JPS61182295A - Semiconductor layer device - Google Patents
Semiconductor layer deviceInfo
- Publication number
- JPS61182295A JPS61182295A JP2316985A JP2316985A JPS61182295A JP S61182295 A JPS61182295 A JP S61182295A JP 2316985 A JP2316985 A JP 2316985A JP 2316985 A JP2316985 A JP 2316985A JP S61182295 A JPS61182295 A JP S61182295A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- type inp
- cladding layer
- oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1228—DFB lasers with a complex coupled grating, e.g. gain or loss coupling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2232—Buried stripe structure with inner confining structure between the active layer and the lower electrode
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、単−縦モードで発振する分布帰還型半導体レ
ーザ装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a distributed feedback semiconductor laser device that oscillates in a single longitudinal mode.
(従来の技術)
従来9分布帰還型半導体レーザは、単−縦モード発振を
実現するために用いられている。しかし。(Prior Art) Conventionally, a nine-distributed feedback semiconductor laser has been used to realize single-longitudinal mode oscillation. but.
この種の分布帰還型半導体レーザでは1本質的に利得の
等しい縦モードが2つ存在しており、常に一定の電流を
流している定常動作時においては。In this type of distributed feedback semiconductor laser, there are two longitudinal modes with essentially the same gain, and during steady operation where a constant current is always flowing.
共振器固有の非対称性のために、一方の縦モードでのみ
発振するものと考えられている。Due to the inherent asymmetry of the resonator, it is thought that it oscillates in only one longitudinal mode.
すなわち、従来の分布帰還型半導体レーザでは。That is, in a conventional distributed feedback semiconductor laser.
両端のヘキ開面がファプリーペロー型共振器を構成しな
いように一方のヘキ開面を斜めにエツチングしており、
このことにより、共振器の非対称性を故意に大きくなし
、安定な単−縦モード発振が実現されている。One cleavage plane is etched diagonally so that the cleavage planes at both ends do not form a Fapley-Perot resonator.
As a result, the asymmetry of the resonator is intentionally increased, and stable single-longitudinal mode oscillation is realized.
(発明が解決しようする問題点)
しかるに2例えば光通信用の光源としてこの種の分布帰
還型半導体レーザを用いた場合、励起電流量が高速で変
調されるので、たとえ共振器を非対称に構成しても、必
ずしも単一モードで発振せず、現実に発振スペクトルの
拡がりや発振モードの不連続な変化が観測されている。(Problems to be Solved by the Invention) However, 2. For example, when this type of distributed feedback semiconductor laser is used as a light source for optical communication, the amount of excitation current is modulated at high speed, so even if the resonator is configured asymmetrically, However, it does not necessarily oscillate in a single mode; in fact, broadening of the oscillation spectrum and discontinuous changes in the oscillation mode have been observed.
本発明は、かかる点に鑑み、定常動作時はもとより、非
定常動作時においても、単一の縦モードで発振可能な分
布帰還型半導体レーザを提供することを目的とする。In view of this, an object of the present invention is to provide a distributed feedback semiconductor laser capable of oscillating in a single longitudinal mode not only during steady operation but also during unsteady operation.
(問題点を解決するための手段)
本発明は、ダブルへテロ構造の半導体レーザ装置におい
て、活性層上に或る導電型の第1クラッド層が形成され
、この第1クラッド層上に該第1クラッド層と逆の導電
型の半導体層(ブロック層)が光の伝播方向と垂直方向
に一定の周期で形成され、この半導体層上に前記第1ク
ラッド層と同じ導電型の第2クラッド層が形成され、逆
バイアスされた前記第1クラッド層と半導体層(ブロッ
ク層)とによって周期的な電流阻止構造が形成される半
導体レーザ装置である。(Means for Solving the Problems) The present invention provides a double heterostructure semiconductor laser device in which a first cladding layer of a certain conductivity type is formed on an active layer, and a first cladding layer of a certain conductivity type is formed on the first cladding layer. A semiconductor layer (block layer) having a conductivity type opposite to that of the first cladding layer is formed at regular intervals in a direction perpendicular to the light propagation direction, and a second cladding layer having the same conductivity type as the first cladding layer is formed on this semiconductor layer. This is a semiconductor laser device in which a periodic current blocking structure is formed by the first cladding layer and the semiconductor layer (block layer) which are reverse biased.
(作用)
第1クラッド層と半導体層(ブロック層)との接合部分
に逆バイアスをかけることによって、光の伝播方向に対
して光の波長と同程度の周期で利得または吸収係数が変
化し非定常動作時でも単一の縦モード発振がなされる。(Function) By applying a reverse bias to the junction between the first cladding layer and the semiconductor layer (block layer), the gain or absorption coefficient changes in the light propagation direction with a period comparable to the wavelength of the light. Single longitudinal mode oscillation occurs even during steady operation.
(実施例) 以下2本発明の実施例を図面を参照して説明する。(Example) Hereinafter, two embodiments of the present invention will be described with reference to the drawings.
図面は本発明に係わる分布帰還型半導体レーザの斜視図
である。本例の分布帰還型半導体レーザでは、I nx
Ga+−xAs、P+−、(0,47<x< 1゜0<
y<1)からなる活性層4上にp型1nP第1クラッド
層5が形成され、このp型1nP第1クラッド層5上に
格子状のn型InPブロック層6が形成され、このn型
1nPブロック層6上にp型1nP第2クラッド層7が
形成され、p型InP第1クラッド層5とn型1nPブ
ロック層6との接合部に逆バイアスが印加されるように
なされている。The drawing is a perspective view of a distributed feedback semiconductor laser according to the present invention. In the distributed feedback semiconductor laser of this example, I nx
Ga+-xAs, P+-, (0,47<x<1°0<
A p-type 1nP first cladding layer 5 is formed on the active layer 4 consisting of y<1), a lattice-shaped n-type InP block layer 6 is formed on this p-type 1nP first cladding layer 5, and A p-type 1nP second cladding layer 7 is formed on the 1nP block layer 6, and a reverse bias is applied to the junction between the p-type InP first cladding layer 5 and the n-type 1nP block layer 6.
なお、p型1nP第1クラッド層5.n型1npブロッ
ク層6. p型1nP第2クラッド層7の3層は同一
物質である必要はないが、p型1nP第1クラッド層5
とp型1nP第2クラッド層7は。Note that the p-type 1nP first cladding layer 5. n-type 1np block layer6. Although the three layers of the p-type 1nP second cladding layer 7 do not need to be made of the same material, the p-type 1nP first cladding layer 5
and p-type 1nP second cladding layer 7.
活性層4よりエネルギーギャップが大きく、導電型が等
しいことが必要で、n型1nPブロック層6は、p型I
nP第1クラッド層5. p型InP第2クラッド層7
とは導電型が反対であることが必要である。It is necessary that the energy gap is larger than that of the active layer 4 and that the conductivity types are the same.
nP first cladding layer5. p-type InP second cladding layer 7
It is necessary that the conductivity type is opposite to that of .
次に、上記構成からなる分布帰還型半導体レーザの製造
手順について述べる。Next, the manufacturing procedure of the distributed feedback semiconductor laser having the above configuration will be described.
■ まず、液相成長法により、n、型InP基板2上に
n型1nPバッファ層3を成長させ、続いて発振波長力
月、1μm〜1.6μm程度の適当な発振波長となるよ
うな組成比からなる活性層4を成長させる。■ First, an n-type 1nP buffer layer 3 is grown on an n-type InP substrate 2 by a liquid phase growth method, and then a composition that provides an appropriate oscillation wavelength of about 1 μm to 1.6 μm is grown. The active layer 4 consisting of the following ratio is grown.
■ この活性層4上にp型1nP第1クラッド層5を約
0.08μm成長させ、さらにn型TnPブロック層6
を約0.1μmの厚さに成長させる。・そして、ホトレ
ジストマスク(図示省略)を塗布し1例えば2光束干渉
露光装置を用いて2周・ 期が1700人〜2500人
の干渉縞パターンを露光し、光の波長と同程度の周期を
有する格子パターンのマスクを作る。このマスクを用い
てエッチャント(飽和臭素水: H3P0a: HtO
=2:1:15の組成比からなる)によってn型1nP
ブロック層6を格子状にエツチング除去する。■ A p-type 1nP first cladding layer 5 of approximately 0.08 μm is grown on this active layer 4, and an n-type TnP blocking layer 6 is grown on the active layer 4.
is grown to a thickness of about 0.1 μm.・Then, a photoresist mask (not shown) is applied, and an interference fringe pattern of 1,700 to 2,500 people is exposed for 2 cycles using, for example, a 2-beam interference exposure device, and the period is about the same as the wavelength of the light. Make a mask with a grid pattern. Using this mask, etchant (saturated bromine water: H3P0a: HtO
= 2:1:15 composition ratio) makes n-type 1nP
The block layer 6 is removed by etching in a grid pattern.
■ 次に、n型1nPブロック層6上にp型InP第2
クラッド層7とn型1nPキャップ層8を成長させ、つ
いで+ S iN x膜9を例えばプラズマCVD法
により約2000人の厚〆に蒸着し、ホトレジストマス
ク(図示省略)を用いて光の伝播方向に沿ってエツチン
グ液(HF:NH4F=1:40の組成からなる)でス
トライプ状にエツチングする。そして、このSiNx膜
9をマスクとしてZn等の拡散の容易な不純物元素を拡
散して、P型のチャンネル11を形成し、電流の通路と
なす。最後に、電極1および電極10を形成する。■ Next, a p-type InP second layer is placed on the n-type 1nP block layer 6.
A cladding layer 7 and an n-type 1nP cap layer 8 are grown, and then a +SiNx film 9 is deposited to a thickness of approximately 2000 nm by, for example, plasma CVD, and a photoresist mask (not shown) is used to align the film in the direction of light propagation. Etching is performed in stripes along the wafer using an etching solution (having a composition of HF:NH4F=1:40). Using this SiNx film 9 as a mask, an easily diffusable impurity element such as Zn is diffused to form a P-type channel 11, which serves as a current path. Finally, electrode 1 and electrode 10 are formed.
しかして、上記構成からなる分布帰還型半導体レーザに
おいて、電極10側を電極1側に対して正電位として、
p型1nP第1クラッド層5. n型1nPブロック
層6との接合部を逆バイアスにすると、この接合部によ
って格子状の電流阻止構造が形成されるために、n型1
nPブロック層6の直下の前記活性層4はそれ以外の部
分に比べ利得が低くなる。そして、この利得が低くなる
ことによって、光の伝播方向に沿って光の波長と同程度
の周期で屈折率を変化させた従来の分布帰還型半導体レ
ーザと同様の単−縦モード発振が得られ。Therefore, in the distributed feedback semiconductor laser having the above configuration, the electrode 10 side is set at a positive potential with respect to the electrode 1 side,
p-type 1nP first cladding layer5. When the junction with the n-type 1nP block layer 6 is reverse biased, a lattice-like current blocking structure is formed by this junction.
The active layer 4 directly under the nP block layer 6 has a lower gain than the other portions. By lowering this gain, it is possible to obtain single-longitudinal mode oscillation similar to the conventional distributed feedback semiconductor laser in which the refractive index is changed along the light propagation direction at a period comparable to the light wavelength. .
しかも本例の場合には定常動作時のめでなく、非定常動
作時においても、安定した縦モード発振が確認された。Moreover, in the case of this example, stable longitudinal mode oscillation was confirmed not only during steady operation but also during unsteady operation.
なお5本発明に係わる分布帰還型半導体レーザは、上述
したI n P / I n G a A s P /
r n Pのダブルへテロ型半導体レーザについての
適用を示したが、他の半導体レーザ、例えばGaAAA
s/ G a A s / I n G a A s
Pダブルへテロ型半導体レーザにも適用できる。5 The distributed feedback semiconductor laser according to the present invention has the above-mentioned I n P / I n Ga As P /
Although the application to an r n P double hetero type semiconductor laser has been shown, other semiconductor lasers such as GaAAA
s / Ga As / In Ga As
It can also be applied to a P double hetero type semiconductor laser.
(発明の効果)
以上述べたように1本発明によれば、定常動作時だけで
なく、非定常動作時にも、単一の縦モード発振で発振す
る分布帰還型半導体レーザが確認されたので2例えば、
光通信用の光源としてもきわめて耐久性の強い安定した
発振が可能となる。(Effects of the Invention) As described above, 1. According to the present invention, a distributed feedback semiconductor laser that oscillates in a single longitudinal mode oscillation not only during steady operation but also during unsteady operation has been confirmed. for example,
It also enables extremely durable and stable oscillation as a light source for optical communications.
