JPH0945945A - Solar cell element and fabrication thereof - Google Patents

Solar cell element and fabrication thereof

Info

Publication number
JPH0945945A
JPH0945945A JP7192859A JP19285995A JPH0945945A JP H0945945 A JPH0945945 A JP H0945945A JP 7192859 A JP7192859 A JP 7192859A JP 19285995 A JP19285995 A JP 19285995A JP H0945945 A JPH0945945 A JP H0945945A
Authority
JP
Japan
Prior art keywords
silicon wafer
back surface
silicon nitride
silicon
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7192859A
Other languages
Japanese (ja)
Inventor
Hiroaki Takahashi
宏明 高橋
Kenji Fukui
健次 福井
Michihiro Takayama
道寛 高山
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7192859A priority Critical patent/JPH0945945A/en
Publication of JPH0945945A publication Critical patent/JPH0945945A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a BSF layer in a fine pattern by depositing silicon nitride having multiple through holes on the rear side of a silicon wafer and providing rear electrodes at the through holes. SOLUTION: An antireflection film 2 is deposited on one major surface of a silicon wafer 1 having the other major surface deposited with silicon nitride 3. The silicon nitride 3 is provided with through holes 3a and the antireflection film 2 is removed to form a pattern reverse to that of a surface electrode 5. Subsequently, surface electrode 5 and rear surface electrode 6 are formed, respectively, in a part on one major surface of silicon wafer 1 from where the antireflection film 2 is removed and in a part on the other major surface of silicon wafer 1 from where the silicon nitride 3 is removed. With such a structure, the silicon nitride can be used as a mask when aluminum is diffused, a heavily doped P+ region can be formed in fine pattern and passivation effect can be provided on the rear side of wafer by the silicon nitride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池素子および
その製造方法に関し、特にシリコンウェハ内にP−N接
合部を形成した太陽電池素子およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell element and a method for manufacturing the same, and more particularly to a solar cell element having a P-N junction formed in a silicon wafer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の太陽電池素子の構造を図2に示
す。例えば厚さ0.5mm程度の単結晶又は多結晶のシ
リコンなどから成るP型シリコンウェハ21の一主面側
に0.2〜0.5μmの深さにリン(P)等を拡散させ
たN層22を設け、このN層22の表面に、銀、アルミ
ニウム、ニッケル等から成るグリッド状の表面電極23
及びこの表面電極23の間隙に窒化シリコン膜や酸化シ
リコン膜などから成る反射防止膜24を設けて構成され
ている。またシリコンウェハ21の他の主面側には、
銀、アルミニウム、ニッケル等から成る裏面電極26を
設けている。そして表面電極23及び裏面電極26上に
は、外部リード線が容易に接続できるように半田層(不
図示)などを設けている。なお、反射防止膜24はプラ
ズマCVD法などで形成され、表面電極23及び裏面電
極26はスクリーン印刷法などの厚膜手法で形成され
る。
2. Description of the Related Art The structure of a conventional solar cell element is shown in FIG. For example, N having phosphorus (P) or the like diffused to a depth of 0.2 to 0.5 μm on one main surface side of the P-type silicon wafer 21 made of single crystal or polycrystalline silicon having a thickness of about 0.5 mm. A layer 22 is provided, and a grid-like surface electrode 23 made of silver, aluminum, nickel or the like is provided on the surface of the N layer 22.
Further, an antireflection film 24 made of a silicon nitride film or a silicon oxide film is provided in the gap between the surface electrodes 23. On the other main surface side of the silicon wafer 21,
A back electrode 26 made of silver, aluminum, nickel or the like is provided. A solder layer (not shown) or the like is provided on the front surface electrode 23 and the back surface electrode 26 so that external lead wires can be easily connected. The antireflection film 24 is formed by a plasma CVD method or the like, and the front surface electrode 23 and the back surface electrode 26 are formed by a thick film method such as a screen printing method.

