JPH02163938A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH02163938A
JPH02163938A JP31789188A JP31789188A JPH02163938A JP H02163938 A JPH02163938 A JP H02163938A JP 31789188 A JP31789188 A JP 31789188A JP 31789188 A JP31789188 A JP 31789188A JP H02163938 A JPH02163938 A JP H02163938A
Authority
JP
Japan
Prior art keywords
mesa groove
glass
film
mesa
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31789188A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31789188A priority Critical patent/JPH02163938A/en
Publication of JPH02163938A publication Critical patent/JPH02163938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form a glass passivating film which is not thick on the bottom of a mesa groove and which is thick on an inside face of the mesa groove where a P-N junction is exposed by a method wherein, before the glass passivating film is formed on the inside face of the mesa groove by an electrophoretic method, an oxide film is deposited on the bottom of the mesa groove from a direction perpendicular to a face of a semiconductor substrate. CONSTITUTION:A P-N junction parallel to a face of a semiconductor substrate is formed on the semiconductor substrate 3; an etching operation is executed from one surface; a mesa groove 1 is formed; after that, before a glass passivating film 2 is formed on an inside face of the mesa groove 1 by an electrophoretic method, an oxide film 5 is deposited on the bottom 11 of the mesa groove from a direction perpendicular to the face of the semiconductor substrate. For example, a P-layer 4 is formed by diffusion from the surface of an N-type silicon substrate 3; after that, a mesa groove 1 is formed by an etching operation. Then, an oxide film 5 is deposited by a CVD method; then, the oxide film 5 whose thickness is the same as that on the surface of the substrate is deposited on the bottom 11 of the mesa groove 1; the oxide film 5 deposited on an inside face 12 of the mesa groove 1 is made thin. Then, a part excluding a part used to from a glass passivating film is covered with a resist film 6; after that, a glass film 2 is made to adhere to the inside face of the mesa groove 1 by an electrophoretic method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体M板に基板面に平行なPN接合を設け
、一表面よりのエツチングによりそのPN接合を越える
深さのメサ溝を形成し、電気泳動法によりメサ溝内面に
ガラス粉末を付着させて焼成することにより、メサ溝内
面へのPN接合露出部を保護するガラスバソシベーシッ
ン膜を形成する半導体素子の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a PN junction parallel to the substrate surface on a semiconductor M plate, and forms a mesa groove with a depth exceeding the PN junction by etching from one surface. The present invention also relates to a method of manufacturing a semiconductor device, in which a glass powder is deposited on the inner surface of the mesa groove by electrophoresis and fired, thereby forming a glass bathobasin film that protects the exposed portion of the PN junction on the inner surface of the mesa groove.

〔従来の技術〕[Conventional technology]

バンシベーシ畔ン材料としてガラスを用いる場合、従来
は電気泳動法によりガラス微粉末を半導体素体表面に付
着させる方法が、その後の焼成で均一なガラス膜を形成
できるので採用されている。
When using glass as the base material, conventionally a method has been adopted in which fine glass powder is attached to the surface of the semiconductor element by electrophoresis because a uniform glass film can be formed by subsequent firing.

この電気泳動法は、メサ溝形成直後あるいは酸処理等の
前処理後、半導体基板をガラス粉末を有機溶媒に!!!
濁させ、さらにアンニモアと加えた液を収容する電着槽
の陰極板上に支持し、対向する陽極板との間に直流電圧
を印加することによって行っていた。
This electrophoresis method uses glass powder as an organic solvent for semiconductor substrates immediately after mesa groove formation or after pretreatment such as acid treatment! ! !
This was carried out by making the solution cloudy and supporting it on the cathode plate of an electrodeposition tank containing a solution containing annimore, and applying a DC voltage between it and the opposing anode plate.

