JPH02191388A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH02191388A
JPH02191388A JP1029089A JP1029089A JPH02191388A JP H02191388 A JPH02191388 A JP H02191388A JP 1029089 A JP1029089 A JP 1029089A JP 1029089 A JP1029089 A JP 1029089A JP H02191388 A JPH02191388 A JP H02191388A
Authority
JP
Japan
Prior art keywords
active layer
side faces
layer
side surfaces
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1029089A
Other languages
Japanese (ja)
Other versions
JP2822195B2 (en
Inventor
Hironobu Narui
啓修 成井
Toyoji Ohata
豊治 大畑
Yoshifumi Mori
森 芳文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1010290A priority Critical patent/JP2822195B2/en
Publication of JPH02191388A publication Critical patent/JPH02191388A/en
Application granted granted Critical
Publication of JP2822195B2 publication Critical patent/JP2822195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve an optical damage to a level by making a clad layer perform an epitaxial growth and causing vertical side faces of the clad layer which are formed by burying inverted mesa type side faces to be formed into a reflecting face, and into a light outgoing face by an active layer. CONSTITUTION:A ridge part 4 is provided at a semiconductor substrate 2 having an active layer 1 in such a manner that a pair of both end side faces which intersect the active layer 1 and are facing each other are formed into inverted mesa type side faces 3A and 3B because of each specific crystal face. A clad layer 6 including the inner parts of mesa grooves 5 having the inverted mesa type side faces 3A and 3B is allowed to perform an epitaxial growth and buries the above side faces 3A and 3B. Then its layer 6 forms vertical side faces 7A and 7B so that the side faces intersect almost perpendicularly to the facial direction of the active layer 1. Further, the above faces 7A and 7B are formed into the reflecting face of a laser resonator, and into the outgoing face of the laser light by the active layer. Such an aperture structure in which the reflecting and outgoing faces are formed by the clad layer 6 thus improves an optical damage to a level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザー、特にその共振器の反射面及
びレーザー光の出射面が活性層の臂開面によって構成さ
れた端面構造によらず、活性層端面に他の半導体層によ
って覆われたいわゆる窓構造をとる半導体レーザーの製
造方法に係わる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor laser, particularly a semiconductor laser having an end face structure in which a reflection surface of a resonator and a laser beam emission surface are formed by an open face of an active layer. The present invention relates to a method of manufacturing a semiconductor laser having a so-called window structure in which the end face of an active layer is covered with another semiconductor layer.

〔発明の概要〕[Summary of the invention]

本発明は、半導体レーザーの製造方法に係わり、活性層
を有する半導体基板に、その活性層を横切り相対向する
少くとも一対の両端側面が特定結晶面による逆メサ型側
面とされたリッジ部を設ける工程と、その逆メサ型側面
を有するメサ溝内にクラッド層をエピタキシャル成長さ
せて逆メサ型側面を埋め込む垂直側面を形成する工程と
を有し、その垂直側面を活性層によるレーザー共振器の
反射面とし、かつレーザー光出射面とするものであり、
特に光学損傷いわゆるC OD (Catastrop
hicOptically Dasage)レベルの改
善を目的とする。
The present invention relates to a method for manufacturing a semiconductor laser, in which a ridge portion is provided in a semiconductor substrate having an active layer, and at least a pair of opposite end side surfaces across the active layer are inverted mesa-shaped side surfaces formed by specific crystal planes. and a step of epitaxially growing a cladding layer in a mesa groove having an inverted mesa-shaped side surface to form a vertical side surface that embeds the inverted mesa-shaped side surface, and the vertical side surface is used as a reflective surface of a laser resonator by an active layer. and serves as a laser beam emitting surface,
In particular, optical damage, so-called COD (Catastrop
The purpose is to improve the hicOptically Damage) level.

〔従来の技術〕[Conventional technology]

高出力半導体レーザーを実現させるにはCODレベルの
改善が必要となる。
In order to realize a high-power semiconductor laser, it is necessary to improve the COD level.