【0003】また、シリコンウェハ21の裏面側にアル
ミニウムなどを高濃度に拡散させたP+ 高濃度領域25
を設け、シリコンウェハ21裏面側の内部電界によっ
て、少数キャリア(電子)の再結合速度を遅くさせて短
絡電流を向上させ、もって太陽電池の変換効率を高める
ことも提案されている。
A P + high concentration region 25 in which aluminum or the like is diffused at a high concentration on the back surface side of the silicon wafer 21.
It is also proposed that the internal electric field on the back surface side of the silicon wafer 21 slows down the recombination rate of minority carriers (electrons) to improve the short-circuit current, thereby increasing the conversion efficiency of the solar cell.

【0004】このP+ 高濃度領域25は通常はシリコン
ウェハ21の裏面側全面に形成されるが、この部分での
キャリアの再結合をさらに減少させるために、このP+
高濃度領域25を点在させて設けることも提案されてい
る。P+ 高濃度領域25を点在させて設ける方法として
は、シリコンウェハ21の裏面側にフォトレジストで
微細なパターンを形成し、このフォトレジスト上に真空
蒸着法などでアルミニウム層を形成した後に、このフォ
トレジストを剥離して、このフォトレジストが塗布され
た領域以外のアルミニウムを残すように形成する方法、
アルミニウム層をスクリーン印刷法などでドット状に
印刷・焼成する方法(特開平4−44277号)、シ
リコンウェハ21の裏面側にフォトレジストのパターン
を形成し、二酸化チタン(TiO2 )あるいは酸化錫
(SnO2 )をプラズマCVD法で堆積した後にリフト
オフし、その上からアルミニウムペーストを印刷・焼成
する方法(特公平5−73357号)などがある。
[0004] For this P + high concentration region 25 but is usually formed over the entire surface on the back side of the silicon wafer 21, which further reduces the carrier recombination at this portion, the P +
It has also been proposed to provide the high concentration regions 25 in a scattered manner. As a method for providing the P + high-concentration regions 25 in a scattered manner, a fine pattern is formed with a photoresist on the back surface side of the silicon wafer 21, and an aluminum layer is formed on the photoresist by a vacuum deposition method or the like, A method of peeling off this photoresist so as to leave aluminum in a region other than the region where this photoresist is applied,
A method of printing and baking the aluminum layer in a dot shape by a screen printing method or the like (JP-A-4-44277), a photoresist pattern is formed on the back surface side of the silicon wafer 21, and titanium dioxide (TiO 2 ) or tin oxide ( SnO 2 ) is deposited by a plasma CVD method, lifted off, and an aluminum paste is printed / fired on the lifted-off method (Japanese Patent Publication No. 5-73357).

【0005】[0005]

【発明が解決しようとする問題点】ところが上記の方
法では、シリコンウェハ21の裏面側にフォトレジスト
パターンを形成して、アルミニウムなどを真空蒸着法な
どで形成した後に,剥離することから、製造コストが高
コストになると共に、シリコンウェハ21裏面側のパシ
ベーション効果が得られないという問題があった。
However, in the above method, a photoresist pattern is formed on the back surface side of the silicon wafer 21 and aluminum or the like is formed by a vacuum deposition method or the like, and then peeled off. However, there is a problem that the cost becomes high and the passivation effect on the back surface side of the silicon wafer 21 cannot be obtained.

【0006】またの方法では、アルミニウムペースト
をスクリーン印刷法で印刷することから、微細な印刷が
不可能であると共に、シリコンウェハ21裏面側のパシ
ベーション効果が得られないという問題があった。
[0006] In the other method, since the aluminum paste is printed by the screen printing method, there is a problem that fine printing is impossible and the passivation effect on the back surface side of the silicon wafer 21 cannot be obtained.

【0007】さらにの方法では、アルミニウムの拡散
マスクとして二酸化チタンや二酸化錫を形成している
が、この二酸化チタンや二酸化錫は反射防止膜(BS
R)としての効果はあるが、パシベーション効果は得ら
れないという問題があった。
In the further method, titanium dioxide or tin dioxide is formed as a diffusion mask for aluminum, and the titanium dioxide or tin dioxide is used as an antireflection film (BS).
Although it has the effect as R), there is a problem that the passivation effect cannot be obtained.

