JPS61137385A - Vertical mode control semiconductor laser - Google Patents

Vertical mode control semiconductor laser

Info

Publication number
JPS61137385A
JPS61137385A JP26025684A JP26025684A JPS61137385A JP S61137385 A JPS61137385 A JP S61137385A JP 26025684 A JP26025684 A JP 26025684A JP 26025684 A JP26025684 A JP 26025684A JP S61137385 A JPS61137385 A JP S61137385A
Authority
JP
Japan
Prior art keywords
semiconductor laser
type
grown
mode control
longitudinal mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26025684A
Other languages
Japanese (ja)
Inventor
Atsuyuki Kobayashi
敬幸 小林
Yoshimasa Oki
大木 芳正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26025684A priority Critical patent/JPS61137385A/en
Publication of JPS61137385A publication Critical patent/JPS61137385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the manufacture by holding a zone of polycrystals having different refractive indexes in a resonator to form a vertical mode control semiconductor laser. CONSTITUTION:An SiO2 stripe 12 of the prescribed size is formed by a photolithography at a suitable intermediate position of an end resonator length on a substrate 10. An N type InP buffer layer 11 and a current narrowing reverse junction 4B are grown thereon. A groove is formed by chemical etching in a direction perpendicular to the stripe 12 by a photolithography, buried and grown in the groove to grown an N type InP N type clad layer 2, an undoped InGaAsP active region 1, a P type InP P type cap layer 5 are grown. An end resonator is formed by cleavage, electrodes 6, 7 are attached to obtain a vertical control semiconductor laser of internal reflection interference type.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信用光源、特に広帯域伝送用の縦モード制
御型半導体レーザに関する。更に言えば、内部反射干渉
縦モード制御型半導体レーザの改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a light source for optical communication, particularly to a longitudinal mode controlled semiconductor laser for broadband transmission. More specifically, the present invention relates to improvements in internal reflection interference longitudinal mode control type semiconductor lasers.

従来の技術 近年、光通信技術の向上に伴い、伝送の広帯域化が計ら
れている。しかしながら従来の半導体レーザは縦モード
が必ずしも単一でなく、この目的に対して充分な性能を
備えていると言い難かった。
BACKGROUND OF THE INVENTION In recent years, with the improvement of optical communication technology, efforts have been made to widen the transmission band. However, conventional semiconductor lasers do not necessarily have a single longitudinal mode, and it is difficult to say that they have sufficient performance for this purpose.

このために分布帰還型(DFB)、分布ブラッグ反射型
(DBR)、ヘキ開結合共振器型(C5)など、種々の
構造が検討されてきた。これらの構造を用いた半導体レ
ーザは、巧妙に作成することにより極めてよい特性の得
られることが実証されている。しかしながら、その作成
は実際には決して容易なものではない。すなわち、DF
B 、DBHにおいては、大きな装置と静浄な環境の下
で微細な回折格子を半導体ウェハ上に作成し、かつ、こ
れをそこなうことなくこの上に結晶成長を行わねばなら
ぬ困難があり、また、C3についても二個の半導体レー
ザチップを、数μm幅の断面しかない活性領域をつき合
せて組合せるという高度な技術を必要とした。このため
、他にも単−縦モード発振を得るための種々の試みが行
われている。
For this purpose, various structures have been studied, such as distributed feedback type (DFB), distributed Bragg reflection type (DBR), and cleavage-coupled resonator type (C5). It has been demonstrated that semiconductor lasers using these structures can have extremely good characteristics if carefully manufactured. However, its creation is actually not easy. That is, D.F.
B. In DBH, there are difficulties in creating a fine diffraction grating on a semiconductor wafer using large equipment and in a quiet environment, and then growing crystals on this without damaging it. , C3 also required a sophisticated technique of assembling two semiconductor laser chips with their active regions, each having a cross section only a few μm wide, facing each other. For this reason, various other attempts have been made to obtain single-longitudinal mode oscillation.