通常の半導体レーザー例えば埋め込みへテロ接合(BH
)型半導体レーザーにおいては、そのレーザー共振器を
構成する活性層の面に対して直交する面を、結晶の臂開
面によって形成しこのようにして形成された端面を共振
器の反射面及びレーザー光の出射面とする。ところが、
このような襞間面をレーザー光の出射面とする半導体レ
ーザーは、CODに問題があり、高出力半導体レーザー
を得る上の隘路となっている。
Ordinary semiconductor lasers, such as buried heterojunction (BH)
) type semiconductor laser, the plane perpendicular to the plane of the active layer constituting the laser resonator is formed by the open face of the crystal, and the end face thus formed is used as the reflective surface of the resonator and the laser beam. This is the light exit surface. However,
Semiconductor lasers that use such interfold surfaces as laser light emission surfaces have a problem with COD, which is a bottleneck in obtaining high-output semiconductor lasers.

また、襞間面による出射面を形成する半導体レーザー構
造では駆動回路等の電子回路を組合せて光集積回路化を
行うようにしたいわゆる0BIC(Optoelect
ror+ics Integrated C3rcui
t)への適用には不適当で、この0EICの実用化には
襞間によることなくいわゆる窓構造の半導体レーザーの
開発が望まれる。
In addition, in a semiconductor laser structure in which the output surface is formed by an interfold surface, so-called 0BIC (Optoelect
ror+ics Integrated C3rcui
It is unsuitable for application to t), and in order to put this 0EIC into practical use, it is desired to develop a semiconductor laser having a so-called window structure without the use of folds.

(発明が解決しようとする課題〕 ところが、従前の窓構造による半導体レーザーにおいて
再現性よく特性に優れた共振器を構成することに課題が
ある。
(Problems to be Solved by the Invention) However, there is a problem in constructing a resonator with good reproducibility and excellent characteristics in the conventional semiconductor laser having a window structure.

本発明はこの課題を解決して再現性よく確実に特性に優
れてCOD小さい、また光集積回路化を容易にすること
ができる窓構造による半導体レーザーを得ることを目的
とする。
The object of the present invention is to solve this problem and obtain a semiconductor laser with a window structure that has excellent characteristics with good reproducibility, has a small COD, and can be easily integrated into an optical integrated circuit.

[課題を解決するための手段]・ 本発明は、例えば第1図Aに示すように活性層(1)を
有する半導体基板(2)に、第1図Bに示すように、活
性層(1)を横切り、相対向する少くとも一対の両端側
面が特定結晶面による逆メサ型側面(3A)及び(3B
)とされたリッジ部(4)を設ける工程と、その逆メサ
型側面(3A)及び(3B)を有するメサ溝(5)内を
含んでクラッド層(6)をエピタキシャル成長して逆メ
サ型側面(3A)及び(3B)を埋め込んで活性層(1
)の面方向とほぼ直交する垂直側面(7A)及び(7B
)を形成する工程とを有し、その垂直側面(7^)及び
(7B)を活性層(1)によるレーザー共振器の反射面
としかつレーザー光出射面とする。
[Means for Solving the Problems] - The present invention provides, for example, a semiconductor substrate (2) having an active layer (1) as shown in FIG. 1A, and an active layer (1) as shown in FIG. 1B. ), and at least a pair of opposite end side surfaces are inverted mesa-shaped side surfaces (3A) and (3B) with specific crystal planes.
), and epitaxially growing a cladding layer (6) including the inside of the mesa groove (5) having the inverted mesa-shaped side surfaces (3A) and (3B) to form the inverted mesa-shaped side surface. (3A) and (3B) are embedded into the active layer (1).
) vertical side surfaces (7A) and (7B
), and its vertical side surfaces (7^) and (7B) are used as reflection surfaces of the laser resonator formed by the active layer (1) and as laser light emitting surfaces.