【0008】本発明はこのような従来技術の問題点に鑑
みて発明されたものであり、BSF層を微細なパターン
に形成できると共に、シリコンウェハ裏面側のパシベー
ション効果も得られる太陽電池素子およびその製造方法
を提供することを目的とする。
The present invention has been invented in view of the above problems of the prior art, and a solar cell element and a solar cell element capable of forming a BSF layer in a fine pattern and also having a passivation effect on the back surface side of a silicon wafer. It is intended to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る太陽電池素子では、P−N接合部を
有するシリコンウェハの裏面側にアルミニウムを含有さ
せると共に、このシリコンウェハに表面電極と裏面電極
を設けた太陽電池素子において、前記シリコンウェハの
裏面側に多数の透孔部を有する窒化シリコン膜を設け、
この透孔部に裏面電極を設けた。
In order to achieve the above object, in the solar cell element according to claim 1, aluminum is contained in the back surface side of a silicon wafer having a P-N junction, and the silicon wafer is included in the silicon wafer. In a solar cell element provided with a front surface electrode and a back surface electrode, a silicon nitride film having a large number of through holes is provided on the back surface side of the silicon wafer,
A back electrode was provided in this through hole.

【0010】この請求項1に係る太陽電池素子では、シ
リコンウェハの裏面側に多数の透孔部を有する窒化シリ
コン膜を設けると共に、この透孔部に裏面電極を設けた
ことから、この窒化シリコン膜をアルミニウムペースト
を印刷して拡散させる際のマスクとして使用することが
でき、P+ 高濃度領域を微細なパターンに形成できると
共に、この窒化シリコン膜によって、シリコンウェハ裏
面側のパシベーション効果も得られる。
In the solar cell element according to the present invention, the silicon nitride film having a large number of through holes is provided on the back surface side of the silicon wafer, and the back surface electrode is provided at the through holes. The film can be used as a mask when aluminum paste is printed and diffused, and the P + high-concentration region can be formed into a fine pattern, and the silicon nitride film also provides a passivation effect on the back surface side of the silicon wafer. .

【0011】また、請求項2に係る太陽電池素子の製造
方法では、P−N接合部を有するシリコンウェハの裏面
側にアルミニウムを拡散させた後、このシリコンウェハ
に表面電極と裏面電極を形成する太陽電池素子の製造方
法において、前記シリコンウェハの裏面側にアルミニウ
ムを拡散させる際に、多数の透孔部を有する窒化シリコ
ン膜をマスクとして拡散させる。
In the method of manufacturing a solar cell element according to a second aspect of the present invention, aluminum is diffused on the back surface side of a silicon wafer having a PN junction, and then a front surface electrode and a back surface electrode are formed on this silicon wafer. In the method of manufacturing a solar cell element, when aluminum is diffused on the back surface side of the silicon wafer, a silicon nitride film having a large number of through holes is used as a mask for diffusion.