内部反射干渉型(IRI)半導体レーザは、こ−Mod
e  InGaAsP/ InP Internal−
reflectio%−Interference L
amer”、 IE5SemicanduatorLa
ser Conference 、 Rio (198
4))がある。
Internal reflection interference (IRI) semiconductor laser is a Mod
e InGaAsP/ InP Internal-
reflection%-Interference L
amer”, IE5SemicanduatorLa
ser Conference, Rio (198
4))).

第4図にその構造図の一例を示し、これに従ってその動
作原理を簡単に説明する。第4図aはIRI半導体レー
ザの端面を示した図であるが、これは従来の半導体レー
ザと相異はない。41は活性領域、42はn型りラヮド
、43はp型クラッド、44は電流狭窄用逆接合、45
はキャップ層、410は基板、411は緩衝層、4θは
p型電極、47はn型電極である。IRI半導体レーザ
の特徴は横方向からの活性領域を含む断面図(同図b)
に示される。48は活性領域41を二つに分ける区分部
である。区分部は活性領域に対し僅かに屈折率の異なる
物質で作成され、内部反射面49を活性領域41に付与
する。電極46 、47に通電することによシ、通常の
端面反射による発振モードの上に、49に起因する内部
反射干渉の結果、更に波長周期の大きな発振モードが重
畳される。このため発振主波長の選択性が高められて、
縦モード単一性の高い発振が得られる。
An example of its structural diagram is shown in FIG. 4, and its operating principle will be briefly explained according to the drawing. FIG. 4a is a diagram showing an end face of an IRI semiconductor laser, which is no different from a conventional semiconductor laser. 41 is an active region, 42 is an n-type cladding, 43 is a p-type cladding, 44 is a reverse junction for current confinement, 45
is a cap layer, 410 is a substrate, 411 is a buffer layer, 4θ is a p-type electrode, and 47 is an n-type electrode. The feature of the IRI semiconductor laser is the cross-sectional view including the active region from the lateral direction (Figure b)
is shown. 48 is a dividing portion that divides the active region 41 into two. The section is made of a material with a slightly different refractive index relative to the active region and provides an internally reflective surface 49 to the active region 41 . By energizing the electrodes 46 and 47, an oscillation mode with a larger wavelength period is superimposed on the normal oscillation mode due to end face reflection as a result of internal reflection interference caused by 49. Therefore, the selectivity of the oscillation dominant wavelength is increased,
Oscillation with high longitudinal mode unity can be obtained.

発明が解決しようとする問題点 しかしながら、従来のIRI半導体レーザにおいては区
分部形成を化学エツチングにより行うため、その作成は
比較的容易とは言いながら必ずしも完全に容易なものと
は言えなかった。また、エツチングの結晶方位選択性を
利用するため内部反射面49の角度を活性領域41に垂
直にすることも困難であった。
Problems to be Solved by the Invention However, in conventional IRI semiconductor lasers, the divisions are formed by chemical etching, and therefore, although it is relatively easy to create them, it is not necessarily completely easy. Furthermore, it is difficult to make the angle of the internal reflection surface 49 perpendicular to the active region 41 in order to utilize the crystal orientation selectivity of etching.

本発明は従来技術の以上のような問題点を解決し、更に
一層作成の容易な構造を持つIRI型の縦モード制御型
半導体レーザを与えることを目的とするものである。
It is an object of the present invention to solve the above-mentioned problems of the prior art and to provide an IRI type longitudinal mode control semiconductor laser having a structure that is easier to manufacture.

問題点を解決するための手段 本発明は、共振器内に屈折率の異なる区分部を有し、か
つ、この区分部が多結晶であることを特徴とする縦モー
ド制御型半導体レーザを与えることで、上記目的を達成
しようとするものである。
Means for Solving the Problems The present invention provides a longitudinal mode control type semiconductor laser which has sectioned sections with different refractive indexes within a resonator and is characterized in that the sectioned sections are polycrystalline. This aims to achieve the above objectives.