(作用〕 上述の本発明方法によれば、活性層(1)による共振器
の実質的反射面及びレーザー光の出射面が襞間面によら
ず、クラッド層(6)によって形成した窓構造をとるよ
うにしたことによって、光学損傷を小さくすることがで
き、CODレベルの改善がはかられこれによって高出力
化、連続発光化がはかられるものであり、また特に本発
明においてはこの側面(7A)及び(7B)を特定の結
晶面によって形成された逆メサ型側面(3A)及び(3
B)へのエピタキシャル成長によるすなわち結晶面によ
って成長速度が相違することによる特定された結晶面の
現出によって構成することができるようにしたので再現
性よく確実にこの垂直側面(7A)及び(7B)の形成
を行うことができる。
(Function) According to the above-described method of the present invention, the effective reflection surface of the resonator formed by the active layer (1) and the emission surface of the laser beam do not depend on the interfold surface, but instead form the window structure formed by the cladding layer (6). By doing so, it is possible to reduce optical damage, improve the COD level, and thereby achieve higher output and continuous light emission. 7A) and (7B) are inverted mesa-shaped side surfaces (3A) and (3
B) can be constructed by epitaxial growth, that is, by the appearance of a specified crystal plane due to the growth rate being different depending on the crystal plane, so that the vertical sides (7A) and (7B) can be reliably formed with high reproducibility. can be formed.

〔実施例〕〔Example〕

図面を参照して本発明による半導体レーザーの製造方法
の一例を説明する。
An example of a method for manufacturing a semiconductor laser according to the present invention will be explained with reference to the drawings.

この場合A I GaAs系の■〜V族化合物半導体レ
ーザーを得る場合で、まず第1図Aに示すように、lの
導電型例えばn型のGaAsよりなる■−V族化合物半
導体サブストレイト(11)を設ける。このサブストレ
イト(11)はその主面(Ila)が(100)結晶面
を有してなる。そして、この主面(lla)上に必要に
応じて図示しないがバッファ層を介して第1導電型例え
ばn型のA I!、 GaAsよりなる下層のクラッド
層(16)をエピタキシャル成長し、続いてこれよりエ
ネルギーギャップが小で屈折率の高い例えばGaAs化
合物半導体よりなる活性層(1)と、さらにこれの−ト
に他の導電型例えばP型で活性層(1)に比しエネルギ
ーバンドギャップの大きいすなわち屈折率の小さい上層
のクラッド層(6)を構成する第1のクラッド層(6A
)を順次エピタキシャル成長して半導体基板(2)を構
成する。
In this case, when obtaining an A I GaAs-based group ■-V compound semiconductor laser, first, as shown in FIG. 1A, a ■-V group compound semiconductor substrate (11 ) will be established. This substrate (11) has a main surface (Ila) having a (100) crystal plane. Then, on this main surface (lla), if necessary, a first conductivity type, for example, an n-type AI! is applied via a buffer layer (not shown). , a lower cladding layer (16) made of GaAs is epitaxially grown, followed by an active layer (1) made of a GaAs compound semiconductor having a smaller energy gap and higher refractive index, for example, and another conductive layer on top of this. A first cladding layer (6A) constituting the upper cladding layer (6), which is of type, for example, P type and has a larger energy bandgap, that is, a lower refractive index, than the active layer (1).
) are sequentially epitaxially grown to form a semiconductor substrate (2).

第1図Bに示すように、上層の第1のクラッド層(6A
)上にストライブ状のエツチングマスク(8)を選択的
に形成する。このマスク(8)は周知の技術、例えばフ
ォトレジスト膜の塗布、パターン露光。
As shown in FIG. 1B, the upper first cladding layer (6A
) A stripe-shaped etching mask (8) is selectively formed on the film. This mask (8) is formed using well-known techniques such as coating a photoresist film or pattern exposure.

現像の各処理によって形成し得る。この場合、紙面に沿
う面が(011)結晶面に選ばれ、マスク(8)のスト
ライブの延長方向がこの紙面に沿う方向に選ばれ両端縁
がこれと直交するようにする。
It can be formed by each development process. In this case, the plane along the plane of the paper is selected as the (011) crystal plane, and the extending direction of the stripes of the mask (8) is selected along the plane of the paper so that both edges are perpendicular to this.

次に、上層のクラッド層(6A)上から、活性層(1)
を横切る深さに結晶学的異方性エツチングを行う。
Next, from above the upper cladding layer (6A), the active layer (1)
Crystallographic anisotropic etching is performed to a depth across the .

