JPH0227619A - 複合超伝導体銅ワイヤの製造方法 - Google Patents

複合超伝導体銅ワイヤの製造方法

Info

Publication number
JPH0227619A
JPH0227619A JP1117619A JP11761989A JPH0227619A JP H0227619 A JPH0227619 A JP H0227619A JP 1117619 A JP1117619 A JP 1117619A JP 11761989 A JP11761989 A JP 11761989A JP H0227619 A JPH0227619 A JP H0227619A
Authority
JP
Japan
Prior art keywords
powder
oxygen
tube
pipe
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1117619A
Other languages
English (en)
Other versions
JPH0799651B2 (ja
Inventor
Edward M Engler
エドワード・マーチン・エングラー
Toivo T Kodas
トイボ・ターモ・コダス
Victor Yee-Way Lee
ビクター・イー‐ウエイ・リイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPH0227619A publication Critical patent/JPH0227619A/ja
Publication of JPH0799651B2 publication Critical patent/JPH0799651B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0548Processes for depositing or forming copper oxide superconductor layers by deposition and subsequent treatment, e.g. oxidation of pre-deposited material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/704Wire, fiber, or cable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/737From inorganic salt precursors, e.g. nitrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • Y10S505/74To form wire or fiber

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、複合高温超伝導体銅ワイヤの製造方法に関す
る。
B、従来技術 Matsuda et at、、 Material 
Re5earch SocietySymposium
 Proc、+ V、99+ 198L p、695は
、銀をベースにしたワイヤの製造方法を示している。
Togano et al、、 Material R
e5earch SocietySymposiuo+
 Proc、+ V、99+ 198L p、191は
、酸化物の混合物から形成された超伝導体で被覆された
銅のテープを示している。
Jim et al、、 Applied Physi
cs Letters、 V、51(12)、 215
eptea+ber 1987. P、943は、超伝
導体のワイヤを形成するための溶融酸化物法を示してい
る。
Glowacki et al。Paper AA7.
35 MaterialResearch 5ocie
ty Symposiuta Proceedings
Boston、 12187は、銀の外鞘を用いた複合
超伝導体を示している。
McCallum et al、、Advances 
 fn  CeralIIicMaterials、 
May 1987.は、Y B a z Cu3011
超伝導体ワイヤの製造上の問題を議論している。
Kohno et al、、 Yamada Conf
erence onSuperconductivit
y、 (Physica B+ 148 (1−3Lp
、429で刊行)は、高Tc酸化物ワイヤの特性を述べ
ている。
Ohmatsu et al、、 Japanese 
Journal ofApplied Pt+ysic
s+ 26+ Supplement 26−3. L
1207+1987は、高Tc酸化物ワイヤの製造法を
示している。
上記従来技術のどれも本発明により要求される処理ステ
ップを用いていないことは明らかである。
C0発明が解決しようとする課題 新規な高温セラミック超伝導体の多くの実用的な応用へ
の鍵は、他の材料と適合性のある方法でそれらを有用な
形に製造できる能力である。ワイヤを製造しようとする
努力は、それらの材料のもろい性質と貧弱な正常状態の
抵抗率に悩まされた。
従って、超伝導体が正常状態へ遷移する場合に電流分流
路としても作用するより柔軟な金属支持体が必要とされ
た。
01課題を解決するための手段 本発明は、これらの困難を克服し、銅の使用に適合性が
あり且つ長いワイヤを製造することを可能にする複合高
温超伝導体ワイヤの製造方法を提供する。本発明によれ
ば、複合高温超伝導体銅ワイヤは、(1)の超伝導セラ