作  用 これにより、良好な区分部を有するIRI型の縦モード
制御型半導体レーザを更に容易に得ることを可能となる
ようにしたものである。
Operation: This makes it possible to more easily obtain an IRI type longitudinal mode control type semiconductor laser having a good segmented portion.

実施例 以下、図面を参照しながら本発明の第1の実施例につい
て説明する。第1図は、本発明の実施例ておける縦モー
ド制御型半導体レーザの、共振器端面及び横方向から見
た活性領域を含む断面図である。また、第2図は同実施
例における縦モード制御型半導体レーザを作成するに当
り成長に使用される時の基板(ただし、成長ウェハーの
中で。
EXAMPLE A first example of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a longitudinal mode controlled semiconductor laser according to an embodiment of the present invention, including a cavity end face and an active region viewed from the lateral direction. Furthermore, FIG. 2 shows the substrate used for growth (inside the growth wafer) in producing the longitudinal mode control type semiconductor laser in the same embodiment.

1素子分に相当する部分のみ)を示したものである。1
0は基板、12はこの上に適当な位置に配された絶縁膜
のストライプである。この上に本実施例においても通常
の半導体レーザ作成と同様の方法を用いて半導体レーザ
を作成していく。ただし1本実施例においては、基板上
への結晶成長法上してMOCV D法を用いる。これは
通常用いられるLPE法と異なり1M0CVD法は絶縁
膜上に多結晶が成長する特徴を有するためである。
Only the portion corresponding to one element is shown. 1
0 is a substrate, and 12 is a stripe of an insulating film arranged at an appropriate position on this substrate. Furthermore, in this embodiment, a semiconductor laser is manufactured using a method similar to that used for manufacturing a normal semiconductor laser. However, in this embodiment, the MOCVD method is used as the crystal growth method on the substrate. This is because, unlike the commonly used LPE method, the 1M0CVD method has the characteristic that polycrystals grow on the insulating film.

本実施例の縦モード制御型半導体レーザの作成方法は以
下のようである。
The method for manufacturing the longitudinal mode controlled semiconductor laser of this example is as follows.

基板10上の、端面共振器長のほぼ中間の適当な位置に
ホトリソグラフィを用いて幅0.7μm。
A film with a width of 0.7 μm is formed on the substrate 10 at an appropriate position approximately in the middle of the end facet resonator length using photolithography.

厚さ0.1μmの8102ストライプを形成する。この
上にn型InPの緩衝層11.電流狭窄用逆接合4を形
成するためのp型InP層4A、n型InP層4Bを成
長する。この時、S 102ストライプ12上に成長し
たこれらの層の部分は多結晶になっている。今、ホI−
IJソグラフィを用いて、SiO。ストライプ12と直
角方向に化学エッチにより溝を形成し、この溝の中に埋
込み成長を行い、n型InPのn型クラッド2.アンド
ープInGaAsP の活性領域1、p型InPのp型
クラッド3を成長させ、引続きp型I nG aAs 
P のキャップ層6を成長させる。この時、SiO□ス
トライプ12上の部分に相当する2、1,3.5は下層
の性質を受継いで多結晶に成長している(第1図す中斜
線部で示す)。ヘキ開により端面共振器を形成し、電極
6゜7を付して第1図に示したIRT型の縦モード制御
型半導体レーザを得た。ここにおいて、活性領域の多結
晶部分は端面共振器中にあって区分部8を構成している
8102 stripes with a thickness of 0.1 μm are formed. On top of this is an n-type InP buffer layer 11. A p-type InP layer 4A and an n-type InP layer 4B for forming a reverse junction 4 for current confinement are grown. At this time, the portions of these layers grown on the S102 stripes 12 are polycrystalline. Now, Ho I-
SiO using IJ lithography. A groove is formed by chemical etching in a direction perpendicular to the stripe 12, and an n-type cladding 2. of n-type InP is grown by filling it in the groove. An active region 1 of undoped InGaAsP and a p-type cladding 3 of p-type InP are grown, and then p-type InGaAsP is grown.
Grow a cap layer 6 of P 2 . At this time, portions 2, 1, and 3.5 corresponding to the portions above the SiO□ stripes 12 inherit the properties of the underlying layer and grow into polycrystals (shown by the hatched area in FIG. 1). An end facet resonator was formed by cleavage, and an electrode 6°7 was attached to obtain the IRT type longitudinal mode controlled semiconductor laser shown in FIG. Here, the polycrystalline portion of the active region is located in the end facet resonator and constitutes a section 8.

