JPH02225339A - ガラスセラミック焼結体 - Google Patents

ガラスセラミック焼結体

Info

Publication number
JPH02225339A
JPH02225339A JP4411389A JP4411389A JPH02225339A JP H02225339 A JPH02225339 A JP H02225339A JP 4411389 A JP4411389 A JP 4411389A JP 4411389 A JP4411389 A JP 4411389A JP H02225339 A JPH02225339 A JP H02225339A
Authority
JP
Japan
Prior art keywords
powder
glass
glass composition
strength
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4411389A
Other languages
English (en)
Inventor
Masahiro Nawa
正弘 名和
Masayuki Ishihara
政行 石原
Keizou Makio
槙尾 圭造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4411389A priority Critical patent/JPH02225339A/ja
Publication of JPH02225339A publication Critical patent/JPH02225339A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガラスセラミック焼結体に関し、詳しくは
、各種半導体部品を搭載したり、電気信号の入出力用端
子ビン等を取り付けたりして機能モジュールを構成する
ためのセラミック配線基板等として利用されるガラスセ
ラミック焼結体に関するものである。
〔従来の技術〕
近年、高集積化したLSIや各種の電子素子を多数搭載
する多層配線基板においては、小型化や高信頼性等に対
する要求から、基板材料としてセラミックスを利用する
ことが広まってきている。
セラミックスの中でもアルミナは比較的高い強度を有す
るのでζアルミナを主材料とするセラミック多層配線基
板が、配線基板に入出力用ビン等を取り付ける際に割れ
等の欠陥が生じ難<、好ましいものとして使用されてい
る。
しかし、上述のようなアルミナセラミック基板は、比誘
電率が比較的高いために、多層配線中を伝播する信号電
流の伝達時間が長くなり、高速化が困難であることや、
アルミナの熱膨張係数が、配線基板に搭載するLSI等
の電子素子の材料であるシリコンの熱膨張係数に比べて
2倍はど高いために、熱膨張差が大きくなる大型のLS
I素子等の搭載に制限があり、電子素子を実装した配線
基板の耐久性や寿命が短くなる等の問題がある。
これらの問題を解決するには、セラミック基板材料の比
誘電率を下げるとともに、熱膨張係数をシリコンの値に
近づければよい。このような要請を満足させるものとし
て、発明者らは、コージェライト系結晶化ガラスセラミ
ック焼結体からなる基板材料を発明し特許出願しており
、例えば、特開昭61−13357号に開示されている
〔発明が解決しようとする課題〕
しかし、上記先行技術のガラスセラミック焼結体は、強
度が120〜170MPa程度しかなく、多層配線基板
の材料としては強度が低いという欠点があった。例えば
、電気信号用の入出力用ビン等をろう付は等で配線基板
に接続する際には、ろう材と基板との熱膨張差で発生す
る熱応力が加わるので、強度の低い配線基板では割れ等
の欠陥が生じ易くなる。また、ろう付は後の負荷応力が
加わると、ろう付は部から基板が剥離してしまう等の問
題も生じる。そのため、従来のガラスセラミック焼結体
では、高信頼性もしくは高寿命の多層配線基板が得られ
なかった。
そこで、この発明の課題は、比誘電率が低く熱膨張係数
がシリコンに近いというコージェライト系結晶化ガラス
セラミック焼結体の特徴を損なうことなく、強度を向上
