JP2004335733A - Thin film solar cell - Google Patents

Thin film solar cell Download PDF

Info

Publication number
JP2004335733A
JP2004335733A JP2003129423A JP2003129423A JP2004335733A JP 2004335733 A JP2004335733 A JP 2004335733A JP 2003129423 A JP2003129423 A JP 2003129423A JP 2003129423 A JP2003129423 A JP 2003129423A JP 2004335733 A JP2004335733 A JP 2004335733A
Authority
JP
Japan
Prior art keywords
type
thin film
solar cell
film
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003129423A
Other languages
Japanese (ja)
Inventor
Michio Kondo
道雄 近藤
Manabu Ito
学 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toppan Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Toppan Printing Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003129423A priority Critical patent/JP2004335733A/en
Publication of JP2004335733A publication Critical patent/JP2004335733A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon based thin film solar cell in which conversion efficiency is enhanced. <P>SOLUTION: The thin film solar cell has such a structure as one to ten layers of a laminate 10 consisting of a p-type microcrystal thin film 3 principally comprising silicon or germanium, an i-type microcrystal thin film 7 having a band gap larger than that of the p-type microcrystal thin film 3, and an i-type amorphous ultrathin film 8 are inserted at the junction interface of the p-type microcrystal thin film 3 and an i-type microcrystal thin film 4 of at least one pin junction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン系薄膜太陽電池に係り、特に非単結晶素材を含んだ太陽電池に関する。
【0002】
【従来の技術】
将来の需給が懸念され、かつ地球温暖化現象の原因となる二酸化炭素排出の問題がある石油などの化石燃料の代替エネルギー源として太陽電池が注目されている。この太陽電池は、光エネルギーを電力に変換する光電変換層に半導体であるpn接合を用いており、このpn接合を構成する半導体として一般的にはシリコンが最もよく用いられている。シリコンとしては光電変換効率の点から単結晶シリコンを用いることが好ましいが、単結晶シリコンは原料供給や大面積化、低コスト化などの問題がある。
【0003】
一方、大面積化および低コスト化を実現するのに有利な材料としてアモルファスシリコンや微結晶シリコンを光電変換層とした薄膜太陽電池も実用化されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特公昭53−37718。
【0005】
【発明が解決しようとする課題】
ところが、上述したアモルファスシリコンや微結晶シリコンを光電変換層とした薄膜太陽電池では、太陽光から電気への変換効率の低さが太陽電池普及への最大の問題となっている。
【0006】
この発明は上記事情に着目してなされたもので、その目的とするところは、シリコン系薄膜太陽電池の変換効率を高めた薄膜太陽電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明はかかる課題を解決するものであり、請求項1の発明は、シリコンもしくはゲルマニウムを主成分とするp型半導体層、実質的に真性なi型半導体層、n型半導体層を積層したpin接合を少なくとも一つ有する薄膜太陽電池であって、少なくとも一つのpin接合のp型半導体層およびi型半導体層の接合界面において、シリコンもしくはゲルマニウムを主成分とする該i型半導体超薄膜と該i型薄膜よりもバンドギャップの大きいi型半導体超薄膜からなる積層体が少なくとも1層以上10層以下挿入されていることを特徴とする薄膜太陽電池である。
【0008】
したがって請求項1の発明によれば、少なくとも一つのpin接合のp型半導体層およびi型半導体層の接合界面において、シリコンもしくはゲルマニウムを主成分とする該i型半導体超薄膜と該i型薄膜よりもバンドギャップの大きいi型半導体超薄膜からなる積層体が少なくとも1層以上10層以下挿入されている。このため、積層体が薄膜Si系太陽電池のpi界面に挿入されることでリーク電流が減少し、それに伴い太陽電池素子の曲線因子や開放電圧が上昇し、高い変換効率を得ることができる。