【0012】この請求項2に係る太陽電池素子の製造方
法では、シリコンウェハの裏面側にアルミニウムを拡散
させる際に、多数の透孔部を有する窒化シリコン膜をマ
スクとして拡散させることから、P+ 高濃度領域の面積
が減少して、この領域でのキャリアの再結合が減少す
る。またP+ 領域を微細なパターンで形成できるので、
拡散長の短い多結晶シリコン基板へ適用した場合、より
効果的である。さらに窒化シリコン膜が裏面パシベーシ
ョン膜として働き、多結晶シリコンのような拡散長の短
いウェハには特性向上の効果が大きい。
In the method of manufacturing a solar cell element according to the second aspect, when diffusing aluminum on the back surface side of the silicon wafer, the silicon nitride film having a large number of through holes is used as a mask for diffusing, so that P + The area of the high-concentration region is reduced, and the recombination of carriers in this region is reduced. Moreover, since the P + region can be formed in a fine pattern,
It is more effective when applied to a polycrystalline silicon substrate having a short diffusion length. Further, the silicon nitride film acts as a back surface passivation film, and the effect of improving the characteristics is great for a wafer having a short diffusion length such as polycrystalline silicon.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づき詳細に説明する。図1(a)〜(g)は本
発明の太陽電池素子の製造工程を示す図である。まず、
同図(a)に示すように、0.2〜1.0mm程度の厚
みを有するシリコンウェハ1を用意する。このシリコン
ウェハ1は、CZ法、FZ法、EFG法、或いは鋳造法
等で形成された単結晶又は多結晶のシリコンをスライス
して形成され、例えばボロン(B)等のP型不純物を含
有する。シリコンウェハ1の表面にN層1aを設け、P
−N接合部を形成する。層1aの深さは2000Å〜1
μm程度である。このN層1aはリンを含む気体例えば
オキシ塩化リン(POCl3 )等を用いることにより形
成する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 (a) to 1 (g) are views showing a manufacturing process of the solar cell element of the present invention. First,
As shown in FIG. 3A, a silicon wafer 1 having a thickness of about 0.2 to 1.0 mm is prepared. The silicon wafer 1 is formed by slicing single crystal or polycrystalline silicon formed by a CZ method, an FZ method, an EFG method, a casting method, or the like, and contains a P-type impurity such as boron (B). . An N layer 1a is provided on the surface of the silicon wafer 1, and P
Form an N junction. The depth of layer 1a is 2000Å ~ 1
It is about μm. The N layer 1a is formed by using a gas containing phosphorus such as phosphorus oxychloride (POCl 3 ).

【0014】次に、同図(b)に示すように、一主面側
のN層1aのみを残してN層1aの他の部分を除去す
る。すなわち、一主面側のみにエッチングのレジスト膜
を塗布し、フッ酸(HF)と硝酸(HNO3 )との混合
液に浸漬して、一主面側以外のN層1aを除去した後に
レジスト膜を除去し、シリコンウェハ1を純水で洗浄す
る。
Next, as shown in FIG. 3B, the N layer 1a on the one main surface side is left and the other portion of the N layer 1a is removed. That is, an etching resist film is applied only on one main surface side, and is immersed in a mixed solution of hydrofluoric acid (HF) and nitric acid (HNO 3 ) to remove the N layer 1a other than the one main surface side, and then the resist is applied. The film is removed, and the silicon wafer 1 is washed with pure water.

【0015】次に、同図(c)に示すように、シリコン
ウェハ1の一主面側に反射防止膜2を形成すると共に、
他の主面側に窒化シリコン膜3を形成する。この反射防
止膜2はシリコンウェハ1に入射される光を効率よく吸
収するための膜であり、その厚みが500〜1000
Å、屈折率が1.90〜2.30程度になるように形成
される。例えばシランとアンモニアとの混合ガスをプラ
ズマ化して析出させた窒化シリコン膜等で形成される。
具体的には、プラズマCVD装置内でシリコンウェハ1
を150〜400℃にまで加熱し、ガス圧を0.2〜
2.0Torrに維持しながら、高周波電圧を印加す
る。この反射防止膜2の材料としては窒化シリコン膜の
他に、一酸化シリコン(SiO)、二酸化シリコン(S
iO2 )、二酸化チタン(TiO2 )などがある。ま
た、シリコンウェハ1の裏面側の窒化シリコン膜3は、
プラズマCVD法などで厚み500〜1000Å程度に
形成される。
Next, as shown in FIG. 1C, an antireflection film 2 is formed on one main surface side of the silicon wafer 1, and at the same time,
A silicon nitride film 3 is formed on the other main surface side. The antireflection film 2 is a film for efficiently absorbing light incident on the silicon wafer 1 and has a thickness of 500 to 1000.
Å, formed to have a refractive index of about 1.90 to 2.30. For example, it is formed of a silicon nitride film or the like deposited by converting a mixed gas of silane and ammonia into plasma.
Specifically, the silicon wafer 1 in the plasma CVD apparatus
Is heated to 150 to 400 ° C., and the gas pressure is 0.2 to
A high frequency voltage is applied while maintaining at 2.0 Torr. As the material of the antireflection film 2, in addition to the silicon nitride film, silicon monoxide (SiO), silicon dioxide (S
iO 2 ), titanium dioxide (TiO 2 ) and the like. Further, the silicon nitride film 3 on the back surface side of the silicon wafer 1 is
It is formed to a thickness of about 500 to 1000Å by plasma CVD method or the like.