させて、信号伝達の高速化や搭載素子の大型化等に好適
に対応できる多層配線基板を得ることのできるガラスセ
ラミ・ツク焼結体を提供することにある。
〔課題を解決するための手段〕
一般のセラミックスにおいて、理論的には高い強度が得
られるはずであるにもかかわらず、実用強度が理論強度
の数百骨の一程度しか得られないのは、セラミ7クスが
本質的に脆性体であって、靭性に劣ることに起因する。
すなわち、セラミックスの破壊形式が、焼結体の微構造
に非常に敏感であり、焼結体の表面欠陥あるいは内部欠
陥を起点にして、即時破断することによる。従って、セ
ラミックスの靭性を改善して破壊抵抗を高めることによ
って強度を向上させ得ることが見込まれるセラミックス
の靭性改善に対する考え方にはいろいろあるが、その最
も基本的なものとして、材料中にエネルギ散逸源として
の不均一相を分散または析出させる方法、すなわち、材
料の複合化による靭性改善法がある。従来、このような
考え方にもとづく複合化の手段としては、主に、粒子分
散やウィスカー等繊維状物質の分散強化等による方法が
提案されており、分散相によるクラックの進展挙動を制
御(クラフクディフレクション、クランクピンニング等
)することによって、破壊に必要なエネルギーを増大さ
せて靭性向上を図るのである。
この発明においては、上記のような分散相の形態として
、ウィスカー等の繊維状物質に比べて、比較的均一に分
散させ易い粒子分散型複合セラミックスに注目して、ガ
ラスセラミック焼結体の強度向上を図るものである。
前記課題を解決する、この発明のガラスセラミック焼結
体のうち、請求項1記載の発明は、ガラス組成物粉末に
、このガラス組成物粉末よりも強度の高い高強度粉末と
、ガラス組成物粉末よりも熱膨張率の小さな低熱膨張率
粉末とを添加したものを焼成してなるとともに、前記ガ
ラス組成物粉末の焼成後の結晶構造における主結晶がα
−コージェライトであるようにしている。
ガラス組成物粉末としては、通常のコージェライト系ガ
ラスセラミック焼結体と同様の組成からなる粉末が使用
できるが、下記のような組成を有するものが好ましい。
Si0□  48〜63重量% A 11oz  10〜25重量% MgO  10〜25重量% B2O34〜10重量% 上記のようなガラス組成物粉末を用い、焼結過程で結晶
化が同時進行する、いわゆる晶化焼結を行わせることに
よって、1000℃以下の焼成温度で充分な緻密化が達
成される。また、焼結後の主結晶がα−コージェライト
であることによって比誘電率が低くなり、熱膨張率がシ
リコンに近くなる。
上記組成のうち、Sin、の組成割合が63重量%を超
えると、上記3成分からなるガラス溶融温度が上昇して
しまうばかりか、焼成時の結晶化が著しく、ガラス粒子
表面層が急激に結晶化してしまって、焼結を高めるガラ
ス成分(相)が不足し、緻密な焼結体が得られない。4
8重量%を下回ると、ガラス粉末の結晶化温度が上昇す
るので、これに伴って必要な焼成温度も上昇し、成形体
を1ooo℃以下の温度で焼成したのでは、焼成後の焼
結体が未焼結状態のままになってしまう。
Altozの組成割合が、25重量%を超えると、焼結
できる温度が上昇し、1000°C以下の焼成温度では
充分な焼結が行えない。10M量%を下回ると、コージ
ェライト結晶が少なくなり、SiOよ−MgO系の結晶
が多く析出するようになって比誘電率が上昇してしまう
MgOの組成割合が25重量%を超えると、おそらくは
、ケイ酸マグネシウムが析出するためと思われるが、変
形が大きくなるので実用性に乏しい。10ffi量%を
下回ると、緻密な焼結体が得られない。
B20.の組成割合が10重量%を超えると、ガラス相
が多く、発泡しやすくなり、焼成可能な温度範囲も狭く
なる。また、機械的強度も弱くなるので実用性に乏しい
。4重量%を下回ると、ガラス粒子の表面層の結晶化が
急激に進み過ぎるために緻密な焼結体となり難い。
上記のようなガラス組成物粉末に分散させる高強度粉末
としては、窒化アルミニウム、アルミナ2ムライト、部
分安定化ジルコニアの中から選ばれた少なくとも1種以
上の粉末が好ましい。これらの材料からなる粒子は、前