同じ結晶の場合、単結晶と多結晶との屈折率の差は微小
であり、また、多結晶は透過率が小さい0しかしながら
、以上の方法で得たIRI型半導体レーザはしきい値電
流の1.2倍〜2.3倍において1.54μmの安定な
単−縦モード発振を示した。
In the case of the same crystal, the difference in refractive index between single crystal and polycrystal is minute, and polycrystal has low transmittance.However, the IRI type semiconductor laser obtained by the above method has a threshold current of 1 Stable single-longitudinal mode oscillation of 1.54 μm was exhibited at .2 to 2.3 times.

これは、本実施例における内部反射面9の形状が垂直で
あり、比較的良好であること、及び区分部の幅をできる
だけ小さくしたことによると推定される。
This is presumed to be due to the fact that the shape of the internal reflection surface 9 in this example is vertical and relatively good, and that the width of the partitioned portion is made as small as possible.

次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第3図は第2の実施例における縦モード制御型半導体レ
ーザの、横方向から見た活性領域を含む断面図である。
FIG. 3 is a cross-sectional view of the longitudinal mode control type semiconductor laser in the second embodiment, including the active region, viewed from the lateral direction.

本実施例にあっては、実施例1の絶縁膜ストライプの代
りに、同じ位置にスクライノくにより微弱なキズ312
をつけた基板を用い、同様な作成方法を試みた。本実施
例のIRI型半導体レーザはしきい値電流の1.5〜2
.1倍において1.46μmの安定な単−縦モード発振
を示した。
In this embodiment, instead of the insulating film stripes of Embodiment 1, weak scratches 312 are made by scratching at the same position.
We tried a similar manufacturing method using a board with . The IRI type semiconductor laser of this example has a threshold current of 1.5 to 2.
.. It exhibited stable single-longitudinal mode oscillation of 1.46 μm at 1× magnification.

なお、以上の実施例はすべて溝基板(C3)構造の半導
体レーザでの場合を述べたが、埋込みへテロ(B)I)
構造の半導体レーザの実験においてもほぼ同様の効果が
得られる。また、MOCVD法以外にも可能なかぎシど
のような成長法を用いてもよい。多結晶区分部を形成す
るためには、第2図に示す絶縁膜ストライプ以外に51
02、もしくは多結晶層のようなものを下地に用いるこ
とも可能である。形状がストライプ以外のものでもさし
つかえないことは言うを待たない。
Note that all of the above embodiments are based on semiconductor lasers with a grooved substrate (C3) structure;
Almost the same effect can be obtained in experiments using semiconductor lasers with this structure. Further, any possible growth method other than the MOCVD method may be used. In order to form the polycrystalline section, in addition to the insulating film stripes shown in FIG.
02 or a polycrystalline layer may be used as the base. Needless to say, shapes other than stripes are also acceptable.

発明の効果 内部反射面を多結晶構造にすることによって。Effect of the invention By making the internal reflective surface a polycrystalline structure.

−その製造を容易にするものである。- facilitates its manufacture;

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における縦モード制御型
半導体レーザの共振器端面、及び横方向から見た活性領
域を含む断面図、第2図は同実施るに当り成長に使用さ
れる時の基板、第3図は本発明の第2の実施例における
、横方向から見た活性領域を含む断面図、第4図は従来
のLRI縦モード制御型半導体レーザの共振器端面、及
び横方向から見た活性領域を含む断面図である。 1・・・・・・活性領域、2・・・・・・n型クラッド
、3・・・・・・・p型クラフト、8・・・・・・区分
部、9・・・・・・内部反射面、10・・・・・・基板
、12・・・・・・絶縁膜ストライプ、312・・・・
・・キズ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
FIG. 1 is a cross-sectional view of a longitudinal mode controlled semiconductor laser according to a first embodiment of the present invention, including a cavity end face and an active region viewed from the lateral direction. 3 is a sectional view including the active region seen from the lateral direction in the second embodiment of the present invention; FIG. 4 is a resonator end face of a conventional LRI longitudinal mode control semiconductor laser; and FIG. FIG. 3 is a cross-sectional view including an active region when viewed from the lateral direction. 1... Active region, 2... N-type cladding, 3... P-type cladding, 8... Division section, 9... Internal reflective surface, 10... Substrate, 12... Insulating film stripe, 312...
...Scratch. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)共振器内に屈折率の異なる区分部を有し、かつ、
この区分部が多結晶であることを特徴とする縦モード制
御型半導体レーザ。
(1) Having sections with different refractive indexes in the resonator, and
A longitudinal mode control type semiconductor laser characterized in that this section is polycrystalline.
(2)基板表面に絶縁膜を介して区分部を形成した特許
請求の範囲第1項記載の縦モード制御型半導体レーザ。
(2) A longitudinal mode control type semiconductor laser according to claim 1, wherein a segmented portion is formed on the surface of the substrate with an insulating film interposed therebetween.
(3)基板表面に設けたキズ上に区分部を形成したこと
を特徴とする特許請求の範囲第1項記載の縦モード制御
型半導体レーザ。
(3) A longitudinal mode control type semiconductor laser according to claim 1, characterized in that a segmented portion is formed on a scratch provided on the surface of the substrate.
JP26025684A 1984-12-10 1984-12-10 Vertical mode control semiconductor laser Pending JPS61137385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26025684A JPS61137385A (en) 1984-12-10 1984-12-10 Vertical mode control semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26025684A JPS61137385A (en) 1984-12-10 1984-12-10 Vertical mode control semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61137385A true JPS61137385A (en) 1986-06-25

Family

ID=17345518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26025684A Pending JPS61137385A (en) 1984-12-10 1984-12-10 Vertical mode control semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61137385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373686A (en) * 1986-09-17 1988-04-04 Mitsubishi Electric Corp Manufacture of semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373686A (en) * 1986-09-17 1988-04-04 Mitsubishi Electric Corp Manufacture of semiconductor laser

Similar Documents

Publication Publication Date Title
JPS59205787A (en) Single axial mode semiconductor laser
JPH0461514B2 (en)
JPS6328520B2 (en)
JPH05327112A (en) Manufacture of semiconductor laser
JP4151043B2 (en) Manufacturing method of optical semiconductor device
JP2002076510A (en) Semiconductor laser and production method therefor
JPS61137385A (en) Vertical mode control semiconductor laser
JPS61113293A (en) Semiconductor laser array device
JPH0228985A (en) Semiconductor laser and manufacture thereof
JPS63305582A (en) Semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPS60165782A (en) Semiconductor laser
JPH01124278A (en) Manufacture of semiconductor laser
JPH0228986A (en) Semiconductor laser
JPS63164387A (en) Semiconductor laser
JPS6358390B2 (en)
JPH0661581A (en) Semiconductor laser and its manufacture
JPS5972787A (en) Semiconductor laser
JPS62282481A (en) Semiconductor laser
JPS595689A (en) Distributed feedback type semiconductor laser
JPH0621573A (en) Semiconductor laser and its manufacture
JP2706166B2 (en) Semiconductor laser
JPS6265490A (en) Distributed feedback semiconductor laser
JPH0621574A (en) Semiconductor laser and its manufacture