【0016】次に、同図(d)に示すように、窒化シリ
コン膜3にフォトリソグラフィによって透孔部3aを形
成する。この透孔部3aは内径が数10μm程度にな
り、ピッチが100μm程度になるように形成する。こ
の透孔部3aの形状は円形でも四角形でもいずれでもよ
い。
Next, as shown in FIG. 3D, a through hole portion 3a is formed in the silicon nitride film 3 by photolithography. The through holes 3a are formed so that the inner diameter is about several tens of μm and the pitch is about 100 μm. The shape of the through hole 3a may be circular or quadrangular.

【0017】次に、同図(e)に示すように、窒化シリ
コン膜3上からシリコンウェハ1の他の主面側の全面
に、アルミニウムペースト4を塗布して焼き付けること
により、シリコンウェハ1の窒化シリコン膜3の透孔部
3aにP+ 領域1bを形成する。
Next, as shown in FIG. 1E, an aluminum paste 4 is applied and baked on the entire surface of the silicon nitride film 3 on the other main surface side of the silicon wafer 1 to form the silicon wafer 1. A P + region 1b is formed in the through hole portion 3a of the silicon nitride film 3.

【0018】次に、同図(f)に示すように、シリコン
ウェハ1の他の主面側に塗布したアルミニウムペースト
4をエッチング除去した後、シリコンウェハ1の表面側
に形成した反射防止膜2を表面電極5の形状に応じて除
去する。すなわち、表面電極5のパターンと逆パターン
を形づくるように反射防止膜2を除去する。
Next, as shown in FIG. 1F, after the aluminum paste 4 applied to the other main surface side of the silicon wafer 1 is removed by etching, the antireflection film 2 formed on the front surface side of the silicon wafer 1 is removed. Are removed according to the shape of the surface electrode 5. That is, the antireflection film 2 is removed so as to form a pattern opposite to the pattern of the surface electrode 5.

【0019】次に、同図(g)に示すように、シリコン
ウェハ1の一主面側の反射防止膜2及び他の主面側の窒
化シリコン膜3の除去部分に表面電極5及び裏面電極6
を形成する。表面電極5及び裏面電極6は、銀粉末を主
成分とするペーストをシリコンウェハ1の表面gび裏面
に厚膜手法で塗布して加熱焼成することにより形成す
る。
Next, as shown in FIG. 1G, the front surface electrode 5 and the back surface electrode are formed on the removed portion of the antireflection film 2 on the one main surface side of the silicon wafer 1 and the silicon nitride film 3 on the other main surface side. 6
To form The front surface electrode 5 and the back surface electrode 6 are formed by applying a paste containing silver powder as a main component to the front surface g and the back surface of the silicon wafer 1 by a thick film method and baking the paste.

【0020】裏面電極6は、窒化シリコン膜3の透孔部
3aにも充填され、電極として機能することになる。
The back surface electrode 6 is also filled in the through hole portion 3a of the silicon nitride film 3 and functions as an electrode.

【0021】この表面電極2及び裏面電極3上には、必
要に応じて半田層(不図示)などが形成される。なお、
表面電極5及び裏面電極6は、メッキ法や真空蒸着法を
用いて形成してもよい。
A solder layer (not shown) or the like is formed on the front surface electrode 2 and the back surface electrode 3 if necessary. In addition,
The front surface electrode 5 and the back surface electrode 6 may be formed by using a plating method or a vacuum evaporation method.