記ガラス組成物粒子に比べて、強度や破壊靭性値等が高
く、ガラスセラミ・ツク焼結体の強度を向上させ得ると
ともに、比誘電率や熱膨張率を損なうことのないもので
ある。但し、上に例示した以外にも、同様の性質を有す
る材料であれば、高強度粉末として使用できる。
低熱膨張率粉末としては、コージェライト、石英ガラス
、チタン酸アルミニウム、β−スポジュメン、β−ユー
クリプタイトの中から選ばれた少なくともIMの粉末が
好ましい。これらの材料からなる粉末は、前記ガラス組
成物粉末よりも熱膨張率が小さく、ガラスセラミック焼
結体の強度向上に有効であるとともに、ガラスセラミッ
ク焼結体の比誘電率を損なうこともないものである。但
し、上に例示した以外にも、同様の性質を有する材料で
あれば、低熱膨張率粉末として使用できるガラス組成物
粉末に対する、上記の高強度粉末や低熱膨張率粉末等か
らなる分散粉末の添加体積分率は50%以下が好ましい
。これは、1000°C以下の焼結温度で充分に緻密化
させるためである。分散粉末が50%を超えると、焼結
性が著しく阻害されるので、]、 000℃以下では充
分な緻密体とならず、焼結体の強度も劣化する。
焼結温度を1000℃以下にするのは、多層配線板に形
成する導体層として、Au、Ag、Ag−Pd、Cu等
、低抵抗の金属からなる導体材料をグリーンシート上に
形成して、ガラスセラミック基板の焼成と同時に導体層
も焼成する場合に、上記のような導体材料の融点が10
00℃以下であるため、ガラスセラミック焼結体の焼結
温度を1000℃以下に設定するのが好ましいのである
。但し、導体層を同時焼成によって形成しない場合や、
導体材料の融点が違えば、ガラスセラミック焼結体の焼
結温度条件も変わってくる。
上記のような材料および焼成条件によって得られたガラ
スセラミック焼結体は、そのまま、多層配線基板等とし
て使用できるが、ガラスセラミック焼結体を焼成した後
、焼成温度以下の加熱温度で熱処理することによって、
さらに高強度のガラスセラミック焼結体を得ることがで
きる。
この発明にかかるガラスセラミック焼結体の用途は、前
記した多層配線基板が最も好適であるが、そのほかにも
、高い強度、低い熱膨張率、小さな比誘電率を必要とす
る各種のガラスセラミック材料としての用途にも自由に
適用することができる。
〔作  用〕
比誘電率が低(、熱膨張率がシリコンに近いα−コージ
ェライトを主結晶とするガラスセラミック焼結体におい
て、ガラス組成物粉末からなるガラスマトリックスの中
に、ガラスマトリックスよりも高強度もしくは高靭性の
高強度粉末を分散させたことによって、前記したような
、−射的な複合剤による強度向上作用と、分散粒子によ
るクラック進展挙動の制御(クラソクディフレクション
クラックボーイング、クラックピンニング等)による破
壊エネルギーの増大作用との相乗的作用によって、高強
度なガラスセラミンク焼結体が得られる。
さらに、ガラスマトリックスの中に、ガラスマトリック
スよりも熱膨張率の小さな低熱膨張率粉末を分散させた
ことによって、焼成後の冷却過程において、粒子内およ
び粒子周辺に残留応力場が形成され、その応力場がクラ
ック進展経路に影響を与えることになる。すなわち、接
線方向には引っ張りの残留応力場が形成され、粒子に接
近したクランクは、粒子周辺の引張応力場の影響によっ
て、粒子に引き寄せられる傾向を示す。一方、粒子間に
は、ガラスマトリックスとの熱膨張差によって圧縮の残
留応力場が形成され、クラックの進展を阻止するように
作用する。
上記のような作用により、まず、クラック前縁が粒子と
衝突して粒子間で湾曲(ボーイング)あるいはピンニン
グされることによって、破壊エネルギーが増大し、靭性
向上に寄与できるのである。あわせて、分散粒子間すな
わちガラスマトリックス中の残留圧縮応力場の作用によ
り、ガラスマトリックス自体の強度が向上することにも
なる。
このように、クランクボーイングやクラックピンニング
等による破壊エネルギーの増大作用と、残留圧縮応力場
によるガラスマトリックス自体の強度向上作用の相乗作
用によって、ガラスセラミック焼結体の強度向上を果た
