 2013-07-11 Fujikura Ltd レーザーアブレーション用ターゲットとそれを用いた酸化物超電導線材の製造方法および酸化物超電導線材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736489A (en) * 1997-02-07 1998-04-07 Wright State University Method of producing melt-processed polycrystalline YBa2 Cu3 O.sub.
JP2013136815A (ja) * 2011-12-28 2013-07-11 Fujikura Ltd レーザーアブレーション用ターゲットとそれを用いた酸化物超電導線材の製造方法および酸化物超電導線材

Similar Documents

Publication Publication Date Title
EP0330305B1 (en) High-temperature oxide superconductor
JP2839415B2 (ja) 希土類系超電導性組成物の製造方法
JP2636049B2 (ja) 酸化物超電導体の製造方法および酸化物超電導線材の製造方法
JP2571789B2 (ja) 超電導材料及びその製造方法
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
JPH07172834A (ja) 酸化物超電導材料およびその製造方法
JPH0238311A (ja) 酸化物超電導体及びその製法
JPH1125771A (ja) 酸化物超電導テープ材とその製造方法
JPH02204358A (ja) 酸化物超電導体及びその製法
JP2761727B2 (ja) 酸化物超電導体の製法
JP3287028B2 (ja) Tl,Pb系酸化物超電導材及びその製造方法
Calleja et al. Successful synthesis of Hg0. 80Re0. 20Sr2Can− 1CunO2n+ 2+ δ (n= 1, 2) by the sealed quartz tube technique
JP2817170B2 (ja) 超電導材料の製造方法
JP2803819B2 (ja) 酸化物超電導体の製造方法
JP2597578B2 (ja) 超電導体の製造方法
JP3257000B2 (ja) 銅酸化物超電導体及びその製造方法
JP2964258B2 (ja) 酸化物超電導体の製造方法
JPH0818834B2 (ja) 複合酸化物超電導材料及びその製造方法
JPH01261260A (ja) 酸化物超電導体の製法
JP2971504B2 (ja) Bi基酸化物超電導体の製造方法
JPH0769626A (ja) 金属酸化物とその製造方法
JP2749194B2 (ja) Bi−Sr−Ca−Cu−O系超電導体の製法
JPH0818835B2 (ja) 複合酸化物超電導材料及びその製造方法
JPH0616419A (ja) 無限層超伝導体
JPH07115872B2 (ja) 酸化物超電導体およびその製造方法