すなわち、例えば硫酸系エツチング液例えば)1.so
4とHtO*とH2Oとが3:1:1の割合によって混
合されたエツチング液を用いてクラッド層(6A)上よ
りエツチングを行う。このようにしてマスク(8)によ
って覆われていない部分をエツチングしてメサ溝(5)
を形成し、これによって第1図Bに示すように両端に(
111)A結晶面による逆メサ型側面(3A)及び(3
B)が形成されたストライブ状のメサすなわちリッジ部
(4)を形成する。
That is, for example, a sulfuric acid-based etching solution) 1. so
Etching is performed from above the cladding layer (6A) using an etching solution containing a mixture of 4, HtO*, and H2O in a ratio of 3:1:1. In this way, the parts not covered by the mask (8) are etched to form mesa grooves (5).
, thereby forming (
111) Inverted mesa-shaped side surface (3A) and (3
B) A striped mesa, that is, a ridge portion (4) is formed.

次に、第1図Cに示すように、上層のクラッド層(6A
)と同導電型で同一材料のGaAsA lよりなり第2
のクラフトJi (6B)をメサ溝(5)内を含んでエ
ピタキシャル成長して行く、このようにすると逆メサ型
側面(3A)及び(3B)に(110)結晶面が生じた
時点でこの<110>軸方向の結晶成長速度が遅いこと
によって見かけ上−旦この時点でエピタキシャルが停止
するのでこの時点でクラッド層(6B)のエピタキシャ
ル成長を止めれば基板(2)の主面すなわち活性層(1
)の面と垂直な側面(7A)及び(7B)が生ずる。
Next, as shown in FIG. 1C, the upper cladding layer (6A
) and the second one is made of GaAsAl, which is the same conductivity type and material.
The craft Ji (6B) is epitaxially grown including the inside of the mesa groove (5). In this way, when (110) crystal planes are formed on the inverted mesa side surfaces (3A) and (3B), this <110 > Due to the slow crystal growth rate in the axial direction, epitaxial growth apparently stops at this point, so if the epitaxial growth of the cladding layer (6B) is stopped at this point, the main surface of the substrate (2), that is, the active layer (1
) side surfaces (7A) and (7B) perpendicular to the plane are generated.

その後、第1図りに示すように、続いて例えばp型の低
比抵抗のGaAs化合物半導体層より成るキャップN(
12)をエピタキシャル成長する。
Thereafter, as shown in the first diagram, a cap N (made of, for example, a p-type low resistivity GaAs compound semiconductor layer) (
12) is epitaxially grown.

次に第1図已に示すように、キャップ層(12)上にオ
ーミックにコンタクトして第1の電極(21)を被着す
る。また、基板(2)の裏面すなわちサブストレイト(
11)の裏面には、第2の電極(22)をオーミックに
被着して目的とする半導体レーザー(23)を得る。
Next, as shown in FIG. 1, a first electrode (21) is deposited on the cap layer (12) in ohmic contact. In addition, the back surface of the board (2), that is, the substrate (
11), a second electrode (22) is ohmically attached to the back surface of the semiconductor laser (23) to obtain the desired semiconductor laser (23).

