JPS5823487A - Manufacture of polycrystal silicon solar cell - Google Patents

Manufacture of polycrystal silicon solar cell

Info

Publication number
JPS5823487A
JPS5823487A JP56122470A JP12247081A JPS5823487A JP S5823487 A JPS5823487 A JP S5823487A JP 56122470 A JP56122470 A JP 56122470A JP 12247081 A JP12247081 A JP 12247081A JP S5823487 A JPS5823487 A JP S5823487A
Authority
JP
Japan
Prior art keywords
substrate
plasma discharge
solar cell
polycrystal silicon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56122470A
Other languages
Japanese (ja)
Other versions
JPS6244863B2 (en
Inventor
Kesao Noguchi
野口 今朝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56122470A priority Critical patent/JPS5823487A/en
Publication of JPS5823487A publication Critical patent/JPS5823487A/en
Publication of JPS6244863B2 publication Critical patent/JPS6244863B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce localization order, and to improve an optoelectric transducing characteristic by exposing the side surface of the light receiving surface of P- N junction polycrystal silicon into hydrogen plasma discharge, applying ion accelerating voltage and treating the polycrystal silicon. CONSTITUTION:A gate valve 12 is wholly opened, the inside of a bell jar 11 is exhausted up to the degree of vacuum reaching to the limit of the capacity of an exhaust system 13, argon gas or hydrogen gas is introduced from a gas introducing pipe 18 only by flow rate determined by means of a flowmeter 17, the gate valve 12 is closed and gas pressure in the bell jar 11 is increased. The temperature of a substrate holder 15 is elevated simulatneously up to a predetermined temperature by means of a power supply A for heating a substrate. Plasma discharge is generated. Voltage is applied so that the substrate 14 is brought to negative potential by means of a power supply 10 for accelerating ions in order to accelerate ions generated through plasma discharge between the substrate holder 15 to which the substrate 14 is charged and this treatment device box body grounded, and the substrate is plasma-treated.

Description

【発明の詳細な説明】 本発明は多結晶シリコンを用いた太陽電池の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solar cell using polycrystalline silicon.

近年、化石燃料以外による創エネルギーを行う結晶シリ
コン太陽電池が実、用孔されつ−ある。
In recent years, crystalline silicon solar cells that generate energy using sources other than fossil fuels have actually been used.

一般に、多結晶シリコンを基板とする太陽電池は単結晶
を基板としたそれよシ約加〜30%−光電変換率が低−
0 この主1kjKvAは、前者には多結晶粒界が存在する
ことKある@該粒界には結晶結合の乱れが集積しておシ
、その丸め”k+rok@m leomd″に起因する
局在順位が高濃度で存在する。
In general, solar cells using polycrystalline silicon as a substrate have ~30% lower photoelectric conversion rates than those using single crystal as a substrate.
0 This main 1kjKvA is based on the fact that there is a polycrystalline grain boundary in the former, where disordered crystal bonds accumulate, and the localization order due to the rounding "k+rok@m leomd" is present in high concentrations.

したがって、粒界祉光電変換過程において、非光子生成
因子、再結合因子および抵抗因子として作用し、変換効
率を下げる大きな原因となっている。そこで、誼粒界の
水素化によりイ再結合因子を減少でき九と−う報告(A
ppl、 Phys、 L#tt、 Mol。
Therefore, in the grain boundary photoelectric conversion process, it acts as a non-photon generation factor, a recombination factor, and a resistance factor, and is a major cause of lowering the conversion efficiency. Therefore, the recombination factor can be reduced by hydrogenation of the grain boundaries, which was reported in the ninth report (A.
ppl, Phys, L#tt, Mol.

36 、 h 10 、 P 831  May 19
80)がC,H,8aag*r等によりてなされている
6 2 Tsrrの真空中で350℃に保ち、16〜7
0時間水素プラズiにさらした後は、粒界にお妙る電子
ビームm起電流(EBIC)が回復するというものであ
ゐ@しかし、実際の多結晶シリプン太陽電池の特性がど
のS度改善されたのか明確な記述社1に−が、処理時間
の16〜70時間は太陽電池を製造するための他のプロ
セス所要時間と比較し、極めて長い。
36, h 10, P 831 May 19
80) is made using C, H, 8aag*r, etc. 6 2 Tsrr maintained at 350°C in vacuum, 16-7
After being exposed to hydrogen plasma for 0 hours, the electron beam electromotive current (EBIC) at grain boundaries recovers. However, the processing time of 16 to 70 hours is extremely long compared to other process times for manufacturing solar cells.

本発明の目的は、上記欠点を持つ多結晶シリコン太陽電
池OII&環方法を改善し、かつ粒界による悪影響をで
きる限シ低減する丸めの新規な製造方法を提供すること
に4る。
It is an object of the present invention to improve the polycrystalline silicon solar cell OII & ring method, which has the above-mentioned drawbacks, and to provide a novel manufacturing method for rounding, which reduces the adverse effects of grain boundaries as much as possible.

素化には水素プラズマ中にさらした多結晶シリコン太陽
電池にイオン加速電圧を印加した状態で処理を行うこと
が極めて効果的であることを見い出した。
We have found that it is extremely effective to perform the treatment while applying an ion accelerating voltage to a polycrystalline silicon solar cell exposed to hydrogen plasma.

本発明によれば、P−1’接合が形成された多結晶シリ
コlの受光面側表面を水素プラズマ放電中にさらし、か
つ該多結晶シリコンにイオン加速電、 圧を印加して処
理することを特徴とする多結晶シリコン太陽電池の製造
方法が得られる。
According to the present invention, the surface of the polycrystalline silicon on which the P-1' junction is formed on the light-receiving surface side is exposed to hydrogen plasma discharge, and the polycrystalline silicon is treated by applying an ion accelerating electric current and pressure. A method for manufacturing a polycrystalline silicon solar cell is obtained.

本発明の多結晶シリコン太陽電池の製造方法によれば、
イオン加速電圧を印加した方がより水嵩化されることが
、赤外吸収測定のシリコン−水素結合による吸収が増加
することよシ確められた。
According to the method for manufacturing a polycrystalline silicon solar cell of the present invention,
It was confirmed that the application of an ion accelerating voltage made the water more bulky, as the absorption due to silicon-hydrogen bonds increased in infrared absorption measurements.

又、電子ビーム鱒起電流(EilIC) *観察によっ
て、イオン加速電圧を印加することによって、粒界の鋏
電流値の回復に要する水素プラズマ処理時閲を著しく短
縮できることが確められ良。
Furthermore, by observing the electron beam trout electromotive current (EilIC)*, it was confirmed that by applying an ion accelerating voltage, the hydrogen plasma treatment time required to recover the grain boundary scissor current value can be significantly shortened.

さらに、多結晶シリコン太陽電池の直列抵抗を著しく減
少でき、太陽電池の一線因子が極めて向上することを確
めた口したがって、本発明の多結晶シリ;ン太陽電池O
Il造方法によれば、太陽電#Aの短絡電流!、eを増
加させ、曲線因子F、F、を向上させることができ、光
電変換効率を約8〜30Lsも向上できることが見−出
された。
Furthermore, it has been confirmed that the series resistance of the polycrystalline silicon solar cell can be significantly reduced and the linear factor of the solar cell can be significantly improved.
According to the Il construction method, the short circuit current of solar power #A! , e can be increased, fill factors F, F can be improved, and photoelectric conversion efficiency can be improved by about 8 to 30 Ls.

以下本発明の実施例を図面を用いて詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は我々が水素グッズマ麩理に用いたイオン加速電
圧を印加する仁とのできるプラズマ放電装置の模式図で
ある。金属蛎ベルデ、ア11内はゲートパルプ12を介
して排気系isK#絖されてThJ真空に保良れる。又
ペルデ1ア11内には基板14を昇温可能な基板ホルダ
ー15とプラズマ放電を1起するための高周波(RF)
コイル16が訛けられている。ゲートパルプ12を全一
にして排気系13の能力隈′壕での到達真空度〜10 
 丁・rrKベルデ島アエア11内気した後、流量調制
917によって定められた流量f!叶ガス導入管18よ
〕アルゴンガスモジくハ水素ガスを導入し、ダートパル
プ12を適!1に閉め一愛   −り て1G  −10テ・rr@度までペルデaア11内の
ガス圧を上がる。時を岡じ(して基板加熱用電源ムよ〉
供給されえ電力よ〕、基板ホルダー15が所定の温度に
昇温され、装填さえた基板14社200〜400℃に保
九れる◎しかみ後、高周波電源Bより区rコイルtap
c供給されたIIP電力よ〉プラズマ放電を発生させる
0又、基板14を装填し九基板ホルダー15と接地され
良本鶏鳳装置框体との関に社プツズマ放電よ〉生じえイ
オンを加速する良めに、イオン加適用電源1Gよ〕基板
14が負電位となるよう印加しグッズマI&層を行う@ 本爽施例でaRFlイル16をペルデ鳳ア11内に収納
しであるが、金属製でないガラス製ペルテ具7等を用−
た場合はRFコイル16はペルデ&7の外巻きでもプラ
ズマ放電を発生せしめることが可可能であ〉、少くとも
放電励起用構成−とイオン加速用構成物とを具備するこ
とが本発明を実施する際の必要条件である。
Figure 1 is a schematic diagram of a plasma discharge device that can be used to apply an ion accelerating voltage, which we used in hydrogen gas machining. The inside of the metal shell verde 11 is maintained at a ThJ vacuum by being connected to an exhaust system isK# via a gate pulp 12. Also, inside the PELDE 1A 11, there is a substrate holder 15 that can raise the temperature of the substrate 14, and a radio frequency (RF) for generating plasma discharge.
Coil 16 is accented. The ultimate vacuum level at the exhaust system 13's capacity with the gate pulp 12 at full capacity ~10
Ding・rrK Verde Island Aair 11 After airing, the flow rate f determined by the flow rate regulation 917! Argon gas introduction pipe 18] Introduce hydrogen gas and apply dirt pulp 12! 1 and raise the gas pressure inside Perdair 11 to 1G -10 te.rr@degree. As time passes, the power source for heating the substrate is turned on.
After heating, the substrate holder 15 is heated to a predetermined temperature, and the 14 loaded substrates are kept at 200-400℃.
The supplied IIP power generates a plasma discharge, and the substrate 14 is loaded and connected to the substrate holder 15 and the Ryohon Keiho device frame, which is grounded and generates a plasma discharge, which accelerates the ions. 1G power source for ion application] Apply voltage so that the substrate 14 has a negative potential and conduct the goods master I & layer. Use a glass pelte tool 7 etc. that is not
In this case, the RF coil 16 can generate a plasma discharge even if it is wound around the outside of the PELDE & 7. In order to carry out the present invention, the RF coil 16 is equipped with at least a discharge excitation structure and an ion acceleration structure. This is a necessary condition.

次に第1図に示す装置を用いた実施例について述べる。Next, an example using the apparatus shown in FIG. 1 will be described.

実施例 1゜ p−m接合が形成された多結晶シリコン基板乞HF洗浄
等によ)酸化膜を除去した發ペルデエアll内基板ホル
ダー15に受光面側を表面にして装填する。ペルデ&7
11内を到達真空l1ILtで排気した後、基板14を
約350℃に昇温する。流量調制器17とダートパルプ
12の操作によシアルボンガスを約3 Xl0−”To
rrにペルグ具ア11内を満し、RF電ヵ管供給してに
プラズマ放電を起こす。この際、基板14にイオン加速
電圧−zso v印加する。これによシムr イオノボ
ンバードによ)ペルデa 711内および基板14Ja
面は清浄化され、いわゆるイオンクリーニングされる。
Embodiment 1 A polycrystalline silicon substrate on which a pm junction has been formed is loaded into a substrate holder 15 in a permeable air chamber from which an oxide film has been removed (by HF cleaning, etc.) with the light-receiving surface side facing up. Perde & 7
After evacuating the inside of the substrate 11 to the ultimate vacuum l1ILt, the temperature of the substrate 14 is raised to about 350°C. By operating the flow rate regulator 17 and dirt pulp 12, the sialbone gas is pumped to about 3 Xl0-”To
The inside of the perg tool 11 is filled with RR, and an RF tube is supplied to generate plasma discharge. At this time, an ion acceleration voltage -zsov is applied to the substrate 14. With this, shim r iono bombard) Perde a 711 and board 14Ja
The surface is cleaned, so-called ion cleaning.

約2分11度イオンクリーニング行りえ稜、RF電力を
切り、再び流量調製器17とゲートパルプ12の操作よ
〕、アルゴンガスを排気しぬめて水素ガスを約1 x 
1G=’Torrペルデ異ア11内に満し、RF電力を
供給し水素プラズマ放電を起こす。この際基板14にイ
オン加速電圧−300V印加する。これによ1tイオン
シヤワーを基板14に集めることができ、多結晶シリコ
ン粒界の積工程を経て、p−m!1合の2層側、1層側
にそれぞれム1. TI−Ay等の電極が形成される。
After completing the ion cleaning for about 2 minutes, turn off the RF power and operate the flow rate regulator 17 and gate pulp 12 again], exhaust the argon gas, and add hydrogen gas to about 1 x
1G='Torr is filled in the chamber 11 and RF power is supplied to generate hydrogen plasma discharge. At this time, an ion acceleration voltage of -300V is applied to the substrate 14. This allows a 1t ion shower to be collected on the substrate 14, and through the polycrystalline silicon grain boundary deposition process, p-m! 1. On the 2nd layer side and 1st layer side of 1. An electrode such as TI-Ay is formed.

周知のごとく、これらの電極のオーミック性を良くする
為に通常アロイ工程が設妙られる。さらに周知のごとく
反射防止膜を形成する工程を経て太陽電池を完成し九が
、水嵩プラズマ処理を行なわない太陽電池と比較し、光
電変換効率が19−も向上していることが判り九。
As is well known, an alloying process is usually designed to improve the ohmic properties of these electrodes. Furthermore, as is well known, when a solar cell is completed through the process of forming an antireflection film, it has been found that the photoelectric conversion efficiency is 19 times higher than that of a solar cell that is not subjected to water-volume plasma treatment.

実施例 2 実施例1とはげ同様な工程を経て多結晶シリコン太陽電
池が作製された。えだし、水素プラズマ処理において、
イオン加速電圧を−100〜−500vと変え九種々の
多結晶シリコン太陽電池が作製された。
Example 2 A polycrystalline silicon solar cell was manufactured through the same steps as in Example 1. In stock and hydrogen plasma treatment,
Nine different polycrystalline silicon solar cells were fabricated by varying the ion acceleration voltage from -100 to -500V.

実施例1で得られたイオン加速電圧−300V41)場
合を含めて得られた太陽電池の特性を測定したところ、
第2図に示すような結果が得られた。イオン加速電圧を
印加しない場合と比較して、すべて特性が向上してお〕
、短絡電流値11eが約8チ向上する場合21と曲線因
子F、F、が約27チ向上する場合nとがあることが判
−)丸。太陽電池の光電変換効率としてdI、e+F、
F、が良い場合、さらにIleとF、F、の両方が良い
場合によ〕高い値が得られることは周知である0しえが
って、イオン加速“電圧を印加する効果が著しく大東い
ことが判った。又これらの効果はシリコン−水素結金の
増加によりもたらされているととを、イオン加速電圧を
印加して水素プラズマ処理を行りた、微小粒径を持つ多
結晶シリコンの赤外吸収スペクトル変化よル確めること
ができえ。し九がって、イオン加速電圧を印加すること
によシ@brok軸bond”等をよシ積極的に水嵩化
でき、結晶性を回復することができるといえる。
When the characteristics of the solar cell obtained in Example 1 were measured, including the case where the ion acceleration voltage was -300V41),
The results shown in FIG. 2 were obtained. All properties are improved compared to when no ion accelerating voltage is applied.
, when the short circuit current value 11e improves by about 8 inches, there is 21, and when the fill factor F, F improves by about 27 inches, there is n. The photoelectric conversion efficiency of the solar cell is dI, e+F,
It is well known that high values can be obtained when F is good, and when both Ile and F, F are good. Therefore, the effect of applying the ion accelerating voltage is significantly It was also found that these effects were brought about by an increase in silicon-hydrogen alloys. It is possible to confirm the change in the infrared absorption spectrum of It can be said that it is possible to recover.

実施例 3゜ p−m接金が形成され、かクアロイ処履工程を経て電極
が形成され九多結晶シリコン基板を用いて、イオン加速
電、圧を印加しながら水素プラズマ処理が行われえ。し
かる後、周知のととく反射防止膜を形成する工程を経て
太陽電池が作成された。
Example 3 A PM weld is formed, an electrode is formed through a quaalloy process, and a hydrogen plasma treatment is performed using a polycrystalline silicon substrate while applying an ion accelerating voltage and pressure. Thereafter, a solar cell was created through a well-known process of forming an anti-reflection film.

ただし、水嵩プラズマ熟思にかける手順は実施例1,2
に述べ九とはy同様に行い、処理時間のみ0分−5分と
変えた場合の太陽電池を種々作成した。電極が形成され
た多結晶シリコンを水素グツズi処理し九場合、実施例
1.2のごとく電極が形成されていない場合と比較して
、さらに特性が向上することが見い出された。これはア
ロイ処理工程の高温処理を受けない場合粒界に取り込ま
れ九水嵩の離脱が起こらないためである。ところで、水
嵩プラズマ処理時間を変えて得られた太陽電池の未熟理
に対する光電変換効率の向上率(V/η。)を第3図に
示す。処理時間(資)分の場合31.10分の場合32
及び5分の場合羽についてそれぞれ図に示すような結果
が得られ良が、同一向上率を期待する場合でも、概して
イオン加速電圧を増加させることによりてよシ短時間化
できることが見い出され九。このこと杜、電子ビーム誘
起電流(EBIC)像の粒界におけゐ起電流の回復に!
!する水素プラズマ地理時間が、イオン加速電圧を増加
することによって、よ〕短時間化できる仁とから裏付け
られた。
However, the procedure for contemplating the Mizutake plasma is in Examples 1 and 2.
A variety of solar cells were prepared in the same manner as described in 9 and y, except that the processing time was changed from 0 minutes to 5 minutes. It has been found that when polycrystalline silicon on which electrodes are formed is subjected to hydrogen gas treatment, the characteristics are further improved compared to the case where no electrodes are formed as in Example 1.2. This is because if it is not subjected to the high temperature treatment in the alloying process, it will be incorporated into the grain boundaries and no detachment will occur. By the way, FIG. 3 shows the improvement rate (V/η) of the photoelectric conversion efficiency with respect to the unfinished solar cells obtained by changing the water bulk plasma treatment time. 31 for processing time (equity) 32 for 10 minutes
In the case of ion acceleration and 5 minutes, the results shown in the figure were obtained for the blades, respectively, but even when the same improvement rate was expected, it was found that the time could generally be shortened by increasing the ion acceleration voltage9. This is true for the recovery of electromotive current at grain boundaries in electron beam induced current (EBIC) images!
! It was confirmed that the hydrogen plasma geological time can be significantly shortened by increasing the ion accelerating voltage.

以上実施例よシ説明したように、本発明は多結晶シリコ
ン太陽電池の水素プラズマ処理において負のイオン加速
電圧を基部に印加することにょシ該処理峙関の著しい短
縮化と、充電変換効率の従来以上の大幅な向上を可能と
するものである。
As explained above with reference to the embodiments, the present invention applies a negative ion accelerating voltage to the base in the hydrogen plasma treatment of polycrystalline silicon solar cells, significantly shortens the processing time, and improves the charge conversion efficiency. This enables a significant improvement over the conventional technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明する九めの、プラズマ放電装置の
模式図を示す。11はペルデ異ア、12はゲートパルプ
、13は排気系、14は基板、15は基板ホルダー、1
6はRFコイル、17は流量調製器、18はガス導入管
、10はイオン加速電源、人は基板加熱用電源、Bは高
周波電源である。 #I2図は本発明によって得られ光条結晶シリコン太陽
電池の水素プラズマ処理において負のイオン加速電圧v
8ccに対する短絡電流11e及び、曲線因子F、F、
を示す。21はI−向上する場合の試料群nはF、?、
が向上する試料群である。 第3図は本発明によって得られた多結晶クリコン太陽電
池の水素プラズマ処理において、イオン−加速電圧を印
加しない場合の光電変換効率ダ。に対する印加した場合
の効率η菖の向上率(ダ、々。)B−に対し処理時間を
変えた場合について示す。31は(9)分、32は10
分、おは5分の処理時間の場合をそれぞれ示す。 M1図    第2図 第 3 図
FIG. 1 shows a ninth schematic diagram of a plasma discharge device for explaining the present invention. Reference numeral 11 indicates Perde different, 12 indicates gate pulp, 13 indicates exhaust system, 14 indicates substrate, 15 indicates substrate holder, 1
6 is an RF coil, 17 is a flow regulator, 18 is a gas introduction tube, 10 is an ion accelerating power source, 1 is a substrate heating power source, and B is a high frequency power source. #I2 diagram shows the negative ion accelerating voltage v in hydrogen plasma treatment of striated silicon solar cells obtained by the present invention.
Short circuit current 11e for 8cc and fill factors F, F,
shows. 21 is I- The sample group n in the case of improvement is F, ? ,
This is a group of samples with improved performance. FIG. 3 shows the photoelectric conversion efficiency when no ion accelerating voltage is applied during hydrogen plasma treatment of the polycrystalline solar cell obtained according to the present invention. The improvement rate of the efficiency η when the voltage is applied to B- is shown for the case where the processing time is changed. 31 is (9) minutes, 32 is 10 minutes
5 minutes and 5 minutes respectively. M1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] p−*@合が形成され九多結晶シリコンの少くとも受光
両側lII画を水素プラズマ放電中にさらしかつ負のイ
オン加速電圧を皺多結晶シリーンに印加して処理するこ
とを畳黴とする多結晶シリコン太陽電池の製造方法。
A polycrystalline mold is produced by exposing at least the light-receiving sides of the polycrystalline silicon to a hydrogen plasma discharge and applying a negative ion accelerating voltage to the wrinkled polycrystalline silicon. Method for manufacturing crystalline silicon solar cells.
JP56122470A 1981-08-06 1981-08-06 Manufacture of polycrystal silicon solar cell Granted JPS5823487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56122470A JPS5823487A (en) 1981-08-06 1981-08-06 Manufacture of polycrystal silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56122470A JPS5823487A (en) 1981-08-06 1981-08-06 Manufacture of polycrystal silicon solar cell

Publications (2)

Publication Number Publication Date
JPS5823487A true JPS5823487A (en) 1983-02-12
JPS6244863B2 JPS6244863B2 (en) 1987-09-22

Family

ID=14836635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56122470A Granted JPS5823487A (en) 1981-08-06 1981-08-06 Manufacture of polycrystal silicon solar cell

Country Status (1)

Country Link
JP (1) JPS5823487A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160980A (en) * 1985-01-09 1986-07-21 Agency Of Ind Science & Technol Manufacture of solar cell
JPH02500397A (en) * 1987-07-07 1990-02-08 モービル・ソラー・エナージー・コーポレーション Method for manufacturing solar cells with antireflection coating
JP2009099924A (en) * 2007-10-17 2009-05-07 Ind Technol Res Inst Method of fast hydrogen passivation to solar cell made of crystalline silicon
JP2009130041A (en) * 2007-11-21 2009-06-11 Sharp Corp Photoelectric conversion element and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643775A (en) * 1979-09-18 1981-04-22 Seiko Epson Corp Production of solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643775A (en) * 1979-09-18 1981-04-22 Seiko Epson Corp Production of solar battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160980A (en) * 1985-01-09 1986-07-21 Agency Of Ind Science & Technol Manufacture of solar cell
JPH02500397A (en) * 1987-07-07 1990-02-08 モービル・ソラー・エナージー・コーポレーション Method for manufacturing solar cells with antireflection coating
JP2009099924A (en) * 2007-10-17 2009-05-07 Ind Technol Res Inst Method of fast hydrogen passivation to solar cell made of crystalline silicon
JP2009130041A (en) * 2007-11-21 2009-06-11 Sharp Corp Photoelectric conversion element and its manufacturing method

Also Published As

Publication number Publication date
JPS6244863B2 (en) 1987-09-22

Similar Documents

Publication Publication Date Title
AU721374B2 (en) Method and device for the deposit of at least one film of intrinsic microcrystalline or nanocrystalline hydrogenated silicon and photovoltaic cell obtained by this method
JP3152328B2 (en) Polycrystalline silicon device
EP1020931A1 (en) Amorphous silicon solar cell
JP2002343993A (en) Thin film polycrystalline solar battery and formation method therefor
AU2004201257A1 (en) Stacked Photovoltaic Device
US20110053351A1 (en) Solar Cell Defect Passivation Method
US4343830A (en) Method for improving the efficiency of solar cells having imperfections
Koga et al. Cluster-suppressed plasma chemical vapor deposition method for high quality hydrogenated amorphous silicon films
JPH0143449B2 (en)
JPS5823487A (en) Manufacture of polycrystal silicon solar cell
JPH06204536A (en) Manufacture of solar cell and sputtering apparatus therefor
JPH08506215A (en) Microwave excitation method for manufacturing high quality semiconductor materials
JPH0142125B2 (en)
JPH05166733A (en) Method and apparatus for forming non-single crystal silicon film
JPH0769790A (en) Thin film-preparing device
JPH0650780B2 (en) Solar cell and manufacturing method thereof
JP2005244037A (en) Manufacturing method of silicon film and manufacturing method of solar battery
CN112018217A (en) Preparation method of silicon heterojunction solar cell and solar cell
JP3065878B2 (en) Method of forming semiconductor thin film
CN112458543B (en) Surface treatment method of CZT radiation detection film material
JP3272681B2 (en) Solar cell manufacturing method
JP2001291882A (en) Method of manufacturing thin film
JP2004274006A (en) Photovoltaic device and its manufacturing method
JP2003158276A (en) Microcrystal silicon solar cell and its manufacturing method
JPS60239068A (en) Photovoltaic device