【0022】[0022]

【発明の効果】以上のように、請求項1に係る太陽電池
素子では、シリコンウェハの裏面側に多数の透孔部を有
する窒化シリコン膜を設けると共に、この透孔部に裏面
電極を設けたことから、この窒化シリコン膜をアルミニ
ウムペーストを印刷して拡散させる際のマスクとして使
用することができ、P+ 高濃度領域を微細なパターンに
形成できると共に、この窒化シリコン膜によって、シリ
コンウェハ裏面側のパシベーション効果も得られる。
As described above, in the solar cell element according to claim 1, the silicon nitride film having a large number of through holes is provided on the back surface side of the silicon wafer, and the back surface electrode is provided at the through holes. Therefore, this silicon nitride film can be used as a mask when aluminum paste is printed and diffused, and a P + high concentration region can be formed in a fine pattern. The passivation effect of is also obtained.

【0023】また請求項2に係る太陽電池素子の製造方
法では、シリコンウェハの裏面側にアルミニウムを拡散
させる際に、多数の透孔部を有する窒化シリコン膜をマ
スクとして拡散させることから、P+ 高濃度領域の面積
が減少して、この領域でのキャリアの再結合が減少す
る。またP+ 領域を微細なパターンで形成できるので、
拡散長の短い多結晶シリコン基板へ適用した場合、より
効果的である。さらに窒化シリコン膜が裏面パシベーシ
ョン膜として働き、多結晶シリコンのような拡散長の短
いウェハには特性向上の効果が大きい。
[0023] In the manufacturing method of the solar cell element according to claim 2, when diffusing aluminum on the back surface side of the silicon wafer, since the diffusing silicon nitride film having a large number of through holes section as a mask, P + The area of the high-concentration region is reduced, and the recombination of carriers in this region is reduced. Moreover, since the P + region can be formed in a fine pattern,
It is more effective when applied to a polycrystalline silicon substrate having a short diffusion length. Further, the silicon nitride film acts as a back surface passivation film, and the effect of improving the characteristics is great for a wafer having a short diffusion length such as polycrystalline silicon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の請求項1に係る太陽電池素子および請求
項2に係る太陽電池素子の製造方法の一実施例を示す図
である。
FIG. 1 is a diagram showing an example of a method for manufacturing a solar cell element according to claim 1 and a solar cell element according to claim 2 of the present application.

【図2】従来の太陽電池素子を示す図である。FIG. 2 is a diagram showing a conventional solar cell element.

【符号の説明】[Explanation of symbols]

1・・・シリコンウェハ、1a・・・N層、1b・・・
+ 高濃度不純物領域、2・・・反射防止膜、3・・・
窒化シリコン膜、4・・・表面電極、5・・・裏面電極
1 ... Silicon wafer, 1a ... N layer, 1b ...
P + high-concentration impurity region, 2 ... Antireflection film, 3 ...
Silicon nitride film, 4 ... Front electrode, 5 ... Back electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白沢 勝彦 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiko Shirasawa 6 16-1166 Haseno, Jamizo Town, Yokaichi City, Shiga Prefecture Kyocera Corporation Shiga Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 P−N接合部を有するシリコンウェハの
裏面側にアルミニウムを拡散させると共に、このシリコ
ンウェハに表面電極と裏面電極を設けた太陽電池素子に
おいて、前記シリコンウェハの裏面側に多数の透孔部を
有する窒化シリコン膜を設け、この透孔部に裏面電極を
設けたことを特徴とする太陽電池素子。
1. A solar cell element in which aluminum is diffused on the back surface side of a silicon wafer having a PN junction and a front surface electrode and a back surface electrode are provided on the silicon wafer, and a large number of silicon wafers are formed on the back surface side of the silicon wafer. A solar cell element comprising a silicon nitride film having a through hole and a back electrode provided in the through hole.
【請求項2】 P−N接合部を有するシリコンウェハの
裏面側にアルミニウムを拡散させた後、このシリコンウ
ェハに表面電極と裏面電極を形成する太陽電池素子の製
造方法において、前記シリコンウェハの裏面側にアルミ
ニウムを拡散させる際に、多数の透孔部を有する窒化シ
リコン膜をマスクとして拡散させることを特徴とする太
陽電池素子の製造方法。
2. A method for manufacturing a solar cell element, which comprises diffusing aluminum on the back surface side of a silicon wafer having a P-N junction and then forming a front surface electrode and a back surface electrode on the silicon wafer. A method of manufacturing a solar cell element, which comprises diffusing aluminum to the side by using a silicon nitride film having a large number of through holes as a mask.
JP7192859A 1995-07-28 1995-07-28 Solar cell element and fabrication thereof Pending JPH0945945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7192859A JPH0945945A (en) 1995-07-28 1995-07-28 Solar cell element and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7192859A JPH0945945A (en) 1995-07-28 1995-07-28 Solar cell element and fabrication thereof

Publications (1)

Publication Number Publication Date
JPH0945945A true JPH0945945A (en) 1997-02-14

Family

ID=16298164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7192859A Pending JPH0945945A (en) 1995-07-28 1995-07-28 Solar cell element and fabrication thereof

Country Status (1)

Country Link
JP (1) JPH0945945A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270879A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
JP2008172279A (en) * 2008-04-03 2008-07-24 Shin Etsu Handotai Co Ltd Solar cell
WO2010064303A1 (en) * 2008-12-02 2010-06-10 三菱電機株式会社 Method for manufacturing solar battery cell
EP2615613A2 (en) 2012-01-16 2013-07-17 E. I. du Pont de Nemours and Company A solar cell back side electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270879A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
JP2008172279A (en) * 2008-04-03 2008-07-24 Shin Etsu Handotai Co Ltd Solar cell
WO2010064303A1 (en) * 2008-12-02 2010-06-10 三菱電機株式会社 Method for manufacturing solar battery cell
US8377734B2 (en) 2008-12-02 2013-02-19 Mitsubishi Electric Corporation Method for manufacturing solar battery cell
JP5197760B2 (en) * 2008-12-02 2013-05-15 三菱電機株式会社 Method for manufacturing solar battery cell
EP2615613A2 (en) 2012-01-16 2013-07-17 E. I. du Pont de Nemours and Company A solar cell back side electrode

Similar Documents

Publication Publication Date Title
US5053083A (en) Bilevel contact solar cells
JP3722326B2 (en) Manufacturing method of solar cell
AU655092B2 (en) Method for manufacture of a solar cell and solar cell
US5665607A (en) Method for producing thin film solar cell
JPH09172196A (en) Structure of aluminum alloy junction self-alignment rear surface electrode type silicon solar cell and its manufacture
JPH0575149A (en) Manufacture of solar cell device
JP2000183379A (en) Method for manufacturing solar cell
JP2015118979A (en) Solar cell and method of manufacturing solar cell
JPH02177569A (en) Manufacture of solar cell
JP2989373B2 (en) Method for manufacturing photoelectric conversion device
JP4486622B2 (en) Manufacturing method of solar cell
JPH1140832A (en) Thin-film solar cell and manufacture therefor
JP3193287B2 (en) Solar cell
JPH11312813A (en) Manufacture of solar cell device
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JPH0945945A (en) Solar cell element and fabrication thereof
JP2002246625A (en) Method of manufacturing solar cell
JP2003101055A (en) Method for manufacturing solar battery
JP3368145B2 (en) Method of manufacturing solar cell
JPH11135812A (en) Formation method for solar cell element
JPH08274356A (en) Solar cell element
JP2835415B2 (en) Photoelectric conversion element
JP2007266649A (en) Method of manufacturing solar cell element
JP2875382B2 (en) Solar cell element
JP2997363B2 (en) Solar cell element