JPH02239522A - 高臨界電流密度を有するBi系酸化物超電導線材の製造方法 - Google Patents

高臨界電流密度を有するBi系酸化物超電導線材の製造方法

Info

Publication number
JPH02239522A
JPH02239522A JP1062379A JP6237989A JPH02239522A JP H02239522 A JPH02239522 A JP H02239522A JP 1062379 A JP1062379 A JP 1062379A JP 6237989 A JP6237989 A JP 6237989A JP H02239522 A JPH02239522 A JP H02239522A
Authority
JP
Japan
Prior art keywords
wire
based oxide
oxide powder
pipe
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1062379A
Other languages
English (en)
Inventor
Takuo Takeshita
武下 拓夫
Genichi Suzuki
鈴木 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1062379A priority Critical patent/JPH02239522A/ja
Publication of JPH02239522A publication Critical patent/JPH02239522A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高臨界電流密度を有するBi系酸化物超電
導線材を製造する方法に関するものである。
〔従来の技術} 現在、Bi系酸化物超電導線材としては、BiSrCa
CuO系酸化物超電導線材およびBiPbSrCaCu
O系酸化物超電導線材が知られている。上記BLSrC
aCuO系酸化物超電導線材は、BiSrCaCuO系
酸化物粉末を銀パイプに充填し、スエージング加工、溝
ロール加工、ダイス加工などの件線加工を施し、Agシ
ースBiSrCaCuO系酸化物粉末充填線材とし、こ
のAgシースBiSrCaCuO系酸化物粉末充填線材
をさらに温度:750〜870℃、lO〜200時間保
持の条件で焼結することにより製造されていた。上記B
iPbSrcacuo 系酸化物超電導線材の製造方法
も上記BiSrcacuO 系酸化物の81の一部をp
bで置換したBfiPbsrcacuO系酸化物粉末を
もちいる以外はBiSrCaCuO系酸化物超電導線材
の製造方法と全く同様にして製造することができる。こ
の様にして製造されたBl系酸化物超電導線材は、一般
にBi系酸化物粉末の結晶粒は鱗片状をしているために
、上記伸線加工を施すと、C面が線材の長手方向に平行
に揃いやすいことも知られている。
〔発明が解決しようとする課題〕
上紀BiSrCaCuO系酸化物は、臨界温度:105
 ”Kの相(以下、高Te相という)と臨界温度二80
玉の相(以下、低Tc相という)の2相が混在しており
、上記BiSrCaCuO系酸化物のBlの一部をpb
で置換することにより高Tc相が安定して得られるよう
になってきた。
しかしながら、Bi系酸化物超電導線材は、公知のY系
酸化物超電導線材に比べて臨界電流密度Jcが極めて低
く、上記Bi系酸化物超電導線材を実用に供するために
は、一層優れた臨界電流密度Jeを有するBl系酸化物
超電導線材の出現が望まれていた。
〔課題を解決するための手段〕 そこで、本発明者らは、一層優れた臨界電流密度Jcを
有するBl系酸化物超電導線材を開発すべく研究を行っ
た結果、 Bi系酸化物粉末充填線材をBi系酸化物が容品に粒成
長を起こす温度域(800〜850℃)のホットゾーン
を線材の長手方向に相対的に移動させることにより臨界
電流密度Jcを大幅に向上させることができるという知
見を得たのである。
この発明は、かかる知見にもとづいてなされたものであ
って、 通常の金属シースBl系酸化物粉末充填線材を、線材の
長手方向に温度二800〜850℃からなるホットゾー
ンを相対的に移動させるBi系酸化物超電導線材の製造
方法に特徴を有するものである。
前述のように、Bi系酸化物粉末を金属パイプに充填し
仲線加工を施して得られた金属シースBl系酸化物粉末
充填線材のBi系酸化物粉末は、C面がある程度線材の
長手方向に平行に揃っているが、これを従来のようにバ
ッチ式に焼結するとBl系酸化物粉末の結晶は、等方向
に粒成長するので配向性を失う。しかし、この発明のよ
うに、上記金属シースBl系酸化物粉末充填線材を上記
温度に保持されたホットゾーンを相対的に移動させると
、Bl系酸化物粉末の結晶は、線材の長手方向にのみ粒
成長し、そのため、臨界電流密度Jeは大幅に向上する
ものと考えられる。
すなわち、この発明のホットゾーン移動法による結晶高
配向度を有する高臨界電流線材の製法は、従来のゾーン
・メルティング法による単結晶、一方向性凝固材の製法
とは異り、Bl系酸化物超電導体が、この発明で規定し
た温度領域に於で、理由は定かではないが、ごく一部液
相が発生し、この液相が、高温相の結晶成長をうながす
という現象の発見に基づくものであって、Bl系超電導
材料に特有の性質を利用したものである。
上記金属シースは、Ag,Cuまたはそれらの合金が加
工しやすく好ましいが、これらの金属に限定されること
なく、ステンレススチールなどをもちいてもよい。
また、上記金属シースB1系酸化物粉末充填線材とは、
断面円形のBl系酸化物粉末充填線材だけでなく断面円
形のBi系酸化物粉末充填線材をさらに平ロール圧延し
て得られたリボン状線材であってもよい。
上記ホットゾーンの温度域を800℃未満にすると、B
l系酸化物粉末の粒子の結合も弱く、また、ホットゾー
ンの温度域の相対的に移動に時間がかかりすぎるので好
ましくない。一方、ホットゾーンの温度域が850℃を
越えると、臨界温度:1051の高Te相の中に80′
Kの低Te相、さらに低温の6〜20玉相が現れて好ま
しくない。したがって、ホットゾーンの温度域は、80
0〜850℃に定めた。
上記ホブトゾーン温度域の雰囲気は大気中または酸素気
流中の酸素雰囲気であることが好ましい。
〔実 施 例〕
つぎに、この発明を実施例にもとづいて具体的に説明す
る。
原料粉末として、いずれも粒径:lOμs以下のBi2
03粉末、pbo粉末、S r C O a粉末、C 
a C O a粉末およびCuO粉末を用意し、これら
粉末を第1表に示される組成となるように配合し、混合
し、得られた混合粉末を第1表に示される条件にて大気
中でそれぞれ焼成し、ついで、これら焼成して得られた
Bi系酸化物を粉砕し、第1表に示される粒度のBi系
酸化物粉末を作製した。
これらBl系酸化物粉末を、内径:5.Omm、肉厚二
〇.5u,長さ=200關のAgパイプに充填してB1
系酸化物粉末充填Ag複合パイプを作製し、このAg複
合パイプの両端をプレス加工により封止したのち、スエ
ージング加工により縮径し、ついで溝ロール加工を施す
ことにより直径:1.OmmSAgシース厚さ:0.I
mmの寸法を有するAgシースBl系酸化物粉末充填線
材を作製し、さらにこの線材を平ロール加工することに
より厚さ:0.2mlllk幅=2m腸のリボン状Ag
シースB1系酸化物粉末充填線材を作製した。
このようにして作製したリボン状AgシースB1系酸化
物粉末充填線材は、第1図に示されるように、加熱炉内
を通過せしめ、大気雰囲気中、第1表に示される条件に
て焼結された。上記第1図には、上記リボン状Agシー
スB1系酸化物粉末充IAtlil材3が、ヒーター2
を有する加熱炉1の中心部を通過し、焼結されている状
態が示されており、上記リボン状AgシースB1系酸化
物粉末充填線材3の通過はモーター4を駆動することに
より移送ロール5によって行なわれている。
上記リボン状AgシースB1系酸化物粉末充填線材を第
1表に示される条件で焼結して得られたBi系酸化物超
電導線材の臨界電流密度J’cを液体窒素中で測定し、
これらの測定結果を第1表に示した。第1表において茶
印を付した値は、この発明の条件を外れた値を示す。
なお、この実施例では、リボン状AgシースBl系酸化
物粉末充填線材3を移動させているが、加熱炉1を上記
線材3に沿って移動させてもよい。
またこの実施例では、リボン状AgシースBl系酸化物
粉末充填線材を用いたが、この発明で用いる金属シース
Bl系酸化物粉末充填線材は、断面偏平のリボン状線材
に限定されることなく断面円形、断面多角形、その他任
意の断面形状を有する金属シースBl系酸化物粉末充填
線材を用いてもよい。
第1表の結果から、この発明の条件に従って製造された
Bl系酸化物超電導線材は、優れた臨界電流密度を有す
ることがわかる。
〔発明の効果〕
この発明によると、優れた臨界電流密度を有するBl系
酸化物超電導線材が連続的に簡単に製造することができ
るので、実用上きわめて優れた効果を奏するものである
配を有する加熱炉内を通過している状態を示す概略図。
1・・・加熱炉 3・・・リボン状AgシースBl系酸化物粉末充填線材

Claims (2)

    【特許請求の範囲】
  1. (1) BiSrCaCuO系酸化物粉末を金属パイプ
    に充填し仲線加工を施して得られた金属シースBiSr
    CaCuO系酸化物粉末充填線材を、線材の長手方向に
    、温度:800〜850℃に保持されたホットゾーンを
    相対的に移動させることを特徴とする高臨界電流密度を
    有するBi系酸化物超電導線材の製造方法。
  2. (2) BiPbSrCaCuO系酸化物粉末を金属パ
    イプに充填し伸線加工を施して得られた金属シースBi
    PbSrCaCuO系酸化物粉末充填線材を、線材の長
    手方向に、温度:800〜850℃に保持されたホット
    ゾーンを相対的に移動させることを特徴とする高臨界電
    流密度を有するBi系酸化物超電導線材の製造方法。
JP1062379A 1989-03-13 1989-03-13 高臨界電流密度を有するBi系酸化物超電導線材の製造方法 Pending JPH02239522A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062379A JPH02239522A (ja) 1989-03-13 1989-03-13 高臨界電流密度を有するBi系酸化物超電導線材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062379A JPH02239522A (ja) 1989-03-13 1989-03-13 高臨界電流密度を有するBi系酸化物超電導線材の製造方法

Publications (1)

Publication Number Publication Date
JPH02239522A true JPH02239522A (ja) 1990-09-21

Family

ID=13198424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062379A Pending JPH02239522A (ja) 1989-03-13 1989-03-13 高臨界電流密度を有するBi系酸化物超電導線材の製造方法

Country Status (1)

Country Link
JP (1) JPH02239522A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115158A (ja) * 1989-09-29 1991-05-16 Sumitomo Heavy Ind Ltd 酸化物超電導体の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279525A (ja) * 1987-05-11 1988-11-16 Fujikura Ltd 超電導線材の製造方法
JPS6457526A (en) * 1987-08-26 1989-03-03 Fujikura Ltd Manufacture of oxide superconductive wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63279525A (ja) * 1987-05-11 1988-11-16 Fujikura Ltd 超電導線材の製造方法
JPS6457526A (en) * 1987-08-26 1989-03-03 Fujikura Ltd Manufacture of oxide superconductive wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115158A (ja) * 1989-09-29 1991-05-16 Sumitomo Heavy Ind Ltd 酸化物超電導体の製造方法

Similar Documents

Publication Publication Date Title
US5354535A (en) Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor
JPH02239522A (ja) 高臨界電流密度を有するBi系酸化物超電導線材の製造方法
JPH02239521A (ja) 高臨界電流密度を有するBi系酸化物超電導線材の製造方法
Lee et al. Role of silver on phase formation and texture development in Ag/BSCCO composites
JP2567891B2 (ja) 酸化物超電導成形体の製造方法
JPS63291317A (ja) 酸化物超電導線材の製造方法
JPH01304618A (ja) 酸化物系超電導線条体の製造方法
Zhu et al. Preparation of superconducting films of Bi Sr Ca Cu Oxides by in-situ melting. II
JPH02183918A (ja) 酸化物超電導導体の製造方法
JPH02278616A (ja) 多芯型酸化物超電導導体の製造方法
JP2583288B2 (ja) フレーク状酸化物超電導体の製造方法
JPH02109219A (ja) 酸化物超電導線材の製造方法
JP3314102B2 (ja) 酸化物超電導体の製造方法
JPH01239713A (ja) 酸化物系超電導線状体の製造方法
JPH03122918A (ja) セラミックス超電導々体の製造方法
JPH03216919A (ja) 酸化物超電導線材の製造方法
JPH02250219A (ja) 多芯状酸化物超電導線材及びその製造方法
JPH02199057A (ja) ビスマス系酸化物超電導体の製造方法
JPH02158012A (ja) 酸化物超電導線条体の製造方法
JPH01169820A (ja) 酸化物系超電導線条体の製造方法
JPH02153821A (ja) タリウム系超電導体の製法
Poeppel et al. Recent improvements in bulk properties of ceramic superconductors
JPH03208211A (ja) 酸化物超電導線材の製造方法
JPH02158013A (ja) 酸化物超電導成形体の製造方法
JPH02145470A (ja) TlBaCaCuO系超電導体の製造方法