せるのである。
特に、この発明では、高強度粉末と低熱膨張率粉末を併
用していることによって、両者の作用が相乗的に加わる
、いわゆるマルチタフニング効果が発揮されることにな
り、それぞれの粉末を単独で使用するのに比べて一層の
強度向上が果たされることになる。
また、この発明では、セラミックスのマトリックス材料
としてガラス系材料を用いており、焼結が主に粘性流動
によって進行するので、高強度粉末や低熱膨張率粉末等
の分散相を導入しても、焼結が比較的阻害され難いとい
う利点もある。そのため、通常の固相焼結による場合に
は、緻密化のために、ホットプレスやHIP等の特別の
焼成工程を必要とするのに対して、ガラス系材料を用い
た、この発明では、分散相を導入した複合系セラミック
スでありながら、常圧焼結が可能になる。
焼成されたガラスセラミック焼結体を焼成温度以下の加
熱温度で熱処理すると、前記した焼成後の冷却過程にお
ける粒子内および粒子周辺の残留応力場による作用がさ
らに有効になる。これは、熱処理によって、焼結時の焼
成収縮過程で生じたひずみを取り除くことができ、その
後の冷却過程における残留応力場を有効に形成すること
ができたり、焼結体表面あるいは内部に存在する微細欠
陥を鈍化させることができるので、ガラスセラミック焼
結体の強度が一層向上するのである。
〔実 施 例〕
ついで、この発明にかかるガラスセラミック焼結体の具
体的実施例について、その製造方法および各種の性能試
験の結果を説明する。
まず、第1表に示すG−1からG−14のガラス組成物
粉末を製造した。各配合成分を所定の割合に調合した原
料成分を、それぞれアルミナ質ルツボに入れ、約150
0〜1550℃の加熱温度で溶融した。得られた熔融液
を水中投下することによってガラス組成物(フリット)
とした後、アルミナ質ボールミル中で、湿式または乾式
によって粉砕し、平均粒径2〜4μのガラス組成物粉末
を得た。第1表のG−1〜G−10のガラス組成物粉末
は、この発明の実施例となるα−コージェライト結晶を
主結晶とする良質なガラスセラミック焼結体が得られる
前記組成範囲に含まれるものであり、G−11〜G−1
4のガラス組成物粉末は、上記組成範囲を外れた場合の
比較例である。
第  1 表 上記工程で得られたガラス組成物粉末に対して、第2表
および第3表に示すような、種類および添加体積分率で
、高強度粉末および低熱膨張率粉末等の分散粉末を調合
したものを、アルミナ質ボールミル中に湿式または乾式
で混合して、焼結体用粉末材料を得た。上記分散粉末の
平均粒径は、3〜5nであった。
上記のような焼結体用粉末材料に、ポリビニルブチラー
ル樹脂、アクリル樹脂、フタ、ル酸エステル1ポリエチ
レングリコール、トルエン、キシレン、アルコール等か
らなる有機バインダーを加えて混練し、減圧下で脱泡処
理を行った後、ドクターブレード法で基材フィルム上に
0.81厚の連続シートを作製した。これを乾燥した後
、基材フィルムから連続シートを剥がし、60mm角お
よび6×43Illfflサイズに打ち抜いてグリーン
シートを得た。
各グリーンシー・トを、アルミナ質多孔体からなる薄板
上に配置し、第1図に示すような加熱プロファイルにし
たがって、最高加熱温度1000℃で大気雰囲気中で焼
成してガラスセラミック焼結体を得た。
得られたガラスセラミンク焼結体のうち、前記60mm
角から焼成後に約50on++角になった試料について
は、周波数IMHzにおける比誘電率、吸水率を測定し
た。前記6X43mmから約5x35mmになった試料
については、3点曲げによる抗折強度および熱膨張係数
を測定した。その結果を第2表および第3表に示してい
る。
以上の結果から、この発明にかかる実施例のガラスセラ
ミック焼結体は、吸水率が低く緻密な焼結体が得られて
いることが判るとともに、熱膨張率はシリコンに近く、
比誘電率は小さく、しかも抗折強度が高いという優れた
性質を備えていることが実証された。
この発明のガラスセラミンク焼結体においては、高強度
粉末および低熱膨張率粉末からなる分散粉末の添加体積
分率を増やすにつれて、焼結時のガラスの粘性が高くな