このようにして得た半導体レーザー(23)は、そのス
トライプ状のメサすなわちリッジ部(4)内の活性層(
1)が動作領域すなわち共振器として作用し、その共振
器のストライブ方向の延長方向の両端面には逆メサ型側
面(3A)及び(3B)上に形成されたクラッド層(6
) ((6B) )による垂直側面(7A)及び(7B
)が形成された窓構造の半導体レーザーとなる。この場
合活性層(1)の逆メサ型側面(3A)及び(3B)で
は活性層(1)とクラッド層(6B)との各屈折率nは
例えば活性層がn=3.3であるに比し、クラッド層(
6B)がn=3.2程度の小差であり、またこの側面(
3A)及び(3B)が活性層面に対して斜めであるに比
し、これら側面(3A)及び(3B)に形成されたクラ
ッド層(6B)と外気とは屈折率差が大であること、ま
たクラッド層(6B)の外面は活性層(1)の面に対し
て垂直面(7A)及び(7B)であることからこの面(
7A)及び(7B)が共振器の反射面として作用するこ
とになり、かつこの面(7A)及び(7B)がレーザー
射出面となる。
The semiconductor laser (23) obtained in this way has an active layer (
1) acts as an operating region, that is, a resonator, and cladding layers (6
) ((6B) ) vertical sides (7A) and (7B
) is formed into a semiconductor laser with a window structure. In this case, in the inverted mesa-shaped side surfaces (3A) and (3B) of the active layer (1), the refractive index n of the active layer (1) and the cladding layer (6B) is, for example, n=3.3 for the active layer. Compared to the cladding layer (
6B) has a small difference of about n=3.2, and this aspect (
3A) and (3B) are oblique to the active layer surface, and the refractive index difference between the cladding layer (6B) formed on these side surfaces (3A) and (3B) and the outside air is large; Also, since the outer surface of the cladding layer (6B) is perpendicular to the surface of the active layer (1) (7A) and (7B), this surface (
7A) and (7B) will act as reflective surfaces of the resonator, and these surfaces (7A) and (7B) will become laser emission surfaces.

そして、この場合活性層(1)のストライプ状リッジ部
(メサ)(4)の延長方向と直交する側面に関しては、
第2図に第1図Eの断面とは直交する方向の断面図を示
すように順メサすなわち基部に向って幅広となる形状を
とることができる。
In this case, regarding the side surface perpendicular to the extending direction of the striped ridge portion (mesa) (4) of the active layer (1),
As shown in FIG. 2, which is a sectional view taken in a direction perpendicular to the cross section of FIG.

尚、上述した各層が図示の導電型とは逆の導電型に選定
することができるなど上述の例に限らず種々の構成をと
り得る。
It should be noted that various configurations other than the above-mentioned example may be adopted, such as each layer described above may be selected to have a conductivity type opposite to that illustrated.

〔発明の効果〕〔Effect of the invention〕

上述の本発明方法によれば、活性層(1)による共振器
の実質的反射面及びレーザー光の出射面が活性層の端面
目体の露出による襞間面によらず、クラッド層(6)の
垂直側面(7A)及び(7B)によって形成した窓構造
をとるようにしたことによって、光学損傷を小さくする
ことができ、CODの改善がはかられこれによって高出
力化、連続発光がはかられるものであり、また特に本発
明においてはこの側面(7八)及び(7B)を特定の結
晶面によって形成された逆メサ型側面(3A)及び(3
B)へのエピタキシャル成長によるすなわち結晶面によ
って成長速度が相違することによる特定された結晶面の
現出によって構成するようにしたので再現性よく確実に
この垂直側面(7A)及び(7B)の形成ができ、安定
してすぐれた特性の半導体レーザーを製造できる。
According to the above-described method of the present invention, the substantial reflection surface of the resonator and the emission surface of the laser beam formed by the active layer (1) do not depend on the interfold surface due to the exposure of the end face of the active layer, but rather the cladding layer (6). By adopting a window structure formed by the vertical sides (7A) and (7B), it is possible to reduce optical damage and improve COD, which leads to high output and continuous light emission. In particular, in the present invention, these side surfaces (78) and (7B) are inverted mesa-shaped side surfaces (3A) and (3) formed by specific crystal planes.
B) is formed by epitaxial growth, that is, the growth rate differs depending on the crystal plane, and thus the formation of a specified crystal plane is ensured with high reproducibility. It is possible to produce semiconductor lasers with stable and excellent characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の各工程における路線的断面図、第
2図は本発明方法によって得た半導体レーザーの横断面
図である。 (2)は基板、(1)は活性層、(6)、(6A)及び
(6B)はクラッド層、(12)はキャップ層、(4)
はリッジ部(メサ) 、(3A)及び(3B)は逆メサ
型側面、(7A)及び(7B)は垂直側面である。
FIG. 1 is a linear cross-sectional view of each step of the method of the present invention, and FIG. 2 is a cross-sectional view of a semiconductor laser obtained by the method of the present invention. (2) is the substrate, (1) is the active layer, (6), (6A) and (6B) are the cladding layers, (12) is the cap layer, (4)
is a ridge portion (mesa), (3A) and (3B) are inverted mesa-shaped side surfaces, and (7A) and (7B) are vertical side surfaces.