ミック材料のサブミクロン・サイズの粉末を一定長の銅
の管の中を通して、上記管の内面を上記粉末の一様な密
な膜で被覆し、(2)上記管内に酸素を通し且つ上記管
の外側を不活性雰囲気中に維持しながら上記粉末を焼結
するステップにより形成される。
F、実施例 本発明の方法は全てのセラミック超伝導体に適用可能で
ある。それらの材料は近年周知になっている。それらは
、例えばBednorz及びMullerの先駆的業績
により発見された希土類をベースとする物質、イツトリ
ウムをベースとする物質、タリウムをベースとする物質
、及びビスマスをベースとする物質を含む。これら全て
のセラミック超伝導体は種々の金属と酸素とを含んでい
る。それらは全て、セラミックの一般的な物理的性質(
もろさ及び製造の困難さを含む)を共有している。しか
し、全てのそのような物質は、本発明において使用する
のに適している。
これらの物質の超伝導特性は処理条件の詳細に非常に依
存する。特に、高温の酸素雰囲気の焼結(sinter
ing)は最適の、バルク超伝導を達成するために本質
的であるが、これは他の、より反応性の高い材料との複
合構造の製造を非常に困難なものにしている。
本発明の良好な実施例において、エアロゾル法によりミ
クロン・サイズの粉末が形成される。そのような方法は
、Kodas et al、、 AppliedPhy
sics Letters、 52(19)、 9 M
ay 1988. p、1622に記載されている。こ
の刊行物から明らかなように、超伝導セラミック材料の
サブミクロン・サイズの粉末は、(1)高温超伝導体を
形成する所望の量の陽イオンを含む水溶液のサブミクロ
ン・サイズの液滴を形成し、そして(2)酸素流の中の
上記液滴を約900〜1100’Cの炉の中に通して、
超伝導のサブミクロン・サイズの粉末を形成するステッ
プにより製造される。
本発明の方法の典型的な説明として、Y、Ba及びCu
の硝酸塩の水溶液を霧状にするために一定出力の噴霧器
が使用された。噴霧器により形成されたミクロン・サイ
ズの液滴は、酸素気流により約1000℃の炉中を搬送
された。炉を出て来たのは、サブミクロンのYIBag
 Cuz O?超伝導体のサブミクロン(0,5ミクロ
ン以下)の粉末であった。X線及び磁化率の測定により
超伝導体の形成が確認された。これらの微細な粉末は、
所定長の鋼管に導かれると、適当な温度勾配の下で、内
壁を被覆し、一様で密度の高い膜を形成した。次のステ
ップは、それを焼結してバルク超伝導体にすることによ
り、Yl B a t Cus O?粉末を銅に固定す
ることである。これは鋼管を不活性雰囲気(例えばアル
ゴン)中に置き、鋼管の内側に加熱した酸素(700〜
900°C)を通じることにより行なわれた。これは内
側からの加熱を生じ且つ焼結中の銅と酸素との反応を最
小限にする。外側の銅表面は不活性雰囲気により酸化か
ら保護される。
本発明の鍵の特徴は非常に小さな粒子(0,5ミクロン
以下)の超伝導体を使用する事である。これはサーモフ
オレシス(thermophoresis)とブラウン
拡散により付着して密な被覆を形成し、温度勾配を制御
することにより付着ゾーンに移動させる事ができ、また
酸素雰囲気中で内側の管表面だけを加熱する事ができる
。さらに、エアロゾル・フロー反応器中で形成されるこ
れらの微細な高純度の粉末は、緩やかな条件の下で容易
に焼結される。
この方法は、長い実用的な複合ワイヤを製造する大規模
操作も可能である。
本発明の良好な実施例において、所望のセラミック超伝
導体の適当な化学量論比の金属陽イオン塩の水溶液が酸
素気流中でアエロゾル発生器を通過され、平均直径0.
5〜1.0ミクロンの溶液の微細な液滴を形成する。衝
突(colliston)噴霧器及び超音波噴霧器を含
む多数の市販のエアロゾル発生器が適している。硝酸塩
の水溶液を使用することは、溶媒又は前駆体のいずれか
に由来する反応後の粉末中の炭素汚染の可能性をなくす
。液滴は乾燥器を通過され、水分が除去される0次に乾
燥された粒子は気流にのって炉に運ばれ、そこで前駆体
化合物は酸素のキャリア・ガスと反応して、超伝導体の
粉末を形成する。粒子は水及びエアロゾル発生器を構成
する物質としか接触しないので、超伝導体粉末中の汚染
問題は最小限のものになる。
1ミクロンよりも非常に小さいか又は数ミクロン程度の
平均直径を有する粒子は、初期のエアロゾル液滴のサイ
ズ及び溶液の濃度を変化させることにより製造できる。
狭い粒子サイズ分布は、選ばれたサイズよりも大きな粒
子を除去するためにサイクロン(cyclone)又は
衝突式採集器(in+pactor)を組み合せたエア
ロゾル発生システムを用いることにより得ることができ
る。
粉末の形成は、反応器滞在時間が10〜100秒で90
0〜1100℃の温度が実行される。反応器滞在時間は
炉の長さ及びキャリア・ガスの流速により、制御される
。典型的な炉の長さは、50〜150C1であり、キャ
リア・ガスの流速は数リットル/分〜数十すットル/分
である。熱重量分析(TGA)によれば、これらの反応
条件を最適化することにより99%以上の完全な反応が
得られることが示された。反応後の粉末のX線回折分析
は、単相の超伝導構造が形成された事を示した。S、)
1.IEVTS920 5QUID磁力計を用いた磁化
率の測定は、反応直後の粉末が、さらに別の処理を行な
わなくても、超伝導であることを示した。
超伝導体と銅との複合ワイヤを形成するために、反応器
を出た酸素キャリア・ガス中の粒子は鋼管中に送られ、