(発明が解決しようとする課題〕 従来の電気泳動法によるガラスパンシベーシコン膜形成
の場合には、ガラス粉末懸濁液中のマクロ的な電界の向
き、すなわちガラス粉末の泳動方向に垂直なメサ溝底部
付近にガラス粉末が付着しやすく、反対にマクロ的なガ
ラス粉末の泳動方向と平行なメサ溝内側面にはガラス粉
末が付着しにくくなる。このため、PN接合端部が露出
するメサ溝内側面のバンシベーシッンガラス厚は薄くな
り、バンシベーシ呵ンの必要のないメサ溝底部のガラス
が厚くなってしまう、メサ溝内側面のガラスをバンシベ
ーシランに必要な厚さまでしようとすると第2図に示す
ようにメサ溝1の底部11のガラスI!lI2がメサ溝
内側面12上のガラス膜に比して1.5〜3倍と大幅に
厚くなってしまい、半導体材料との熱膨張係数の差によ
り、半導体基板のそり。
(Problem to be Solved by the Invention) In the case of forming a glass pansibasicon film by the conventional electrophoresis method, the direction of the macroscopic electric field in the glass powder suspension, that is, the direction of the mesaic acid perpendicular to the migration direction of the glass powder, is Glass powder tends to adhere to the vicinity of the bottom of the groove, and conversely, it becomes difficult for glass powder to adhere to the inner surface of the mesa groove, which is parallel to the macroscopic migration direction of the glass powder.For this reason, the mesa groove where the PN junction end is exposed The thickness of the banshibasin glass on the inside surface becomes thinner, and the glass at the bottom of the mesa groove, which does not require a banshibasin, becomes thicker.If you try to increase the thickness of the glass on the inside surface of the mesa groove to the thickness required for the banshibasin, as shown in Figure 2. As shown, the glass I!lI2 on the bottom 11 of the mesa groove 1 is significantly thicker, 1.5 to 3 times as thick as the glass film on the inner surface 12 of the mesa groove, and the coefficient of thermal expansion with the semiconductor material is Due to the difference, the semiconductor substrate warps.

ひずみ1割れ、あるいはガラスの亀裂等が発生し、良品
率や素子の信鯨性低下の原因となってしまうという問題
があった。
There is a problem in that cracks in the glass or cracks in the glass occur, resulting in a decrease in the yield rate and reliability of the device.

本発明の!!題は、上述の問題を解決し、メサ溝底部上
においては厚くなく、PN接合の露出するメサ溝内側面
上においては厚いガラスバッジベーシツン膜が形成され
る半導体素子の製造方法を提供することにある。
The invention! ! The object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above-mentioned problems and forms a glass badge-based film that is not thick on the bottom of the mesa trench and is thick on the inner surface of the mesa trench where the PN junction is exposed. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半導体基板に基板面に平行なPN接合を設け
、一表面よりのエツチングでメサ溝を形成したのち、電
気泳動法によってメサ溝内面にガラスバッジベーシツン
膜を形成する前に、半導体基板面に垂直方向よりメサ溝
底部上に酸化膜を堆積させるものとする。
In the present invention, a PN junction is provided in a semiconductor substrate parallel to the substrate surface, a mesa groove is formed by etching from one surface, and then a glass badge basic film is formed on the inner surface of the mesa groove by electrophoresis. An oxide film is deposited on the bottom of the mesa groove in a direction perpendicular to the substrate surface.

〔作用〕[Effect]

CVD法で半導体基板面に垂直方向からメサ溝底部上に
酸化膜を堆積させれば、メサ溝底部を絶縁膜である酸化
膜が覆うため、電気泳動法によるガラス粉末が付着しに
くい、メサ溝底部上への酸化膜を堆積時に多少の酸化膜
がメサ溝内側面上に付着することがあるが、その酸化膜
は薄く、特にCVD酸化膜などでは酸化物のきめが粗い
ため、低い絶縁性を存するだけであって、電気泳動法に
よりその上にガラス粉末が付着し、焼成によりメサ溝内
側面に露出するPN接合を保護するに十分なガラスバッ
ジベージぢン膜が形成される。
If an oxide film is deposited on the bottom of the mesa trench from a direction perpendicular to the semiconductor substrate surface using the CVD method, the bottom of the mesa trench is covered with an oxide film that is an insulating film, making it difficult for glass powder to adhere to the mesa trench by electrophoresis. When depositing an oxide film on the bottom, some oxide film may adhere to the inner surface of the mesa trench, but the oxide film is thin and the oxide has a rough texture, especially in CVD oxide films, resulting in low insulation. Glass powder is deposited thereon by electrophoresis, and by firing a glass badge-based film sufficient to protect the PN junction exposed on the inner surface of the mesa groove is formed.