る傾向があり、あまり分散粉末が多いと焼結体の充分な
緻密化が行われない場合もある。例えば、実施例1と同
じガラス組成物粉末(G−2)に、窒化アルミ15体積
%、チタン酸アルミ15体積%を分散粉末として添加し
てなる比較例1の場合、第2図に示す焼成時の収縮特性
のように充分な収縮が得られないため、焼結体が吸水率
の高いポーラス体になってしまい、強度が低くなってい
る。したがって、ガラス組成物粉末の組成と分散粉末の
種類および添加量の組み合わせによって、充分な緻密体
が得られないような焼結体については、この発明の範囲
外となるまた、ガラスマトリックス自体の粘性が高いも
の(ガラス組成物粉末G−13,14を用いたもの)の
場合には、分散粉末を添加することによって焼結性が悪
くなり、例えば、比較例9のように、分散粉末の添加体
積分率が10%でも、充分な緻密体が得られない。した
がって、分散粉末の種類および添加体積分率とガラス組
成物粉末の組成の組み合わせを適当に選択することによ
って、緻密で高強度なガラスセラミック焼結体を得るよ
うにしなければならない。
第2表に示す各実施例は、ガラス組成物粉末組成割合、
および、高強度粉末および低熱膨張率粉末の種類と添加
量を、この発明の範囲内で適当に選択して実施したもの
であり、何れの実施例においても、吸水率0.6%以下
の緻密体が得られ、抗折強度も200〜360MPaと
高い値を示している。また、比誘電率および熱膨張率も
実用上、充分な値が得られた。
これに対し、分散粉末の添加体積分率が60〜70%で
ある比較例10〜17では、ガラスマトリックスを低粘
性にするようなガラス組成物粉末(比較例G−11,1
2)を使用しているにもかかわらず、もはや充分な緻密
体が得られなくなってしまう。また、この場合は、ガラ
スセラミック焼結体の結晶構造が、α−コージェライト
相の少ないものとなるので実用に供し得ない。
次に、前記実施例1〜5で得られたガラスセラミック焼
結体を、第3図に示す加熱プロファイルにしたがって、
焼結温度よりも低い加熱温度で熱処理した後に、各特性
を測定した。その結果を、第4表の実施例21〜25に
示しており、熱処理を施さない場合に比べて、約10%
程度の強度向上効果があることが実証できた。
〔発明の効果〕
以上に述べた、この発明にかかるガラスセラミック焼結
体のうち、請求項1記載の発明によれば、焼成後の結晶
構造における主結晶がα−コージェライトであるガラス
組成物粉末に対して、高強度粉末および低熱膨張率粉末
を添加して焼成して得られたものであることによって、
比誘電率や熱膨張率を、従来のコージェライト系結晶化
ガラスセラミック焼結体と同様に良好な範囲に維持しな
がら、強度を大幅に向上させることができる。したがっ
て、信号伝達の高速化あるいは搭載する集積回路の大型
化に良好に対応できる多層配線基板の材料として好適な
ガラスセラミック焼結体を提供できることになる。
請求項2記載の発明によれば、ガラス組成物粉末の組成
割合を適当に設定することによって、前記のような結晶
構造を有し、比誘電率や熱膨張率が良好であるガラスセ
ラミック焼結体を得ることができるとともに、ガラスセ
ラミック焼結体の焼結温度を1000℃以下の焼成温度
で実施することができるので、多層配線基板として使用
したときに、低抵抗の金属からなる導体材料とグリーン
シートの同時焼成によって配線回路を形成することが可
能になり、多層配線基板の製造の能率化および高品質化
を果たせる。
請求項3記載の発明によれば、高強度粉末として前記の
ような材料からなるものを使用することによって、請求
項1記載の発明の前記効果を良好に発揮することができ
る。
請求項4記載の発明によれば、低熱膨張率粉末として前
記のような材料からなるものを使用することによって、
請求項1記載の発明の前記効果を良好に発揮することが
できる。
【図面の簡単な説明】
第】図はこの発明にかかる実施例および比較例の焼結時
における加熱プロファイルを示すグラフ図、第2図は焼
結時の収縮率を比較するグラフ図、第3図は焼結後の熱
処理における加熱プロファイルを示すグラフ図である。 第 図 第2図 第3 図