そこで管の内側表面を被覆するように付着が起きる。(
直径が″1ミクロン以下の)非常に小さな粒子を用いる
ことにより、超伝導材料は、サーモフオレシス(the
rmophoresis)作用とブラウン拡散により表
面に付着し、密で且つ一様な被覆を形成する。長い鋼管
の場合、被覆の一様性は、管を温度勾配の中に置くこと
により制御される。被覆形成機構には拡散が関係してい
るので、どのような表面又は形状も容易に被覆される。
所望の量の超伝導粉末が付着された後、被覆された銅管
は超伝導セラミックの焼結温度に酸素気流の存在下で加
熱される。典型的な場合、これは800〜1000℃の
範囲の温度に、数分〜数時間、加熱することに対応する
。これは使用した特定の超伝導体及び焼結される材料の
厚さ、量に依存する。銅は高温で酸素と反応するので、
典型的な手続きは、鋼管の外側領域を窒素又はアルゴン
等の不活性雰囲気中で加熱し、鋼管の中を酸素気流を通
過させることである。またその代りに、適当な焼結温度
に予備加熱した酸素を直接、被覆された鋼管中に通して
もよい。焼結により、鋼管の内側に付着した超伝導膜が
形成される。平均粒子直径は1ミクロン程度又はそれ以
下なので、law又はそれ以下の大きさ及び所望の大き
さの管の内側を被覆できる。被覆できる管の長さは、長
い管は必要な厚さに被覆するのに長時間を要するという
意味でのみ制限される。鋼管の長さに沿った厚さの一様
性は温度勾配により提供される。即ち、鋼管の入口にお
いては、付着率を減少させるために、より高い温度が維
持される。直線状及びコイル状の管間様に、平坦面も被
覆することができ、これは超伝導テープの製造に使用す
ることができる。
サブミクロン粒子の付着は、ブラウン拡散及びサーモフ
オレシスにより起き、これらの機構の相対的寄与は動作
条件により決定される。ブラウン拡散による粒子の付着
は高温で行なうことができるので、粒子の付着及び焼結
を同時に行なうことが可能になる。サーモフオレシスに
よる粒子の付着は、管の流れる気体中の半径方向の温度
勾配に依存する。この特徴は非常に長い鋼管を被覆する
ために使用できる。管の長さ方向に沿ったこの勾配の位
置及び勾配の大きさは、管壁の温度を変化させることに
より制御できる。例えば、付着ゾーンの位置を長い鋼管
の長さ方向に沿って移動させて、一様な付着を与えるこ
とができる。付着が材料の焼結温度よりもずっと低い温
度で行なわれる時、焼結は、管の中を約800〜100
0℃の酸素を通過させながら管の外側を不活性気体に露
出することにより行なうことができる。これは超伝導体
の焼結及びその後のアニーリングを酸素の存在下で行な
うことを可能にし、それにより超伝導体中の正しい酸素
含有量を達成するために銅管壁を通して酸素を拡散させ
る必要性を克服する。材料は一度付着されると酸素の存
在下で容易に加熱できるので、付着物を形成するために
使われる粒子は超伝導である必要はない。従って、付着
膜における拡散及び反応により超伝導材料が形成される
ならば、エアロゾル粒子自体は超伝導性でないような系
を用いて超伝導銅ワイヤを製造することが可能である。
下記の例は単に説明のためだけに与えるものであって、
本発明の範囲を限定するものと考えるべきではない。本
発明の技術思想から逸脱することなく種々の変型が可能
である。
例I  YI Bat Cus oX w4ワイヤモル
比が1:2:3の硝酸イツトリウム、硝酸バリウム及び
硝酸銅の0.03 M水溶液を、エアロゾル発生器に通
し、1〜2ミクロンの液滴を形成した。エアロゾルは酸
素気流により3〜10リットル/分の速度で拡散乾燥器
に運ばれ、水蒸気を除去し、次に900〜1000°c
の(直径約101及び長さfoociの)炉に導入され
た。炉の出口で、反応容器は直接、より小さな直径の鋼
管に結合された。管の直径は、典型的な実験では1鵬〜
6.5 ff1IIであった。形成された超伝導粒子は
大きさがサブミクロンなので、その運動は管の内壁への
ブラウン拡散に従い、滑らかな被覆が付着された。
被覆された超伝導体は、鋼管を不活性雰囲気(例えばア
ルゴン又は窒素)中で880°Cに加熱しながら、管内
に60〜120分間酸素を流すことにより焼結された。
この工程により、鋼管の内側に連続的で且つ電気的に超
伝導性の膜が形成された。この内側の被覆は、4点プロ
ーブ測定法により抵抗対温度の測定を行なうと、90に
でゼロ抵抗の超伝導転移を示した。
例2L a(1−X)  S r X Cu Oy銅ワ
イヤ(但しXは0.1〜0.25 ) 適当な化学量論比のLa、Sr及びCuの硝酸塩の水溶
液を用いて出発した点を除けば上記と同様に用意し、エ
アロゾル発生器を通過させた。上記と同様に焼結を行な
った後、35にでゼロ抵抗転移を行なう電気的に超伝導
の被覆が得られた。
例3  B it S rz Ca Cut OX銅ワ
イヤ適当な化学量論比のBi、Sr、Ca及びCuの硝
酸塩の水溶液を用いて出発した点を除けば上記と同様に
用意を行ない、エアロゾル発生器を通過させる。炉の温
度は850〜900°Cの間であり、焼結温度は800
°Cで5分間であった。80にでゼロ抵抗転移を有する
胴上の超伝導被覆が得られた。
例4−Tlz−XBa、 CaCuz O,銅ワイヤ(
但しXはO〜0.5) T12、Ba2、Cal、Cu2の化学量論比のTl5
Ba、Ca及びCuの水溶液で出発した点を除けば、上
記と同様に用意が行なわれた。炉の温度は850〜90
0°C1 焼結温度は850℃ で30分間であった。
超伝導被覆は1 OKで転 移を有するものが得られた。
以 上

Claims (2)

    【特許請求の範囲】
  1. (1)超伝導セラミック材料のサブミクロン・サイズの
    粉末を所定長の鋼管に導き、上記管の内面を上記粉末の
    一様な膜で被覆し、上記管内に酸素を通じるとともに、
    上記管の外側を不活性雰囲気中に維持しながら上記粉末
    を焼結するステップを含む、複合超伝導体銅ワイヤの製
    造方法。
  2. (2)超伝導セラミック材料又は該材料の前駆体のサブ
    ミクロン・サイズの粉末を、第1の面及び第2の面を有
    する銅構造体の上記第1の面上に導き、上記第1の面を
    上記粉末の一様な膜で被覆し、上記第1の面上に酸素を
    通じるとともに上記第2の面を不活性雰囲気中に維持し
    ながら上記粉末を熱処理するステップを含む、複合超伝
    導体銅構造体の製造方法。
JP1117619A 1988-07-12 1989-05-12 複合超伝導体銅ワイヤの製造方法 Expired - Fee Related JPH0799651B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/217,925 US5077267A (en) 1988-07-12 1988-07-12 Process for making composite high temperature superconductor copper wires
US217925 2005-08-31

Publications (2)

Publication Number Publication Date
JPH0227619A true JPH0227619A (ja) 1990-01-30
JPH0799651B2 JPH0799651B2 (ja) 1995-10-25

Family

ID=22813038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1117619A Expired - Fee Related JPH0799651B2 (ja) 1988-07-12 1989-05-12 複合超伝導体銅ワイヤの製造方法

Country Status (5)