〔実施例〕〔Example〕

第1図fat〜(dlは本発明の一実施例を示し、N形
シリコン基板3表面より拡散により2層4を形成後、メ
サ溝]をエツチングにより形成した状態が第1図fat
である0次いで、この基板をCVD装置内に水平に置き
、酸化Il!J5をCVD法で堆積した状態が第1図f
blで、メサ溝1の底部11上には基板表面と同じ厚さ
の酸化膜5が堆積しているが、メサ溝】の内側面12上
には堆積している酸化膜5は薄い、第1図(C1はガラ
スパッジベージ呵ン膜を形成する部分を除いてレジスト
1lI6で覆ったことを示す、このあと、第3図に示す
装置を用いて電気泳動法を行う、電気泳動装置の電着槽
21の中にガラス微粉末をイソプロピルアルコールある
いは酢酸エチルなどの有機溶媒に懸濁させた液22を収
容し、この液中に半導体基板23を支持した陰極板24
とそれに平行に対向する陽極板25を浸漬し、予め懸濁
液にアンモニア水を加えてお(か、そうでなければ図示
のようにアンモニアガスを導入管26より噴出させなが
ら両電極間に電源27により電極25の極性を正とする
50〜500vの直流電圧を印加する。これにより第1
図fdlに示すようにガラス膜2がメサ溝内面に付着す
る。メサ溝底部11およびシリコン基板表面上にはm縁
性の高い厚い酸化II!5が存在するので、薄いガラス
膜2が付着するのみであるが、メサ溝内側面12の上に
は絶縁性の低い薄い酸化1!I5が存在するのみである
ので、厚いガラス[II2が付着している。M化M5の
厚さをメサ溝底部で0.5〜3.Otmとすると底部の
ガラス1112の厚さは内側面上のガラス膜の厚さの1
.0〜0.5倍になる。つづいての焼成により、Nl&
板3とPIl14の間のPN接合の露出部は厚いガラス
バッシベーシッン膜で覆われることになる。
Figure 1 shows a state in which a mesa groove (dl indicates an embodiment of the present invention, after forming a two-layer 4 from the surface of an N-type silicon substrate 3 by diffusion) is formed by etching.
Then, this substrate is placed horizontally in a CVD apparatus and oxidized Il! Figure 1 f shows the state in which J5 was deposited using the CVD method.
bl, an oxide film 5 with the same thickness as the substrate surface is deposited on the bottom 11 of the mesa trench 1, but the oxide film 5 deposited on the inner surface 12 of the mesa trench is thin and Figure 1 (C1 shows that the glass padding was covered with resist 1lI6 except for the part where the film was to be formed. After this, the electrophoresis method was performed using the apparatus shown in Figure 3. A solution 22 in which fine glass powder is suspended in an organic solvent such as isopropyl alcohol or ethyl acetate is contained in a deposition tank 21, and a cathode plate 24 supports a semiconductor substrate 23 in this solution.
and the anode plate 25 facing parallel to it, and add ammonia water to the suspension in advance (or if not, connect the power between the two electrodes while blowing out ammonia gas from the inlet tube 26 as shown). 27, apply a DC voltage of 50 to 500 V with positive polarity of the electrode 25. As a result, the first
As shown in Figure fdl, the glass film 2 is attached to the inner surface of the mesa groove. On the mesa groove bottom 11 and the silicon substrate surface, a thick oxide II with high m-edge properties is formed! 5 exists, only a thin glass film 2 is deposited, but a thin oxide film 1! with low insulation is deposited on the inner surface 12 of the mesa groove. Since only I5 is present, a thick glass [II2] is attached. The thickness of M5 at the bottom of the mesa groove is 0.5 to 3. Otm, the thickness of the bottom glass 1112 is 1 of the thickness of the glass film on the inner surface.
.. It becomes 0 to 0.5 times. By the subsequent firing, Nl&
The exposed part of the PN junction between plate 3 and PIL 14 will be covered with a thick glass bassine membrane.