図面は本発明に係わる半導体レーザ装置の実施例を示す
斜視図である。
4・・・活性層
5・・・p型1nP第1クラッド層
6・・・n型1nPブロック層
7・・・p型1nP第2クラッド層
ほか1名The drawing is a perspective view showing an embodiment of a semiconductor laser device according to the present invention. 4... Active layer 5... P-type 1nP first cladding layer 6... N-type 1nP block layer 7... P-type 1nP second cladding layer and one other person
Claims (1)
性層上に或る導電型の第1クラッド層が形成され、この
第1クラッド層上に該第1クラッド層と逆の導電型の半
導体層が光の伝播方向と垂直方向に一定の周期で形成さ
れ、この半導体層上に前記第1クラッド層と同じ導電型
の第2クラッド層が形成され、逆バイアスされた前記第
1クラッド層と半導体層とによって周期的な電流阻止構
造が形成されることを特徴とする半導体レーザ装置。1) In a double heterostructure semiconductor laser device, a first cladding layer of a certain conductivity type is formed on the active layer, and a semiconductor layer of a conductivity type opposite to the first cladding layer is formed on the first cladding layer. A second cladding layer is formed at regular intervals in a direction perpendicular to the propagation direction of the semiconductor layer, and has the same conductivity type as the first cladding layer, and the first cladding layer and the semiconductor layer are reversely biased. A semiconductor laser device characterized in that a periodic current blocking structure is formed by.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2316985A JPS61182295A (en) | 1985-02-07 | 1985-02-07 | Semiconductor layer device |
US06/816,259 US4716570A (en) | 1985-01-10 | 1986-01-06 | Distributed feedback semiconductor laser device |
EP86300127A EP0187718B1 (en) | 1985-01-10 | 1986-01-09 | A distributed feedback semiconductor laser device |
DE3689756T DE3689756T2 (en) | 1985-01-10 | 1986-01-09 | Semiconductor laser with distributed feedback. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2316985A JPS61182295A (en) | 1985-02-07 | 1985-02-07 | Semiconductor layer device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61182295A true JPS61182295A (en) | 1986-08-14 |
Family
ID=12103118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2316985A Pending JPS61182295A (en) | 1985-01-10 | 1985-02-07 | Semiconductor layer device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61182295A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05145175A (en) * | 1991-11-21 | 1993-06-11 | Mitsubishi Electric Corp | Semiconductor distributed feedback type laser device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5171684A (en) * | 1974-12-18 | 1976-06-21 | Nippon Telegraph & Telephone | BUNPUKI KANGATA HANDOT AIREEZA |
JPS58158988A (en) * | 1982-03-16 | 1983-09-21 | Nippon Telegr & Teleph Corp <Ntt> | Distributed feedback type semiconductor laser |
JPS58196089A (en) * | 1982-05-12 | 1983-11-15 | Hitachi Ltd | Semiconductor laser element |
-
1985
- 1985-02-07 JP JP2316985A patent/JPS61182295A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5171684A (en) * | 1974-12-18 | 1976-06-21 | Nippon Telegraph & Telephone | BUNPUKI KANGATA HANDOT AIREEZA |
JPS58158988A (en) * | 1982-03-16 | 1983-09-21 | Nippon Telegr & Teleph Corp <Ntt> | Distributed feedback type semiconductor laser |
JPS58196089A (en) * | 1982-05-12 | 1983-11-15 | Hitachi Ltd | Semiconductor laser element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05145175A (en) * | 1991-11-21 | 1993-06-11 | Mitsubishi Electric Corp | Semiconductor distributed feedback type laser device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4716570A (en) | Distributed feedback semiconductor laser device | |
US4644552A (en) | Semiconductor laser | |
JPS61182295A (en) | Semiconductor layer device | |
JPS63124484A (en) | Semiconductor laser element | |
JPS59229891A (en) | Manufacturing method of semiconductor laser | |
JPS59127892A (en) | Semiconductor laser and manufacture thereof | |
JPS59126693A (en) | Distributed feedback type semiconductor laser and manufacture thereof | |
JPS63250886A (en) | Manufacture of semiconductor laser element | |
JPS60126880A (en) | Semiconductor laser device | |
JPS63278288A (en) | Semiconductor laser device | |
JP2003304028A (en) | Optical modulator integrated semiconductor laser | |
JPS6136719B2 (en) | ||
JPS62165989A (en) | Distributed feedback type semiconductor laser element | |
JPH01124280A (en) | Semiconductor laser | |
JPS61161784A (en) | Semiconductor laser device | |
JPS6175585A (en) | Buried semiconductor laser | |
JPS6395694A (en) | Semiconductor laser | |
JPS59130493A (en) | Buried structural distributed feedback type semiconductor laser | |
JPH02191388A (en) | Manufacture of semiconductor laser | |
JPH05145174A (en) | Manufacture of semiconductor light emitting element | |
JPS60136283A (en) | Manufacture of buried type semiconductor laser | |
JPH04206985A (en) | Manufacture of optical semiconductor element | |
JPS594190A (en) | semiconductor light emitting device | |
JPH0256810B2 (en) | ||
JPS58204586A (en) | Semiconductor laser element |