Claims (1)

【特許請求の範囲】 活性層を有する半導体基板に、上記活性層を横切り相対
向する少くとも一対の両端側面が特定結晶面により逆メ
サ型側面とされたリッジ部を設ける工程と、 該メサ型側面を有するメサ溝内を含んでクラッド層をエ
ピタキシャル成長させ、上記逆メサ型側面を埋め込んで
垂直側面を形成する工程とを有し、該垂直側面を上記活
性層によるレーザー共振器の反射面とし、かつレーザー
光の出射面としたことを特徴とする半導体レーザーの製
造方法。
[Scope of Claims] A step of providing a semiconductor substrate having an active layer with a ridge portion having at least a pair of opposing side surfaces across the active layer that are inverted mesa-shaped side surfaces due to a specific crystal plane; epitaxially growing a cladding layer including the inside of the mesa groove having side surfaces and burying the inverted mesa type side surfaces to form vertical side surfaces, the vertical side surfaces being used as reflective surfaces of the laser resonator formed by the active layer; A method for manufacturing a semiconductor laser, characterized in that the laser beam is emitted from the laser beam.
JP1010290A 1989-01-19 1989-01-19 Semiconductor laser manufacturing method Expired - Fee Related JP2822195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010290A JP2822195B2 (en) 1989-01-19 1989-01-19 Semiconductor laser manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010290A JP2822195B2 (en) 1989-01-19 1989-01-19 Semiconductor laser manufacturing method

Publications (2)

Publication Number Publication Date
JPH02191388A true JPH02191388A (en) 1990-07-27
JP2822195B2 JP2822195B2 (en) 1998-11-11

Family

ID=11746167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010290A Expired - Fee Related JP2822195B2 (en) 1989-01-19 1989-01-19 Semiconductor laser manufacturing method

Country Status (1)

Country Link
JP (1) JP2822195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199892A (en) * 1989-01-27 1990-08-08 Nec Corp Manufacture of semiconductor laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143082A (en) * 1979-04-24 1980-11-08 Philips Nv Method of fabricating electroluminescent semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55143082A (en) * 1979-04-24 1980-11-08 Philips Nv Method of fabricating electroluminescent semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199892A (en) * 1989-01-27 1990-08-08 Nec Corp Manufacture of semiconductor laser

Also Published As

Publication number Publication date
JP2822195B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
JPH02205092A (en) Semiconductor device laser and its manufacture
JPH0461514B2 (en)
JPH02191388A (en) Manufacture of semiconductor laser
JPS59227177A (en) Semiconductor laser
JPS60261184A (en) Semiconductor laser device and manufacture thereof
JPH0710015B2 (en) Semiconductor laser device and method of manufacturing the same
JPS63147379A (en) Manufacture of end-face light-emitting diode
JPS63250886A (en) Manufacture of semiconductor laser element
JPS5864085A (en) Semiconductor laser and manufacture thereof
JP4024319B2 (en) Semiconductor light emitting device
JPS61116896A (en) Semiconductor laser device
JPS63300586A (en) Semiconductor laser device
JPH01215087A (en) Semiconductor light emitting device
JPS5856992B2 (en) semiconductor laser equipment
JPH05145174A (en) Manufacture of semiconductor light emitting element
JPS61244082A (en) Semiconductor laser device
JPS63169087A (en) Semiconductor laser
JPS6142188A (en) Semiconductor laser device
JPS62256489A (en) Semiconductor laser device
JPH06291405A (en) Semiconductor light-emitting element and manufacture thereof
JPH0260184A (en) Semiconductor laser
JPH07122813A (en) Manufacture of semiconductor laser
JPS61137385A (en) Vertical mode control semiconductor laser
JPH07105561B2 (en) Semiconductor laser
JPS61182295A (en) Semiconductor layer device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees