JPS61160980A - Manufacture of solar cell - Google Patents

Manufacture of solar cell

Info

Publication number
JPS61160980A
JPS61160980A JP60002804A JP280485A JPS61160980A JP S61160980 A JPS61160980 A JP S61160980A JP 60002804 A JP60002804 A JP 60002804A JP 280485 A JP280485 A JP 280485A JP S61160980 A JPS61160980 A JP S61160980A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
substrate
plasma treatment
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60002804A
Other languages
Japanese (ja)
Inventor
Yutaka Hayashi
豊 林
Kenichi Ishii
賢一 石井
Mitsuyuki Yamanaka
光之 山中
Toru Nunoi
徹 布居
Takayuki Minamimori
南森 孝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sharp Corp
Original Assignee
Agency of Industrial Science and Technology
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sharp Corp filed Critical Agency of Industrial Science and Technology
Priority to JP60002804A priority Critical patent/JPS61160980A/en
Publication of JPS61160980A publication Critical patent/JPS61160980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve characteristics of solar cells such as open voltage, short- circuit current, and curve factor, by a method wherein hydrogen plasma treatment is carried out after formation of a print-calcined electrode. CONSTITUTION:After chemical polishing, an Si substrate 1 is rinsed and dried; then, an organic solution containing Ti and P is applied as the dopant diffusing solution and diffused by heating. The applied film coats the surface of the Si substrate 1 as a reflection-preventing film 2, and an N<+> diffused layer 3 is formed in the substrate 1. Next, an electrode 4 is print-calcined on the other surface of the substrate 1, and electrode 5 on the film 2, thus obtaining the structure of the titled element. This solar cell 11 is interposed between an electrode plate 13 and an opposite electrode plate 15 in the hydrogen plasma treatment apparatus, and hydrogen gas is introduced under evacuation inside the chamber. Then, plasma treatment is carried out in the hydrogen gas by supplying high frequency current across electrode terminals A, B.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は素子特性の良好な太陽電池の製造方法に関し、
特に水素プラズマ処理を導入して多結晶あるいはアモル
ファスの太陽電池を効率良く作製する製造技術に関する
ものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a solar cell with good device characteristics.
In particular, it relates to manufacturing technology for efficiently manufacturing polycrystalline or amorphous solar cells by introducing hydrogen plasma treatment.

〈従来の技術とその問題点〉 従来一般的に用いられている太陽電池の素子作製方法と
しては、塗布拡散法を用いたp−n接合等の形成と印刷
焼成法を用いた金属電極の形成とを組み合わせた方法が
多用されている。その中でも低コストで高効率な方法の
一つとして、素子基板上にドーパント拡散用の溶液を塗
布した後、塗布膜を素子使用時の光反射防止膜として再
利用するために残存させておき、その上から銀等を主成
分とするペースト材料を印刷して焼成することにより電
極を形成し、太陽電池とする製造方法が広く用いられて
いる。しかしながら、この方法を用いて例えば多結晶シ
リコン基板に対して素子化を行なった場合、単結晶基板
を用いた場合と比較して素子特性が低下することがある
。この理由は、印刷焼成された電極と多結晶シリコン基
板との接触部における電気伝導度が基板の結晶粒径や結
晶面方位の影響を受けることに起因して同一焼成処理に
おいても太陽電池特性の特に曲線因子(フィルファクタ
)が変動するためであると考えられる。
<Conventional techniques and their problems> Conventionally commonly used solar cell element manufacturing methods include forming p-n junctions using a coating diffusion method and forming metal electrodes using a printing and baking method. A combination of these methods is often used. Among them, one of the low-cost and highly efficient methods is to apply a solution for dopant diffusion on the element substrate and then leave the coating film to be reused as an anti-reflection film when the element is used. A widely used manufacturing method is to form a solar cell by printing a paste material containing silver or the like as a main component thereon and firing it to form electrodes. However, when devices are formed using this method on, for example, a polycrystalline silicon substrate, device characteristics may deteriorate compared to when a single crystal substrate is used. The reason for this is that the electrical conductivity at the contact area between the printed and fired electrode and the polycrystalline silicon substrate is affected by the crystal grain size and crystal plane orientation of the substrate. This is thought to be due to variations in the fill factor, in particular.

多結晶シリコン基板は結晶粒径や結晶面方位が不揃いで
あり、従って多結晶シリコン基板の拡散面と電極との接
触部における結晶粒界のダイオード特性は悪く電気伝導
度も不均一である。このため、太陽電池特性の開放電圧
、短絡電流及び曲線因子を満足する値に設定することが
困難となる。太陽電池特性を向上させるためには、多結
晶シリコン基板と印刷焼成電極との接触部における電気
的特性を改善することが必要である。
A polycrystalline silicon substrate has irregular crystal grain sizes and crystal plane orientations, and therefore, the diode characteristics of the crystal grain boundaries at the contact portion between the diffusion surface of the polycrystalline silicon substrate and the electrode are poor, and the electrical conductivity is also nonuniform. For this reason, it becomes difficult to set the solar cell characteristics such as open circuit voltage, short circuit current, and fill factor to values that satisfy the solar cell characteristics. In order to improve solar cell characteristics, it is necessary to improve the electrical characteristics at the contact area between the polycrystalline silicon substrate and the printed and fired electrode.

く問題点を解決するための手段〉 本発明は、上述の問題点を解決するために、太陽電池素
子を作製する半導体基板にドーパント拡散用溶液を塗布
して拡散処理を施した後、残存する塗布膜を反射防止膜
とし、この上に金属ペーストを堆積して印刷焼成するこ
とにより電極を形成し、この後更に真空中で水素プラズ
マ処理を施すことにより太陽電池を作製することを特徴
とする。
Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention aims to solve the above-mentioned problems by applying a dopant diffusion solution to a semiconductor substrate for manufacturing a solar cell element and performing a diffusion process, and then applying a dopant diffusion solution to a semiconductor substrate for manufacturing a solar cell element. The coating film is used as an antireflection film, and a metal paste is deposited on this film and printed and fired to form an electrode, and then a solar cell is produced by further performing hydrogen plasma treatment in a vacuum. .

真空中での水素プラズマ処理を付加することにより、得
られる太陽電池の開放電圧、曲線因子等の素子特性が向
上し、実用価値の高い太陽電池か作製される。
By adding hydrogen plasma treatment in a vacuum, the device characteristics such as open circuit voltage and fill factor of the obtained solar cell are improved, and a solar cell with high practical value can be manufactured.

尚、上記半導体基板としては多結晶基板あるいはアモル
ファス基板を用いることができ、p型あるいはn型に設
定した半導体基板にドーパント拡散用溶液よりドーパン
トを拡散して逆極性の拡散領域を形成することにより、
起電力を得るためのp−n接合やp−1−n接合等が得
られる。
Note that a polycrystalline substrate or an amorphous substrate can be used as the semiconductor substrate, and by diffusing a dopant from a dopant diffusion solution into the semiconductor substrate set to be p-type or n-type to form a diffusion region of opposite polarity. ,
A p-n junction, p-1-n junction, etc. for obtaining an electromotive force can be obtained.

く作用〉 印刷焼成電極を形成した後、真空中で水素プラズマ処理
を施すことによって、水素の単原子又は分子が電極部分
や反射防止膜部分を透過し、半導体基板の拡散面におけ
る結晶粒界のダイオード特性を向上させ、また電極と拡
散層の接触部で特に反射防止膜との境界領域において水
素が介入することによって電極と拡散層間の電気伝導度
が改善される。この結果、結晶粒径や結晶面方位の不揃
いに起因する素子特性の劣化が補償され、得られる太陽
電池の曲線因子、開放電圧等を良好に維持することがで
きる。
After forming the printed and fired electrode, by performing hydrogen plasma treatment in vacuum, hydrogen single atoms or molecules pass through the electrode part and the antireflection film part, and form the crystal grain boundaries on the diffusion surface of the semiconductor substrate. The diode properties are improved and the electrical conductivity between the electrode and the diffusion layer is improved by the intervention of hydrogen at the contact between the electrode and the diffusion layer, especially in the boundary region with the anti-reflection coating. As a result, deterioration in device characteristics caused by irregularities in crystal grain size and crystal plane orientation is compensated for, and the fill factor, open circuit voltage, etc. of the resulting solar cell can be maintained at good levels.

〈実施例〉 第1図は本発明の1実施例の説明に供する太陽電池素子
の断面構成図である。第2図は第1図に示す太陽電池素
子の特性改善を企図して用いられる水素プラズマ処理装
置の模式構成図である。
<Example> FIG. 1 is a cross-sectional configuration diagram of a solar cell element for explaining one example of the present invention. FIG. 2 is a schematic diagram of a hydrogen plasma treatment apparatus used to improve the characteristics of the solar cell element shown in FIG. 1.

太陽電池素子作製用半導体基板としてp里長結晶シリコ
ン基板lを使用する。このシリコン基板1は例えば比抵
抗1〜8Ω−1,厚さ約0.4 wmのものを用いる。
A long crystalline silicon substrate l is used as a semiconductor substrate for producing a solar cell element. The silicon substrate 1 used has, for example, a specific resistance of 1 to 8 Ω-1 and a thickness of about 0.4 wm.

シリコン基板lをフッ硝酸等の研摩液で化学研摩した後
、水洗乾燥し、ドーパント拡散用溶液としてチタン(T
i)及びリン(ト)を含む有機系溶液をシリコン基板l
の片面にスピン法等で塗布する。次にこの有機系溶液の
塗布膜を有するシリコン基板lを900℃〜1000℃
程度の温度で加熱してTi及びPのドーパントを塗布膜
からシリコン基板lの中へ拡散させる。この加熱処理に
よって塗布膜は固化され反射防止膜2としてシリコン基
板1表面を被覆する。またシリコン基板1中にはn十拡
散層3が形成される。次に、シリコン基板1の他方の面
に銀(Ag)−アルミニウム(A/)ペーストを印刷焼
成して背面側の電極4とする。また反射防止膜2上には
Agペーストをスクリーン印刷等で印刷焼成して受光面
側の電極5とする。この場合1反射防止膜2上のAgペ
ーストは反射防止膜2を浸透してn+拡散層3と直接接
触される。以上により第1図に示す太陽電池素子構造が
得られる。
After chemically polishing the silicon substrate l with a polishing solution such as fluoro-nitric acid, it is washed with water and dried, and titanium (T) is added as a solution for dopant diffusion.
i) and an organic solution containing phosphorus (t) on a silicon substrate l.
Coat on one side of the paper using a spin method, etc. Next, the silicon substrate l having the coating film of this organic solution was heated to 900°C to 1000°C.
The Ti and P dopants are diffused from the coating film into the silicon substrate 1 by heating at a certain temperature. The coating film is solidified by this heat treatment and coats the surface of the silicon substrate 1 as an antireflection film 2. Further, an n10 diffusion layer 3 is formed in the silicon substrate 1. Next, a silver (Ag)-aluminum (A/) paste is printed and fired on the other surface of the silicon substrate 1 to form the electrode 4 on the back side. Further, an Ag paste is printed and fired on the antireflection film 2 by screen printing or the like to form the electrode 5 on the light receiving surface side. In this case, the Ag paste on the anti-reflection film 2 penetrates through the anti-reflection film 2 and comes into direct contact with the n+ diffusion layer 3. Through the above steps, the solar cell element structure shown in FIG. 1 is obtained.

両電極4,5を起電力検出系に接続し、反射防止膜2側
を受光面として光照射することにより、太陽電池素子内
で発生する起電力を検出する。この起電力検出によって
得られた太陽電池素子の特性の良否を判別する。尚、反
射防止膜2は受光面における照射光の散乱反射を抑制し
て素子内部へ照射光を有効に導入せしめ、光電変換効率
の実を向上させる機能を有する。
By connecting both electrodes 4 and 5 to an electromotive force detection system and irradiating light with the antireflection film 2 side as a light receiving surface, the electromotive force generated within the solar cell element is detected. It is determined whether the characteristics of the solar cell element obtained by this electromotive force detection are good or bad. The anti-reflection film 2 has the function of suppressing the scattered reflection of the irradiated light on the light receiving surface and effectively introducing the irradiated light into the inside of the element, thereby improving the photoelectric conversion efficiency.

良判定された太陽電池素子は第2図に示すような水素プ
ラズマ処理装置内へ挿入され、水素プラズマ処理が施さ
れる。即ち、太陽電池素子11はチャンバー内の発熱体
12が内蔵された電極板13上(載置される。電極板1
3は外部リード線14を介して発熱体12へ流される電
流量を制御することによって100℃〜400℃程度の
範囲で適宜の温度に調整される。電極板13の直上には
電極板】3と平行に対向電極板15が配設されており、
従って太陽電池素子11は電極板18と対向電極板15
の間に介在されることとなる。電極板13及び対向電極
板15はいずれもチャンバーに対して電気的に絶縁され
た状態でそれぞれ電極端子A及びBとして外部へ取り出
されている。チャンバー内は排気管16を介して排気さ
れ、1xlO=Torr以下の真空に設定される。プラ
ズマ処理の動作時にはこの真空状態でガス導入管17を
介して水素ガスを毎分50−〜200−程度の割合で導
入し、排気速度を調整することによりチャンバー内の圧
力を0.5〜2.0Torr程度の範囲に保持する。
The solar cell elements judged to be good are inserted into a hydrogen plasma processing apparatus as shown in FIG. 2, and subjected to hydrogen plasma processing. That is, the solar cell element 11 is placed on the electrode plate 13 in which the heating element 12 is built in the chamber.
3 is adjusted to an appropriate temperature within a range of approximately 100° C. to 400° C. by controlling the amount of current flowing to the heating element 12 via the external lead wire 14. Directly above the electrode plate 13, a counter electrode plate 15 is arranged parallel to the electrode plate ]3.
Therefore, the solar cell element 11 has an electrode plate 18 and a counter electrode plate 15.
It will be interposed between. Both the electrode plate 13 and the counter electrode plate 15 are taken out to the outside as electrode terminals A and B, respectively, while being electrically insulated from the chamber. The inside of the chamber is evacuated through an exhaust pipe 16 and set to a vacuum of 1×1O=Torr or less. During plasma processing, hydrogen gas is introduced through the gas introduction pipe 17 at a rate of about 50-200 m/min in this vacuum state, and by adjusting the exhaust speed, the pressure inside the chamber is reduced to 0.5-20 m/min. Maintain it within a range of about .0 Torr.

次に電極端子A、B間に高周波電流(1〜50MHz)
を供給する。この場合の電力は10〜100W/10α
角の範囲とする。尚、高周波電流の代りに直流電圧を印
加しても良い。この状態を5〜60分間保持して水素ガ
ス中でのプラズマ処理を施す。プラズマ処理の完了した
太陽電池素子をチャンバーから取り出し、素子特性を調
べる。
Next, a high frequency current (1~50MHz) is applied between electrode terminals A and B.
supply. In this case, the power is 10 to 100W/10α
Angle range. Note that a DC voltage may be applied instead of the high frequency current. This state is maintained for 5 to 60 minutes to perform plasma treatment in hydrogen gas. After the plasma treatment has been completed, the solar cell element is taken out of the chamber and its characteristics are examined.

第3図は太陽電池素子の動作特性を示す特性説明図であ
る。図中の特性曲線/、は単結晶シリコン基板を用いた
場合を示し、j2は多結晶シリコン基板を用いて水素プ
ラズマ処理を施さない場合、j3は上記実施例に相当す
る水素プラズマ処理を行なった場合の特性を示す。また
点I)1 +り2 +p3はそれぞれ上記特性曲線’1
 、’2 +18における最大出力点である。太陽電池
素子の特性の良否は開放電圧vt +”2 +v3と短
絡電流!1 +$2 +$8 (Vt IV2+■3及
び’1 +12 +18 はそれぞれ特性曲線ll。
FIG. 3 is a characteristic explanatory diagram showing the operating characteristics of the solar cell element. The characteristic curve / in the figure shows the case where a single crystal silicon substrate is used, j2 shows the case where a polycrystalline silicon substrate is used and no hydrogen plasma treatment is performed, and j3 shows the case where hydrogen plasma treatment corresponding to the above example is performed. The characteristics of the case are shown below. In addition, the points I) 1 + 2 + p3 are the above characteristic curve '1, respectively.
, '2 +18. The quality of the characteristics of a solar cell element is determined by the open circuit voltage vt +''2 +v3 and the short circuit current!1 +$2 +$8 (Vt IV2+■3 and '1 +12 +18 are the characteristic curves ll, respectively.

12+13に対応する)が大きいことと同時にその曲線
因子が大きいことによる最大出力点pl 、p2 +p
3の大きさにより決定される。多結晶基板を用いた場合
には単結晶基板を用いた場合と比較して特性曲線12で
示す如く開放電圧v2及び短絡電流12が低下すると同
時にその曲線因子も著しく低下する。しかしながら、上
記実施例で示した水素プラズマ処理を付加することによ
り、特性曲線I!8で示す如く開放電圧v3は高くなり
曲線因子も大幅に改善される。例えば特性曲線t2の太
陽電池素子で光電変換効率が6襲程度のものは水素プラ
ズマ処理を付加して特性曲線13の太陽電池素子とする
ことにより光電変換効率が10チ程度に向上することが
確かめられた。水素プラズマ処理を施すことにより第1
図に示す太陽電池素子の電極5及び反射防止膜2を水素
原子または水素分子が透過し、多結晶シリコン基板のダ
イオード特性及び電極5とn 拡散層3のオーミック特
性を電極5.n  拡散層32反射防止膜2の3つの領
域が接する部分において有効に向上させる作用をなし、
これによって素子特性の向上が得られる。
12 + 13) is large and at the same time its fill factor is large, the maximum output point pl, p2 + p
It is determined by the size of 3. When a polycrystalline substrate is used, as shown by a characteristic curve 12, the open circuit voltage v2 and the short circuit current 12 are lowered, and at the same time, the fill factor is also significantly lowered, as compared to the case where a single crystalline substrate is used. However, by adding the hydrogen plasma treatment shown in the above example, the characteristic curve I! As shown by 8, the open circuit voltage v3 is increased and the fill factor is also significantly improved. For example, it has been confirmed that for a solar cell element with characteristic curve t2 whose photoelectric conversion efficiency is around 6x, the photoelectric conversion efficiency can be improved to around 10x by adding hydrogen plasma treatment to make a solar cell element with characteristic curve 13. It was done. By applying hydrogen plasma treatment, the first
Hydrogen atoms or hydrogen molecules pass through the electrode 5 and antireflection film 2 of the solar cell element shown in the figure, and the diode characteristics of the polycrystalline silicon substrate and the ohmic characteristics of the electrode 5 and the n-diffusion layer 3 are determined by the electrode 5. n has the effect of effectively improving the area where the three regions of the diffusion layer 32 and the anti-reflection film 2 are in contact;
This improves device characteristics.

尚、上記実施例は太陽電池作製用半導体基板としてp型
子結晶シリコン基板を用いた場合について説明したが、
本発明はこれに限定されるものではなく、他の材料を用
いたアモルファス基板等を用いることができる。
Incidentally, in the above example, a case was explained in which a p-type child crystalline silicon substrate was used as a semiconductor substrate for solar cell production.
The present invention is not limited to this, and an amorphous substrate made of other materials can be used.

〈発明の効果〉 以上詳説した如く本発明によれば、作製される太陽電池
の開放電圧、曲線因子等で表わされる素子特性が改善さ
れ、高い光電変換効率が得られる。
<Effects of the Invention> As explained in detail above, according to the present invention, the device characteristics expressed by the open circuit voltage, fill factor, etc. of the manufactured solar cell are improved, and high photoelectric conversion efficiency can be obtained.

また本発明は量産に適し、電極形成後に得られる素子の
特性が良好なもののみを選別して水素プラズマ処理を施
せば良く、効率の高い製造ラインを確立することができ
る0
In addition, the present invention is suitable for mass production, and it is only necessary to select devices with good characteristics after electrode formation and perform hydrogen plasma treatment, making it possible to establish a highly efficient production line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の説明に供する太陽電池素子
の断面構成図である。第2図は第1図に示す太陽電池素
子に対して用いられる水素プラズマ処理装置の模式構成
図である。第3図は太陽電池素子の動作特性を示す特性
説明図である。 1・・・シリコン基板、2・・・反射防止膜、3・・・
n+拡散層、4.5・・・電極、11・・・太陽電池素
子、13・・・電極板、15・・・対向電極板、16・
・・排気管、17・・・ガス導入管。
FIG. 1 is a cross-sectional configuration diagram of a solar cell element for explaining one embodiment of the present invention. FIG. 2 is a schematic diagram of a hydrogen plasma processing apparatus used for the solar cell element shown in FIG. 1. FIG. 3 is a characteristic explanatory diagram showing the operating characteristics of the solar cell element. 1... Silicon substrate, 2... Antireflection film, 3...
n+ diffusion layer, 4.5... Electrode, 11... Solar cell element, 13... Electrode plate, 15... Counter electrode plate, 16...
...Exhaust pipe, 17...Gas introduction pipe.

Claims (1)

【特許請求の範囲】 1、半導体基板にドーパントを添加して光起電力用接合
を形成するとともに前記半導体基板の受光面側にパター
ン電極を形成した後、水素プラズマ処理を施すことを特
徴とする太陽電池の製造方法。 2、半導体基板が多結晶基板である特許請求の範囲第1
項記載の太陽電池の製造方法。 3、半導体基板がアモルファス基板である特許請求の範
囲第1項記載の太陽電池の製造方法。 4、受光面に反射防止膜が被覆されている特許請求の範
囲第1項記載の太陽電池の製造方法。
[Claims] 1. A dopant is added to a semiconductor substrate to form a photovoltaic junction, and a patterned electrode is formed on the light-receiving surface side of the semiconductor substrate, followed by hydrogen plasma treatment. Method of manufacturing solar cells. 2. Claim 1 in which the semiconductor substrate is a polycrystalline substrate
2. Method for manufacturing a solar cell as described in Section 1. 3. The method for manufacturing a solar cell according to claim 1, wherein the semiconductor substrate is an amorphous substrate. 4. The method for manufacturing a solar cell according to claim 1, wherein the light-receiving surface is coated with an antireflection film.
JP60002804A 1985-01-09 1985-01-09 Manufacture of solar cell Pending JPS61160980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002804A JPS61160980A (en) 1985-01-09 1985-01-09 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002804A JPS61160980A (en) 1985-01-09 1985-01-09 Manufacture of solar cell

Publications (1)

Publication Number Publication Date
JPS61160980A true JPS61160980A (en) 1986-07-21

Family

ID=11539564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002804A Pending JPS61160980A (en) 1985-01-09 1985-01-09 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPS61160980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099924A (en) * 2007-10-17 2009-05-07 Ind Technol Res Inst Method of fast hydrogen passivation to solar cell made of crystalline silicon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823487A (en) * 1981-08-06 1983-02-12 Agency Of Ind Science & Technol Manufacture of polycrystal silicon solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823487A (en) * 1981-08-06 1983-02-12 Agency Of Ind Science & Technol Manufacture of polycrystal silicon solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099924A (en) * 2007-10-17 2009-05-07 Ind Technol Res Inst Method of fast hydrogen passivation to solar cell made of crystalline silicon

Similar Documents

Publication Publication Date Title
EP0179547B1 (en) Thin film solar cell with free tin on transparent conductor
US5510271A (en) Processes for producing low cost, high efficiency silicon solar cells
JP4118187B2 (en) Manufacturing method of solar cell
EP2650926B1 (en) Solar cell and method of making a solar cell
JPH02158175A (en) Manufacture of photoconductive
GB1588452A (en) Devices including a layer of amorphous silicon
US20050087226A1 (en) Electrode arranging method
US20100210060A1 (en) Double anneal process for an improved rapid thermal oxide passivated solar cell
JPH10173208A (en) Manufacture of solar cell
AU673622B2 (en) Process for preparing photovaltaic modules based on crystalline sylicon
US4177093A (en) Method of fabricating conducting oxide-silicon solar cells utilizing electron beam sublimation and deposition of the oxide
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
JPS61160980A (en) Manufacture of solar cell
JP2004281569A (en) Method for producing solar cell element
KR102563642B1 (en) High-efficiency back-electrode solar cell and its manufacturing method
JP3504838B2 (en) Amorphous silicon solar cell
KR940007590B1 (en) Manufacturing method of silicon solar cell
JPS59117276A (en) Manufacture of solar battery
JPS63204775A (en) Solar battery element and manufacture thereof
JP3272681B2 (en) Solar cell manufacturing method
JP2002170972A (en) Method of manufacturing solar cell element
JP3679937B2 (en) Amorphous silicon solar cell and manufacturing method thereof
CN116230813A (en) Heterojunction battery preparation method and film forming equipment
JPH04229664A (en) Photoelectromotive force device and its manufacture
JPS59211289A (en) Manufacture of amorphous silicon solar battery