Claims (1)

  1. 【特許請求の範囲】 1 ガラス組成物粉末に、このガラス組成物粉末よりも
    強度の高い高強度粉末と、ガラス組成物粉末よりも熱膨
    張率の小さな低熱膨張率粉末とを添加したものを焼成し
    てなるとともに、前記ガラス組成物粉末の焼成後の結晶
    構造における主結晶がα−コージェライトであるガラス
    セラミック焼結体。 2 ガラス組成物粉末が、 SiO_248〜63重量% Al_2O_310〜25重量% MgO10〜25重量% B_2O_34〜10重量% からなる組成を有する粉末である請求項1記載のガラス
    セラミック焼結体。 3 高強度粉末が、窒化アルミニウム、アルミナ、ムラ
    イト、部分安定化ジルコニアの中から選ばれた少なくと
    も1種以上の粉末である請求項1または2記載のガラス
    セラミック焼結体。 4 低熱膨張率粉末が、コージェライト、石英ガラス、
    チタン酸アルミニウム、β−スポジュメン、β−ユーク
    リプタイトの中から選ばれた少なくとも1種以上の粉末
    である請求項1〜3の何れかに記載のガラスセラミック
    焼結体。
JP4411389A 1989-02-23 1989-02-23 ガラスセラミック焼結体 Pending JPH02225339A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4411389A JPH02225339A (ja) 1989-02-23 1989-02-23 ガラスセラミック焼結体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4411389A JPH02225339A (ja) 1989-02-23 1989-02-23 ガラスセラミック焼結体