Country Link
US (1) US5077267A (ja)
EP (1) EP0351139B1 (ja)
JP (1) JPH0799651B2 (ja)
CA (1) CA1333977C (ja)
DE (1) DE68909130T2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2020319A1 (en) * 1989-07-11 1991-01-12 Samuel Liang Flash evaporation method for producing superconducting powder
US8029595B2 (en) * 2008-06-02 2011-10-04 Nitto Denko Corporation Method and apparatus of producing nanoparticles using nebulized droplet
US8206672B2 (en) * 2009-07-10 2012-06-26 Nitto Denko Corporation Production of phase-pure ceramic garnet particles
WO2011063028A1 (en) 2009-11-19 2011-05-26 Nitto Denko Corporation Method for producing nanoparticles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231807A (ja) * 1987-03-18 1988-09-27 Semiconductor Energy Lab Co Ltd 超電導セラミツク材料を用いたパイプ
JPS63231809A (ja) * 1987-03-18 1988-09-27 Semiconductor Energy Lab Co Ltd 超電導セラミツク材料を用いたパイプの作製方法
JPS63248012A (ja) * 1987-04-01 1988-10-14 Semiconductor Energy Lab Co Ltd 超電導セラミツク材料を用いたパイプの作製方法
JPS63276811A (ja) * 1987-05-08 1988-11-15 Hitachi Ltd 超伝導体
JPS63310517A (ja) * 1987-06-11 1988-12-19 Sanyo Electric Co Ltd 超伝導線材化法
JPH01296510A (ja) * 1988-05-24 1989-11-29 Hamamatsu Photonics Kk 中空状超伝導線
JPH0654609A (ja) * 1992-08-05 1994-03-01 Mitsubishi Agricult Mach Co Ltd 農業作業車のローリング制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2850108A1 (de) * 1978-11-18 1980-06-04 Dornier System Gmbh Hartferritpulver und verfahren zu seiner herstellung
US4784686A (en) * 1987-04-24 1988-11-15 The United States Of America As Represented By The United States Department Of Energy Synthesis of ultrafine powders by microwave heating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231807A (ja) * 1987-03-18 1988-09-27 Semiconductor Energy Lab Co Ltd 超電導セラミツク材料を用いたパイプ
JPS63231809A (ja) * 1987-03-18 1988-09-27 Semiconductor Energy Lab Co Ltd 超電導セラミツク材料を用いたパイプの作製方法
JPS63248012A (ja) * 1987-04-01 1988-10-14 Semiconductor Energy Lab Co Ltd 超電導セラミツク材料を用いたパイプの作製方法
JPS63276811A (ja) * 1987-05-08 1988-11-15 Hitachi Ltd 超伝導体
JPS63310517A (ja) * 1987-06-11 1988-12-19 Sanyo Electric Co Ltd 超伝導線材化法
JPH01296510A (ja) * 1988-05-24 1989-11-29 Hamamatsu Photonics Kk 中空状超伝導線
JPH0654609A (ja) * 1992-08-05 1994-03-01 Mitsubishi Agricult Mach Co Ltd 農業作業車のローリング制御装置

Also Published As

Publication number Publication date
DE68909130D1 (de) 1993-10-21
EP0351139A3 (en) 1990-03-07
EP0351139A2 (en) 1990-01-17
CA1333977C (en) 1995-01-17
EP0351139B1 (en) 1993-09-15
JPH0799651B2 (ja) 1995-10-25
DE68909130T2 (de) 1994-04-21
US5077267A (en) 1991-12-31

Similar Documents

Publication Publication Date Title
Kodas et al. Generation of thick Ba2YCu3O7 films by aerosol deposition
US5395821A (en) Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom
JPH0227619A (ja) 複合超伝導体銅ワイヤの製造方法
JP2003505888A (ja) 多層体を作製するための方法及び組成物
JP3392299B2 (ja) Cvd用原料溶液気化装置
US5273957A (en) Thermally sprayed lead-containing thick layers
US5489573A (en) Thallium-calcium-barium-copper-oxide superconductor with silver and method
JPH02208209A (ja) 酸化物超電導体前駆物質の製造方法
Okuyama et al. Size-dependence of properties of superconducting Bi-Ca-Sr-Cu-O fine particles prepared by a spray-pyrolysis method
JP2573650B2 (ja) 超電導体の製造方法
JP2615079B2 (ja) 超伝導膜の製造方法
US5646097A (en) Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor
JPH01321031A (ja) 酸化物超電導線材の製造方法
JP2635677B2 (ja) 酸化物超電導体前駆物質の製造方法
USH1718H (en) Method of producing high temperature superconductor wires
JPH03109207A (ja) 酸素又はオゾンガスを包含した酸化物超電導粉体の製造方法
JP2575443B2 (ja) 酸化物系超電導線材の製造方法
JPH025314A (ja) 酸化物超電導線材の製造方法
JPH01200518A (ja) 酸化物系超電導線材の製造方法
JPH01166416A (ja) 酸化物系超電導線材の製造方法
JPH0247296A (ja) 超伝導体の形成方法
JPH01224208A (ja) 酸化物超電導体前駆物質の合成方法
JPH0640721A (ja) 高臨界電流密度の超伝導体を製造する方法
JPH08509948A (ja) 超伝導酸化物の被覆前駆体粉末
JPH01313324A (ja) 超伝導膜の製造方法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees