JPH0650780B2 - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof

Info

Publication number
JPH0650780B2
JPH0650780B2 JP63192013A JP19201388A JPH0650780B2 JP H0650780 B2 JPH0650780 B2 JP H0650780B2 JP 63192013 A JP63192013 A JP 63192013A JP 19201388 A JP19201388 A JP 19201388A JP H0650780 B2 JPH0650780 B2 JP H0650780B2
Authority
JP
Japan
Prior art keywords
solar cell
layer
window
film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63192013A
Other languages
Japanese (ja)
Other versions
JPH0242765A (en
Inventor
雅紀 大村
健治 荒木
達郎 宮里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP63192013A priority Critical patent/JPH0650780B2/en
Publication of JPH0242765A publication Critical patent/JPH0242765A/en
Publication of JPH0650780B2 publication Critical patent/JPH0650780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、シリコン系太陽電池とその製造方法に関
し、さらに詳しくは、pin型太陽電池の窓側層に用いた
微結晶シリコン薄膜の材質の改良と、その窓側層の製造
方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a silicon-based solar cell and a method for manufacturing the same, and more specifically, to an improvement in the material of a microcrystalline silicon thin film used for a window-side layer of a pin-type solar cell. And a method of manufacturing the window side layer.

[従来の技術] 従来、シリコン系太陽電池は、アモルファスシリコン太
陽電池(以後a-Si太陽電池という)を主流として開発が
進められており、その特性上の概説として下記刊行物に
開示されたものがある。
[Prior Art] Conventionally, silicon-based solar cells have been developed mainly in the form of amorphous silicon solar cells (hereinafter referred to as a-Si solar cells), and are disclosed in the following publications as an outline of their characteristics. There is.

電気学会:太陽電池調査専門委員会編;太陽電池ハンド
ブック;電気学会発行(昭和60年7月30日).p96 とくに、a-Si太陽電池のpin構造において、ヘテロ接合
セルで形成される代表的な太陽電池の構成を以下説明す
る。
The Institute of Electrical Engineers of Japan: Photovoltaic Cell Survey Special Committee Edition; Solar Cell Handbook; Published by The Institute of Electrical Engineers of Japan (July 30, 1985). p96 In particular, in the pin structure of an a-Si solar cell, the structure of a typical solar cell formed of heterojunction cells will be described below.

第3図はa-SiC:H(p型)/a-Si:H(i型)のヘテ
ロ接合セルを窓側層としたa-Si太陽電池の構造模式図で
ある。図において、1は光(hν)の窓を構成するガラ
ス基板で、2はガラス基板に形成されたITOで示される
透明導電膜、3はa-SiCからなるp型層(窓側層)、4
はa-Siで形成されるi型層、5はa-Siからなるn型層、
6はメタル(Me)で形成された電極である。この構成は
ガラス/ITO/pin/Meという符号で示されるもので、a-
SiC層3とa-Si層4とによってヘテロ接合を形成し、光
(hν)の変換効率の向上をはかっている。
FIG. 3 is a structural schematic diagram of an a-Si solar cell having a window-side layer of a-SiC: H (p type) / a-Si: H (i type) heterojunction cell. In the figure, 1 is a glass substrate forming a window of light (hν), 2 is a transparent conductive film shown by ITO formed on the glass substrate, 3 is a p-type layer (window side layer) made of a-SiC, 4
Is an i-type layer made of a-Si, 5 is an n-type layer made of a-Si,
Reference numeral 6 is an electrode made of metal (Me). This structure is indicated by the code glass / ITO / pin / Me.
A heterojunction is formed by the SiC layer 3 and the a-Si layer 4 to improve the conversion efficiency of light (hν).

第4図はa-Siの微結晶化層を窓側層に用いたヘテロ接合
太陽電池の構成模式図である。なお、この微結晶化層は
a-Si中に微結晶Siが点在して含まれた層で、一般にμc
−Siといわれているものである。図において、1,2,
4及び第3図の従来例と同一又は相当部分の符号と同一
符号で示し、説明を省略する。
FIG. 4 is a schematic configuration diagram of a heterojunction solar cell in which a microcrystalline layer of a-Si is used as a window side layer. The microcrystallized layer is
A layer containing microcrystalline Si scattered in a-Si, generally μc
-It is called Si. In the figure, 1, 2,
4 and FIG. 3 are shown by the same reference numerals as those of the conventional example of FIG. 4 and FIG.

7は窓側層を形成するn型の微結晶化シリコン層であ
り、以下n(μc−Si)層と称する。そして、8はp型
のa-Si層であり、第4図の構成は、ガラス/ITO/n
(μc−Si)ip/Meで表わされ、正確にはnip構造であ
る。この場合、n(μc−Si)層7とi型のa-Si層4に
よってヘテロ接合を形成し、光電変換効率を向上してい
る。
Reference numeral 7 denotes an n-type microcrystallized silicon layer forming a window side layer, which is hereinafter referred to as an n (μc-Si) layer. 8 is a p-type a-Si layer, and the structure of FIG. 4 is glass / ITO / n.
It is represented by (μc-Si) ip / Me, and is precisely a nip structure. In this case, the n (μc-Si) layer 7 and the i-type a-Si layer 4 form a heterojunction to improve the photoelectric conversion efficiency.

この光電変換効率の向上については、とくに第4図の従
来例に示したヘテロ接合太陽電池においては、通常のa-
Si太陽電池に比べて開放電圧及び光電変換効率が大幅に
改善されるということが報告されている、このn(μc
−Si)膜、すなわちn型の微結晶化a-Si膜は一般のa-S
i:H膜に比べて吸収係数が小さく、光電導電率が高い
ことに起因するものと考えられている。
Regarding the improvement of the photoelectric conversion efficiency, especially in the heterojunction solar cell shown in the conventional example of FIG.
It has been reported that the open-circuit voltage and photoelectric conversion efficiency are significantly improved compared to Si solar cells.
-Si) film, that is, an n-type microcrystallized a-Si film is a general aS
It is considered that the absorption coefficient is smaller than that of the i: H film and the photoelectric conductivity is high.

[発明が解決しようとする課題] しかしながら、上記のような従来のヘテロ接合型a-Si太
陽電池、とくに従来法によって作成されたμc−Si膜
は、a-Si膜中に微結晶が点在するにすぎない形態を有す
るものであるから、その光電変換効率は7.8%程度であ
り、上記文献にみられる他の方法による値(〜10%)に
比べて満足すべき値といえない。したがって、太陽電池
を形成するSi膜としてのとくにμc−Si膜の物性の向上
が要望されていた。
[Problems to be Solved by the Invention] However, in the conventional heterojunction a-Si solar cell as described above, particularly in the μc-Si film formed by the conventional method, microcrystals are scattered in the a-Si film. The photoelectric conversion efficiency is about 7.8%, which is not a satisfactory value compared with the values (-10%) obtained by the other methods found in the above literature. Therefore, it has been demanded to improve the physical properties of the μc-Si film, especially as the Si film forming the solar cell.

この発明はこのような要請に応ずるためになされたもの
で、μc−Si膜の中の微結晶体の体積率を増大させると
いうように膜体の物性を制御して光電変換効率が向上す
る太陽電池の製造方法とその電池構成を提供することを
目的とするものである。
The present invention has been made in response to such a demand, and a solar cell in which the photoelectric conversion efficiency is improved by controlling the physical properties of the film body such as increasing the volume ratio of the microcrystalline body in the μc-Si film. It is an object to provide a battery manufacturing method and a battery configuration thereof.

[課題を解決するための手段] この発明に係るpin型太陽電池は、p型層及びn型層の
うちのいずれか一つの層で構成する窓側層を実質的に平
均粒径が100Å以下の微結晶Siのみの薄膜とするもので
ある。
[Means for Solving the Problems] In a pin-type solar cell according to the present invention, a window-side layer composed of any one of a p-type layer and an n-type layer has an average particle diameter of substantially 100 Å or less. It is a thin film of only microcrystalline Si.

また、この発明に係るpin型太陽電池の製造方法は、p
型層及びn型層のうちのいずれか一つの層を実質的に平
均粒径が100Å以下の微結晶Siのみからなる微結晶Si薄
膜で構成された窓側層として形成するもので、窓を構成
するガラス基板上に透明導電膜を形成したのち、上記ガ
ラス基板の温度を0℃以下に保持しながら、水素プラズ
マによるSiのスパッタリングを行って透明導電膜上にSi
を堆積することにより、実質的に100%に近い体積率を
有する微結晶シリコンのみの薄膜からなる窓側層を形成
するものである。
Further, the method for manufacturing a pin-type solar cell according to the present invention is
One of the n-type layer and the n-type layer is formed as a window-side layer composed of a microcrystalline Si thin film consisting essentially of microcrystalline Si having an average grain size of 100Å or less After forming the transparent conductive film on the glass substrate, the temperature of the glass substrate is maintained at 0 ° C. or lower, and the Si is sputtered by hydrogen plasma to form Si on the transparent conductive film.
Is deposited to form a window-side layer composed of a thin film of only microcrystalline silicon having a volume ratio substantially close to 100%.

なお、窓側層の極性を左右するドーピングは、スパッタ
リング中に無機水素化物を導入することで達成され、例
えばn型微結晶Si薄膜の形成にはpH(ホスフィ
ン)、p型微結晶Si薄膜の形成にはB(ジボラ
ン)を導入する。
The doping that affects the polarity of the window-side layer is achieved by introducing an inorganic hydride during sputtering. For example, in forming an n-type microcrystalline Si thin film, pH 3 (phosphine), a p-type microcrystalline Si thin film are used. B 2 H 6 (diborane) is introduced for formation.

[作用] この発明の太陽電池の製造方法においては、pin構造の
窓側層を形成する場合、ガラス基板上に形成された透明
導電膜上にガラス基板温度を0℃以下とし、水素プラズ
マのスパッタリングによりSiを堆積するから、平均粒径
が100Å以下で、かつ100%近くの体積率を有するSi微結
晶体からなるSiの微結晶膜が得られる。
[Operation] In the method for manufacturing a solar cell of the present invention, when the window side layer having a pin structure is formed, the temperature of the glass substrate is set to 0 ° C. or lower on the transparent conductive film formed on the glass substrate, and hydrogen plasma sputtering is performed. Since Si is deposited, a Si microcrystalline film composed of a Si microcrystalline body having an average grain size of 100Å or less and a volume ratio of nearly 100% can be obtained.

そして、この発明の製造方法で得られた微結晶Si膜はと
くに平均結晶粒径が100Å以下のときはバンドギャップ
幅が2.0eV位に大きくなる。さらに、この微結晶Si薄膜
は微結晶体の内部はSiであり、外部はシリコン水素化物
となって形成されており、各微結晶体はファンデルワー
ルス力でつながっているため、強固な薄膜が形成され
る。
The band gap width of the microcrystalline Si film obtained by the manufacturing method of the present invention becomes as large as 2.0 eV especially when the average crystal grain size is 100 Å or less. Furthermore, this microcrystalline Si thin film is formed with Si inside the microcrystalline body and silicon hydride outside, and since each microcrystalline body is connected by Van der Waals force, a strong thin film is formed. It is formed.

このような微結晶Si薄膜を窓側層として形成されたヘテ
ロ接合構造の太陽電池は大きな光電変換効率特性を有す
る。
A solar cell having a heterojunction structure in which such a microcrystalline Si thin film is formed as a window side layer has large photoelectric conversion efficiency characteristics.

[実施例] 実施例1; 第1図はこの発明の一実施例を示すシリコン系太陽電池
の構造を説明する模式図である。
Example 1 Example 1 FIG. 1 is a schematic view for explaining the structure of a silicon-based solar cell showing an example of the present invention.

図において、11は光(hν)の窓を構成するガラス基板
であり、12はガラス基板11の表面に形成されたITO/SnO2
の2層膜からなる透明導電膜で、窓側の電極を形成する
ものである。13は透明導電膜12上に形成され、100%に
近い体積率をもち、かつ平均粒径が100Å(オングスト
ローム)以下の微結晶Si粒子からなるn型微結晶Si薄膜
(n型の窓側層)である。14はi型のa-Si:H薄膜(i
型層)、15はp型のa-Si:H薄膜(p型層)である。n
型微結晶Si薄膜13,i型a-Si:H薄膜14及びp型a-Si薄
膜15によってヘテロ接合型太陽電池のnip構造を構成
し、第1図の実施例に示す全体で太陽電池を形成してい
る。
In the figure, 11 is a glass substrate forming a window of light (hν), and 12 is ITO / SnO 2 formed on the surface of the glass substrate 11.
The window-side electrode is formed of a transparent conductive film composed of the above two-layer film. 13 is an n-type microcrystalline Si thin film (n-type window side layer) formed on the transparent conductive film 12 and having a volume ratio close to 100% and an average grain size of 100Å (angstrom) or less Is. 14 is an i-type a-Si: H thin film (i
15) is a p-type a-Si: H thin film (p-type layer). n
Type microcrystalline Si thin film 13, i-type a-Si: H thin film 14 and p-type a-Si thin film 15 constitute a nip structure of a heterojunction solar cell, and the solar cell is formed as a whole in the embodiment shown in FIG. Is forming.

この太陽電池の動作については、従来のa-Si型太陽電池
の動作と同様であり、周知であるので説明は省略する。
The operation of this solar cell is the same as the operation of a conventional a-Si solar cell, and is well known, so description thereof will be omitted.

第1図の実施例の太陽電池の性能を試験した結果、開放
電圧は0.95Vと高い値を示し、光電変換効率は13.0%と
大幅に増大し、ほぼ満足される結果が得られた。
As a result of testing the performance of the solar cell of the example of FIG. 1, the open circuit voltage was as high as 0.95 V, and the photoelectric conversion efficiency was significantly increased to 13.0%, and almost satisfactory results were obtained.

実施例2; この発明による太陽電池の上記窓側層の形成はプラズマ
スパッタリング装置を用いて行い、その他の部分は通常
の方法によって行った。以下、はじめに、プラズマスパ
ッタリング装置の構成について説明し、ついで製造方法
について説明する。
Example 2 The formation of the window side layer of the solar cell according to the present invention was performed using a plasma sputtering apparatus, and the other portions were performed by a usual method. Hereinafter, first, the configuration of the plasma sputtering apparatus will be described, and then the manufacturing method will be described.

第2図は第1図の実施例の太陽電池を例として、太陽電
池の窓側層13の製造方法に用いたプラズマスパッタリン
グ装置の模式断面図である。図において、21は真空容器
で、図示しない真空装置に連結された排気孔31と真空容
器21の雰囲気を調整するガス導入孔22が設けられてい
る。27,29はプラズマ放電用の電極で、電極27には永久
磁石26が組込まれ、電極27の上面に半導体材料(この場
合Si)からなるターゲット25が設置されており、電極29
には太陽電池のガラス基板28が設置される。電極29には
図示しない冷却装置に連結された冷却媒体の出入孔30が
設けられている。23は電極27,29に電源を供給する高周
波電源である。なお、24は形成された水素プラズマであ
る。
FIG. 2 is a schematic cross-sectional view of the plasma sputtering apparatus used in the method for manufacturing the window-side layer 13 of the solar cell, taking the solar cell of the embodiment of FIG. 1 as an example. In the figure, reference numeral 21 denotes a vacuum container, which is provided with an exhaust hole 31 connected to a vacuum device (not shown) and a gas introduction hole 22 for adjusting the atmosphere of the vacuum container 21. Reference numerals 27 and 29 denote electrodes for plasma discharge. A permanent magnet 26 is incorporated in the electrode 27, and a target 25 made of a semiconductor material (Si in this case) is placed on the upper surface of the electrode 27.
A glass substrate 28 of a solar cell is installed in the. The electrode 29 is provided with a cooling medium inlet / outlet hole 30 connected to a cooling device (not shown). Reference numeral 23 is a high frequency power supply for supplying power to the electrodes 27 and 29. In addition, 24 is the formed hydrogen plasma.

下表にこの実施例において上記窓側層13を形成したとき
の具体的な動作条件を挙げる。
The following table shows specific operating conditions when the window side layer 13 is formed in this embodiment.

以下、第2図のプラズマスパッタリング装置による窓側
層13の形成方法を主として、この発明による太陽電池の
製造方法を説明する。
Hereinafter, the method of manufacturing the solar cell according to the present invention will be described, mainly about the method of forming the window side layer 13 by the plasma sputtering apparatus of FIG.

まず、ガラス基板11(第2図では28に相当)を真空容器
21内に設置する前に、ガラス基板11上にITO/SnO2(ITO
はInとTiの酸化物)の2層膜からなる透明導電膜12を形
成する。この状態のガラス基板をガラス基板28として電
極29上に設置し、ターゲット25と対向させる。
First, place the glass substrate 11 (corresponding to 28 in FIG. 2) in a vacuum container.
Before installing in the 21, the ITO / SnO 2 (ITO
Forms a transparent conductive film 12 composed of a two-layer film of In and Ti oxide. The glass substrate in this state is set as the glass substrate 28 on the electrode 29 and is opposed to the target 25.

ついで、窓側層13を構成するn型微結晶Si膜を形成する
のであるが、その手順はガス導入孔22より水素(H
ガスと所定量のpHガスを導入し、真空容器21内の雰
囲気として0.5Torrのガス圧を形成したのち、電極27,29
に高周波電源23からの電圧を印加する。このときプラズ
マ24が形成されプラズマ24中の水素イオンによりターゲ
ット25を構成するSiをスパッタリングし、液体窒素を冷
却媒体の出入口孔30からの導入により液体窒素温度に冷
却されたガラス基板28上にSiの薄膜を形成して窓側層13
を形成する。この場合、冷却媒体は0℃以下に冷却され
た水であってもよい。
Next, an n-type microcrystalline Si film forming the window side layer 13 is formed. The procedure is as follows: hydrogen (H 2 )
After introducing a gas and a predetermined amount of pH 3 gas to form a gas pressure of 0.5 Torr as an atmosphere in the vacuum container 21, the electrodes 27, 29 are formed.
The voltage from the high frequency power supply 23 is applied to the. At this time, plasma 24 is formed and hydrogen ions in the plasma 24 sputter Si constituting the target 25, and liquid nitrogen is introduced onto the glass substrate 28 cooled to the liquid nitrogen temperature by introducing the cooling medium from the inlet / outlet hole 30 of the cooling medium. Window side layer 13
To form. In this case, the cooling medium may be water cooled to 0 ° C or lower.

形成されたSi薄膜、すなわち窓側層13を観測したとこ
ろ、平均粒径が100Å以下のSi微結晶がほぼ連続的に結
合して形成されていることがわかった。
When the formed Si thin film, that is, the window-side layer 13 was observed, it was found that Si microcrystals having an average particle size of 100 Å or less were formed almost continuously.

ついで、この窓側層13上に通常の方法によりアモルファ
スのi型層であるi型a-Si:H膜14を形成し、さらにア
モルファスのp型層であるp型a-Si:H膜15を順次形成
してnip構造を形成した。
Then, an i-type a-Si: H film 14 which is an amorphous i-type layer is formed on the window-side layer 13 by a usual method, and a p-type a-Si: H film 15 which is an amorphous p-type layer is further formed. The layers were sequentially formed to form a nip structure.

最後に通常の真空蒸着法により金属(Me)を蒸着して電
極16を形成することにより、この発明による太陽電池の
作成を完了する。
Finally, metal (Me) is vapor-deposited by an ordinary vacuum vapor deposition method to form the electrode 16, thereby completing the production of the solar cell according to the present invention.

なお、上記実施例1,2においては、太陽電池のSi層を
nip構造とし、n型微結晶Si膜を窓側層とする場合につ
いて説明したが、太陽電池のSi層をpin構造とし、p型
微結晶Si膜を窓側層とすることも太陽電池の構成上差支
えないものである。この場合、nip構造は一般に称され
るpin構造の中に含まれるものである。また、ガラス基
板の冷却媒体としては0℃以下であればよいが、実施例
の液体窒素のほかに低温下限は液体ヘリウム温度まで実
施可能であり、微結晶媒体の形成には低温ほどよいこと
が確認されている。
In Examples 1 and 2 above, the Si layer of the solar cell was
Although the case where the nip structure is used and the n-type microcrystalline Si film is used as the window-side layer has been described, it is also a structural difference of the solar cell that the Si layer of the solar cell has the pin structure and the p-type microcrystalline Si film is the window-side layer. There is no such thing. In this case, the nip structure is included in the commonly called pin structure. Further, the cooling medium for the glass substrate may be 0 ° C. or lower, but in addition to the liquid nitrogen of the embodiment, the lower limit of the low temperature can be implemented up to the liquid helium temperature, and the lower temperature is better for forming the microcrystalline medium. It has been confirmed.

[発明の効果] 以上説明したようにこの発明による太陽電池は、微結晶
Si膜を窓側層として有するので、通常の製法では作製さ
れた微結晶化a-Si膜(μc−Si)よりバンドギャップが
広くなり、アモルファスSi太陽電池の開放電圧が増大
し、かつ光電変換効率の高性能な太陽電池の開発が可能
である。
[Effects of the Invention] As described above, the solar cell of the present invention is
Since it has a Si film as the window-side layer, it has a wider bandgap than the microcrystallized a-Si film (μc-Si) produced by the usual manufacturing method, increasing the open circuit voltage of the amorphous Si solar cell and increasing the photoelectric conversion efficiency. It is possible to develop high performance solar cells.

また、この発明による太陽電池の製造方法は、Si膜の窓
側層形成において、基板温度を0℃以下に保持した状態
で水素プラズマによるスパッタリングを行って、ガラス
基板上にSi膜を形成するので、窓側層として100%に近
いSi微結晶からなる微結晶Si膜が形成される。このため
上記のような高性能太陽電池の供給に対する寄与が大で
ある。
Further, in the method for manufacturing a solar cell according to the present invention, in forming the window-side layer of the Si film, sputtering with hydrogen plasma is performed while the substrate temperature is kept at 0 ° C. or lower to form the Si film on the glass substrate. As the window side layer, a microcrystalline Si film made of Si microcrystals close to 100% is formed. For this reason, it greatly contributes to the supply of the high-performance solar cell as described above.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例を示す太陽電池の構造模式
図、第2図はこの発明の太陽電池の製造工程中に用いた
プラズマスパッタリング装置の模式断面図、第3図は従
来のa-Si太陽電池のヘテロ接合セルの模式図、第4図は
従来のa-Si太陽電池に微結晶化Si膜を用いたヘテロ接合
セルの模式図である。 図において、11はガラス基板、12は透明導電膜、13はn
型微結晶Si膜、14はi型のa-Si膜、15はp型のa-Si膜、
16は電極、21は真空容器、22はガス導入孔、23は高周波
電源、24は水素プラズマ、25はターゲット、26は永久磁
石、27は電極、28はガラス基板、29は電極、30は冷却媒
体の出入孔、31は排気孔である。
FIG. 1 is a schematic view of the structure of a solar cell showing an embodiment of the present invention, FIG. 2 is a schematic sectional view of a plasma sputtering apparatus used during the manufacturing process of the solar cell of the present invention, and FIG. Fig. 4 is a schematic view of a heterojunction cell of a -Si solar cell, and Fig. 4 is a schematic view of a heterojunction cell using a microcrystallized Si film in a conventional a-Si solar cell. In the figure, 11 is a glass substrate, 12 is a transparent conductive film, and 13 is n.
-Type microcrystalline Si film, 14 is i-type a-Si film, 15 is p-type a-Si film,
16 is an electrode, 21 is a vacuum container, 22 is a gas introduction hole, 23 is a high frequency power supply, 24 is hydrogen plasma, 25 is a target, 26 is a permanent magnet, 27 is an electrode, 28 is a glass substrate, 29 is an electrode, 30 is cooling A medium inlet / outlet hole, and an exhaust hole 31.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−117687(JP,A) 特開 昭61−67280(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-60-117687 (JP, A) JP-A-61-67280 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】p型層,i型層及びn型層のpin構造を有
する太陽電池において、 上記p型層及びn型層のうちのいずれか1つの層を窓側
層とし、この窓側層が実質的に平均粒径100Å以下の微
結晶シリコンのみからなる微結晶シリコン膜であること
を特徴とする太陽電池。
1. A solar cell having a pin structure of a p-type layer, an i-type layer and an n-type layer, wherein any one of the p-type layer and the n-type layer is a window side layer, and the window side layer is A solar cell, which is a microcrystalline silicon film consisting essentially of microcrystalline silicon having an average grain size of 100Å or less.
【請求項2】p型層,i型層及びn型層のpin構造を有
し、上記p型層及びn型層のうちのいずれか1つの層を
実質的に平均粒径100Å以下の微結晶シリコンのみから
なる微結晶シリコン膜で構成された窓側層とする太陽電
池の製造方法において、 窓を構成するガラス基板上に透明導電膜を形成したの
ち、上記ガラス基板温度を0℃以下に保ち、水素プラズ
マによるスパッタリングを行って上記透明導電膜上にシ
リコンを堆積して上記窓側層を形成することを特徴とす
る太陽電池の製造方法。
2. A pin structure of a p-type layer, an i-type layer and an n-type layer, wherein any one of the p-type layer and the n-type layer has a fine grain size of substantially 100 Å or less. In a method for manufacturing a solar cell having a window-side layer composed of a microcrystalline silicon film composed only of crystalline silicon, a transparent conductive film is formed on a glass substrate forming a window, and then the glass substrate temperature is kept at 0 ° C. or lower. A method of manufacturing a solar cell, comprising: forming a window-side layer by depositing silicon on the transparent conductive film by performing sputtering with hydrogen plasma.
JP63192013A 1988-08-02 1988-08-02 Solar cell and manufacturing method thereof Expired - Lifetime JPH0650780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63192013A JPH0650780B2 (en) 1988-08-02 1988-08-02 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63192013A JPH0650780B2 (en) 1988-08-02 1988-08-02 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0242765A JPH0242765A (en) 1990-02-13
JPH0650780B2 true JPH0650780B2 (en) 1994-06-29

Family

ID=16284153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63192013A Expired - Lifetime JPH0650780B2 (en) 1988-08-02 1988-08-02 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0650780B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210050A (en) 1990-10-15 1993-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a semiconductor film
US6362097B1 (en) * 1998-07-14 2002-03-26 Applied Komatsu Technlology, Inc. Collimated sputtering of semiconductor and other films
JP2004335733A (en) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology Thin film solar cell
JP2004335734A (en) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology Thin film solar cell
JP2004356163A (en) * 2003-05-27 2004-12-16 Toyota Central Res & Dev Lab Inc Silicon-based thin film, method of manufacturing the same and photoelectric conversion element
JP2009076743A (en) * 2007-09-21 2009-04-09 Nissin Electric Co Ltd Photovoltaic element, and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187971A (en) * 1981-05-15 1982-11-18 Agency Of Ind Science & Technol Solar cell

Also Published As

Publication number Publication date
JPH0242765A (en) 1990-02-13

Similar Documents

Publication Publication Date Title
JP2951146B2 (en) Photovoltaic devices
JP2000252484A (en) Manufacture of amorphous silicon thin-film photoelectric conversion device
US6979589B2 (en) Silicon-based thin-film photoelectric conversion device and method of manufacturing thereof
JPH07297421A (en) Manufacture of thin film semiconductor solar battery
US4339470A (en) Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer
JP2009038064A (en) Photoelectric conversion device, and its manufacturing method
JPH0650780B2 (en) Solar cell and manufacturing method thereof
JPH05299677A (en) Solar battery and its manufacture
JP2000174310A (en) Manufacture of silicon-based thin-film photoelectric conversion device
JP3792376B2 (en) Silicon-based thin film photoelectric conversion device
AU669221B2 (en) Photoelectrical conversion device and generating system using the same
JP2000183377A (en) Manufacture of silicon thin-film optoelectric conversion device
US4680607A (en) Photovoltaic cell
JP2000243992A (en) Manufacture of silicon group thin-film photoelectric converter
TW201201396A (en) Method for manufacturing a solar panel
JP2001345463A (en) Photovoltaic device and its producing method
JPS6132416A (en) Manufacture of semiconductor device
JPS62209871A (en) Manufacture of photovoltaic device
JP3746607B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP3250575B2 (en) Photovoltaic element, method for manufacturing the same, and power generation system
JP3753528B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
CN117253926A (en) Crystalline silicon heterojunction double-sided solar cell with synergistic effect of chemical passivation and field effect passivation and preparation method thereof
JP3061511B2 (en) Photovoltaic element, method of manufacturing the same, and power generation system using the same
JP2000252493A (en) Manufacture of silicon thin-film photoelectric conversion device
JPH03200374A (en) Manufacture of solar cell