Publications (1)

Publication Number Publication Date
JPH02225339A true JPH02225339A (ja) 1990-09-07

Family

ID=12682552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4411389A Pending JPH02225339A (ja) 1989-02-23 1989-02-23 ガラスセラミック焼結体

Country Status (1)

Country Link
JP (1) JPH02225339A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575813A2 (en) * 1992-06-08 1993-12-29 Nec Corporation Multilayer glass ceramic substrate and process for producing the same
DE4411127A1 (de) * 1993-03-30 1994-10-06 Sumitomo Metal Ind Keramisches Substrat und Verfahren zu dessen Herstellung
EP0621245A1 (en) * 1993-04-22 1994-10-26 Nec Corporation Multilayer glass ceramic substrate and method of fabricating the same
US20140206522A1 (en) * 2012-09-10 2014-07-24 Ngk Insulators, Ltd. Glass-ceramics composite material
WO2014156456A1 (ja) * 2013-03-26 2014-10-02 日本碍子株式会社 ガラス-セラミックス複合材料
WO2014155758A1 (ja) * 2013-03-26 2014-10-02 日本碍子株式会社 ガラス-セラミックス複合材料
WO2014156457A1 (ja) * 2013-03-26 2014-10-02 日本碍子株式会社 ガラス-セラミックス複合材料
US9212087B2 (en) 2013-03-26 2015-12-15 Ngk Insulators, Ltd. Glass-ceramics composite material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575813A2 (en) * 1992-06-08 1993-12-29 Nec Corporation Multilayer glass ceramic substrate and process for producing the same
EP0575813A3 (en) * 1992-06-08 1994-10-05 Nec Corp Multi-layer glass-ceramic substrate and process for its manufacture.
DE4411127A1 (de) * 1993-03-30 1994-10-06 Sumitomo Metal Ind Keramisches Substrat und Verfahren zu dessen Herstellung
EP0621245A1 (en) * 1993-04-22 1994-10-26 Nec Corporation Multilayer glass ceramic substrate and method of fabricating the same
US20140206522A1 (en) * 2012-09-10 2014-07-24 Ngk Insulators, Ltd. Glass-ceramics composite material
US9212085B2 (en) * 2012-09-10 2015-12-15 Ngk Insulators, Ltd. Glass-ceramics composite material
WO2014156456A1 (ja) * 2013-03-26 2014-10-02 日本碍子株式会社 ガラス-セラミックス複合材料
WO2014155758A1 (ja) * 2013-03-26 2014-10-02 日本碍子株式会社 ガラス-セラミックス複合材料
WO2014156457A1 (ja) * 2013-03-26 2014-10-02 日本碍子株式会社 ガラス-セラミックス複合材料
US9212087B2 (en) 2013-03-26 2015-12-15 Ngk Insulators, Ltd. Glass-ceramics composite material
JP5926369B2 (ja) * 2013-03-26 2016-05-25 日本碍子株式会社 ガラス−セラミックス複合焼成材料

Similar Documents

Publication Publication Date Title
JP3240271B2 (ja) セラミック基板
JPH11511719A (ja) 低誘電損失ガラス
JP2642253B2 (ja) ガラス−セラミックス複合体
JPH04231363A (ja) 菫青石とガラスを含む誘電性組成物
WO2012066976A1 (ja) 結晶性ガラス粉末
JPH05211005A (ja) 誘電体組成物
JPH02225339A (ja) ガラスセラミック焼結体
JPS63107838A (ja) ガラスセラミツク焼結体
JP2002187768A (ja) 高周波用低温焼結誘電体材料およびその焼結体
JP3087656B2 (ja) 低温焼結無機組成物
JPH02225338A (ja) ガラスセラミック焼結体
JPH02225340A (ja) ガラスセラミック焼結体
US4963514A (en) Ceramic mullite-silica glass composite
WO1993006053A1 (en) Low dielectric constant substrate and method of making
JPS6049149B2 (ja) 電子部品用白色アルミナ・セラミックの製造方法
JPH10194846A (ja) 低温焼成基板の製造方法
JP2699919B2 (ja) 多層配線基板とその製造方法、及びそれに用いるシリカ焼結体の製造方法
JP4047050B2 (ja) 低温焼成磁器組成物及び低温焼成磁器並びにそれを用いた配線基板
JPH04114931A (ja) ガラスセラミック焼結体の製法
JP2606439B2 (ja) 多層セラミック配線基板
TW460430B (en) Low-fire, low-dielectric-constant and low-loss ceramic compositions
JPS62252340A (ja) ガラス焼結体およびガラスセラミツク焼結体
JP2686446B2 (ja) 低温焼成セラミック焼結体
JP2710311B2 (ja) セラミツク絶縁材料
JP2000026163A (ja) 低誘電率基板の製法