上記の実施例では、酸化1[!5を薄くメサ溝内側面1
2上に形成したが、全く酸化膜を形成しないで、電気泳
動法で直接メサ溝内側面にガラス膜を付着させてもよい
、また、メサ溝底部ll上の酸化膜5を十分に厚くして
絶縁性を高め、電気泳動法でガラス膜が付着しないよう
にしてもよいが、酸化膜の厚くなることによる亀裂の発
生、ガラスバッシベーシッン膜の不連続による密着強度
の低下などのおそれがあるので実施上の注意が必要であ
る。
In the above example, oxidation 1[! 5 Thin mesa groove inner surface 1
2, but a glass film may be directly attached to the inner surface of the mesa groove by electrophoresis without forming an oxide film at all.Alternatively, the oxide film 5 on the mesa groove bottom ll should be sufficiently thick. Although it is possible to increase the insulation properties by using electrophoresis to prevent the glass film from adhering, there is a risk of cracks occurring due to the thicker oxide film and a decrease in adhesion strength due to discontinuity of the glass basin basin film. Therefore, care must be taken in implementation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体素子のガラスバッジベーシッン
膜形成の前にメサ溝の底部に酸化膜を堆積させ、電気泳
動法の際のガラス膜の付着厚さを少なくすることにより
、不要なメサ溝底部上のガラス膜を厚くすることなく、
基板面に平行なPN接合のメサ溝内面への露出部である
メサ溝内側面上のガラス膜を厚くすることができ、安定
したバンジベーシ四ン膜を得ることができる。この結果
、メサ溝底部のガラス膜が厚くなりすぎることによる半
導体基板のそり、ひずみ1割れ、あるいはバノシベーシ
ぢン膜の亀裂を大幅に低減することができ、半導体素子
の良品率、信転性の向上に大きく寄与できる。
According to the present invention, an oxide film is deposited on the bottom of a mesa groove before forming a glass badge basin film of a semiconductor element, and by reducing the thickness of the glass film deposited during electrophoresis, unnecessary mesa without thickening the glass film on the bottom of the groove.
The glass film on the inner surface of the mesa groove, which is the exposed portion of the PN junction parallel to the substrate surface, can be made thicker, and a stable bungee base four film can be obtained. As a result, it is possible to significantly reduce warping of the semiconductor substrate, cracking of the semiconductor substrate due to the glass film at the bottom of the mesa groove becoming too thick, and cracks in the vanosy basis film, thereby improving the yield rate and reliability of semiconductor devices. It can greatly contribute to improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ial〜fd+は本発明の一実施例のガラス膜付
着工程を順次示すメサ溝断面図、第2図は従来のガラス
膜付着後のメサ溝断面図、第3図にガラス膜の付着に用
いる電気泳動装置の一例の断面図である。 1:メサ溝、2ニガラス膜、5:酸化膜、11:第1図 第2図
Figures 1 ial to fd+ are cross-sectional views of mesa grooves sequentially showing the glass film deposition process of an embodiment of the present invention, Figure 2 is a cross-sectional view of mesa grooves after conventional glass film deposition, and Figure 3 is a glass film attachment process. 1 is a cross-sectional view of an example of an electrophoresis device used for. 1: Mesa groove, 2 glass film, 5: oxide film, 11: Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板に基板面に平行なPN接合を設け、一表
面よりのエッチングでメサ溝を形成したのち、電気泳動
法によってメサ溝内面にガラスパッシベーション膜を形
成する前に、半導体基板面に垂直方向よりメサ溝底部上
に酸化膜を堆積させることを特徴とする半導体素子の製
造方法。
1) After providing a PN junction parallel to the substrate surface on a semiconductor substrate and forming a mesa groove by etching from one surface, a PN junction perpendicular to the semiconductor substrate surface is formed before forming a glass passivation film on the inner surface of the mesa groove by electrophoresis. 1. A method of manufacturing a semiconductor device, comprising: depositing an oxide film on the bottom of a mesa groove from a direction.
JP31789188A 1988-12-16 1988-12-16 Manufacture of semiconductor element Pending JPH02163938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31789188A JPH02163938A (en) 1988-12-16 1988-12-16 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31789188A JPH02163938A (en) 1988-12-16 1988-12-16 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH02163938A true JPH02163938A (en) 1990-06-25

Family

ID=18093207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31789188A Pending JPH02163938A (en) 1988-12-16 1988-12-16 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH02163938A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160961A1 (en) * 2011-05-23 2012-11-29 新電元工業株式会社 Semiconductor device production method and semiconductor device
JP5308595B1 (en) * 2012-11-28 2013-10-09 新電元工業株式会社 Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device
JP5340511B1 (en) * 2012-05-08 2013-11-13 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
WO2013168236A1 (en) * 2012-05-08 2013-11-14 新電元工業株式会社 Resin-sealed semiconductor device and production method for resin-sealed semiconductor device
JP5655139B2 (en) * 2011-05-23 2015-01-14 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
JP5655140B2 (en) * 2011-05-23 2015-01-14 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
US9006113B2 (en) 2011-08-29 2015-04-14 Shindengen Electric Manufacturing Co. Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
US9099483B2 (en) 2012-01-31 2015-08-04 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
US9159549B2 (en) 2011-05-26 2015-10-13 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
JP5827398B2 (en) * 2012-05-08 2015-12-02 新電元工業株式会社 Method for manufacturing glass composition for protecting semiconductor junction, method for manufacturing semiconductor device, and semiconductor device
JPWO2013168623A1 (en) * 2012-05-08 2016-01-07 新電元工業株式会社 Semiconductor junction protecting glass composition, semiconductor device manufacturing method, and semiconductor device
US9978882B2 (en) 2014-11-13 2018-05-22 Shindengen Electric Manufacturing Co., Ltd. Method of manufacturing semiconductor device and glass film forming apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160962A1 (en) * 2011-05-23 2012-11-29 新電元工業株式会社 Semiconductor device production method and semiconductor device
WO2012160961A1 (en) * 2011-05-23 2012-11-29 新電元工業株式会社 Semiconductor device production method and semiconductor device
JP5655139B2 (en) * 2011-05-23 2015-01-14 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
JP5655140B2 (en) * 2011-05-23 2015-01-14 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
US9941112B2 (en) 2011-05-26 2018-04-10 Shindengen Electric Manufacturing Co., Ltd Method of manufacturing semiconductor device and semiconductor device
US9159549B2 (en) 2011-05-26 2015-10-13 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
US9006113B2 (en) 2011-08-29 2015-04-14 Shindengen Electric Manufacturing Co. Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
US9099483B2 (en) 2012-01-31 2015-08-04 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
WO2013168236A1 (en) * 2012-05-08 2013-11-14 新電元工業株式会社 Resin-sealed semiconductor device and production method for resin-sealed semiconductor device
WO2013168314A1 (en) * 2012-05-08 2013-11-14 新電元工業株式会社 Semiconductor device production method and semiconductor device
JP5340511B1 (en) * 2012-05-08 2013-11-13 新電元工業株式会社 Semiconductor device manufacturing method and semiconductor device
JP5827397B2 (en) * 2012-05-08 2015-12-02 新電元工業株式会社 Resin-sealed semiconductor device and method for manufacturing resin-sealed semiconductor device
JP5827398B2 (en) * 2012-05-08 2015-12-02 新電元工業株式会社 Method for manufacturing glass composition for protecting semiconductor junction, method for manufacturing semiconductor device, and semiconductor device
JPWO2013168623A1 (en) * 2012-05-08 2016-01-07 新電元工業株式会社 Semiconductor junction protecting glass composition, semiconductor device manufacturing method, and semiconductor device
TWI553738B (en) * 2012-05-08 2016-10-11 Shindengen Electric Mfg Half A manufacturing method of a conductor device, and a semiconductor device
US9570408B2 (en) 2012-05-08 2017-02-14 Shindengen Electric Manufacturing Co., Ltd. Resin-sealed semiconductor device and method of manufacturing resin-sealed semiconductor device
US9698069B2 (en) 2012-05-08 2017-07-04 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
JP5308595B1 (en) * 2012-11-28 2013-10-09 新電元工業株式会社 Manufacturing method of resin-encapsulated semiconductor device and resin-encapsulated semiconductor device
US9978882B2 (en) 2014-11-13 2018-05-22 Shindengen Electric Manufacturing Co., Ltd. Method of manufacturing semiconductor device and glass film forming apparatus

Similar Documents

Publication Publication Date Title
US6692981B2 (en) Method of manufacturing a solar cell
US6566235B2 (en) Process for producing semiconductor member, and process for producing solar cell
US6664169B1 (en) Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus
JPH02163938A (en) Manufacture of semiconductor element
US4612698A (en) Method of fabricating solar cells
US4948740A (en) Method for the integrated series-interconnection of thick-film solar cells and method for the manufacture of tandem solar cells
JP2000277768A (en) Method of forming solar battery
JPH11312813A (en) Manufacture of solar cell device
EP0312466A1 (en) Process of manufacturing a silicon structure on isolator
JPH03196465A (en) Manufacture of solid electrolyte for fuel cell
JPS5992519A (en) Manufacture of semiconductor device
AU574431B2 (en) Proton milling as a form of plating mask
JP2000269527A (en) Manufacture for solar cell
JPS57166078A (en) Semiconductor device
JPH0945945A (en) Solar cell element and fabrication thereof
JPS62142366A (en) Manufacture of substrate for thin film solar battery
JP2002141533A (en) Electrode of semiconductor substrate
JPS5826660B2 (en) Takoushitsu Silicon Noseizouhouhou
WO1985002939A1 (en) Method of fabricating solar cells
JPH021134A (en) Manufacture of thin-film semiconductor element
JPS61160980A (en) Manufacture of solar cell
JPS6010790A (en) Forming method for electrode of solar cell
JPS54156480A (en) Semiconductor element of greater current capacity
JPS61202429A (en) Manufacture of semiconductor device
JPH04348569A (en) Manufacture of solar cell