【0009】
また請求項2の発明は、実質的に真性な該i型半導体層よりもバンドギャップの大きいi型半導体超薄膜の膜厚が5Å以上100Å以下であることを特徴とする薄膜太陽電池である。
【0010】
したがって請求項2の発明によれば、実質的に真性な該i型半導体層よりもバンドギャップの大きいi型半導体超薄膜の膜厚が5Å以上100Å以下である。このため、請求項1の効果をさらに高めることができる。
【0011】
【発明の実施の形態】
図1は、この発明に係わる太陽電池の実施形態の構成を示す断面概略図である。本実施形態の特徴としては、薄膜シリコン系pin型の太陽電池において、p型半導体層およびi型半導体層の界面において、該i型半導体層と該i層よりもバンドギャップの大きい超薄膜が交互に積層された積層体が複数挿入された構成をとることを特徴とする。
【0012】
また、本発明の実施形態のシリコンもしくはゲルマニウムを主成分とする材料の作製方法としては、プラズマCVD法、光CVD法、熱CVD法、Hot−wire CVD法のうち何れかを任意に組み合わせた方法によって好適に作製される。
【0013】
また本発明の太陽電池においては、基材は絶縁材料、導電材料のどちらであっても構わないし、また可撓性、非可撓性のどちらでも可能である。また、本実施形態の薄膜太陽電池においては、pin型(スーパーストレートタイプ)太陽電池、nip型(サブストレートタイプ)太陽電池のどちらの構成をとっても構わないし、いわゆるタンデム型、トリプル型太陽電池のように素子を複数個積層しても構わない。
【0014】
さらに、請求項1に記載した実質的に真性な該i型半導体層よりもバンドギャップの大きいi型半導体超薄膜は、アモルファスシリコン、アモルファスシリコンゲルマニウム、アモルファスシリコンカーバイド、アモルファスシリコンオキサイド、アモルファスシリコンナイトライド、微結晶シリコン、微結晶シリコンカーバイド等を挙げることができるがこれらに限定されるものではない。
【0015】
ここで、図面を参照して本発明の実施形態に係る薄膜太陽電池を具体的に説明する。ただし、本発明はこれらの図面に限定されるものではない。図1〜図4に一例として本発明の薄膜太陽電池の断面概略図を示した。
【0016】
図1で示した薄膜太陽電池の構成の例では、透明性基材1に透明導電膜2、シリコンもしくはゲルナニウムを主成分とするp型微結晶薄膜3を形成し、その上に本発明のi型微結晶超薄膜7、i型非晶質超薄膜8からなる積層体10を形成し、さらにi型微結晶薄膜4、n型薄膜5を作製し、続いて裏面金属電極6を積層したものである。
【0017】
図2で示した薄膜太陽電池の構成の例では、透明性基材1に裏面金属電極6、n型薄膜5、i型微結晶薄膜4を形成し、その上に本発明のi型非晶質超薄膜8、i型微結晶超薄膜7からなる積層体10を形成し、さらにp型微結晶薄膜3を作製し、最後に透明導電膜2を積層したものである。
【0018】
図3で示した薄膜太陽電池の構成の例では、透明性基材1に透明導電膜2、シリコンもしくはゲルマニウムを主成分とするp型微結晶薄膜3を形成し、その上に本発明のi型微結晶超薄膜7、i型非晶質超薄膜8からなる積層体10を3層形成し、さらにi型微結晶薄膜4、n型薄膜5を作製し、続いて裏面金属電極6を積層したものである。
【0019】
図4で示した薄膜太陽電池の構成の例では、透明性基材1に裏面金属電極6、n型薄膜5、i型微結晶薄膜4を形成し、その上に本発明のi型非晶質超薄膜8、i型微結晶超薄膜7からなる積層体10を3層形成し、さらにp型微結晶薄膜3を作製し、最後に透明導電膜2を積層したものである。また図2、図4の基材は光を透過してもしなくても構わない。
【0020】
さらに、請求項1記載の積層体10は、積層体10を1層以上10層以下として挿入されることで効率が最大となる。このましくは1層以上3層以下である。10層を越えて挿入されると電流が大幅に減少し、結果的に太陽電池の効率は減少する。また、積層体10中の非結晶超薄膜の膜厚は5Å以上100Å以下、好ましくは5Å以上20Å以下であることが必要である。5Åよりも薄いと効果が出ず、100Å以上になると大幅に電流が減少し太陽電池の効率は減少する。
【0021】
以下に、実際の作成手順に従って、さらに本発明に係る一実施形態について説明する。
【0022】
[実施例1]
図1に示すように、図示しないガラス基材上に、例えばスパッタ法で図示しないAgを例えば基材温度50℃、厚さ300nm形成し、その上にAlをドープしたZnO薄膜(裏面金属電極6)を例えば基材温度140℃、厚さ10nm形成する。その上に例えば厚さ40nmの微結晶n型ドープシリコン層(n型薄膜5)を例えば、プラズマCVD法で形成する。このときの作製条件は、例えばSiH流量を3.5SCCM、PH/H混合ガス(PH濃度1000ppm)の流量28SCCM、H流量を472SCCM、動作圧力1.5Torr、投入電力は20Wである。
【0023】
その上にi型微結晶層(i型微結晶薄膜4)を1μm形成する。このときの作成条件は、例えば、SiH流量10SCCM、H流量400SCCM、動作圧力1.5Torr、投入電力は20Wである。しかるのちにi型アモルファスシリコン層(i型非晶質超薄膜8)を20Å形成する。このときの作成条件としては、例えば、SiH流量20SCCM、H流量を100SCCM、動作圧力1.0Torr、投入電力10Wである。さらに、i型微結晶シリコン層(i型微結晶超薄膜7)を20nm形成する。このときの作成条件としては、例えば、SiH流量を10SCCM、H流量を400SCCM、動作圧力1.5Torr、投入電力は20Wとする。これらの、i型微結晶超薄膜7およびi型非晶質超薄膜8を積層体10とする。
【0024】
さらに、p型微結晶シリコン層(p型微結晶薄膜3)を35nm形成する。このときの作成条件としては、例えば、SiH流量3.5SCCM、B/H混合ガス(B濃度5000ppm)流量1SCCM、H流量630SCCM、動作圧力1.5Torrとする。最後に前面電極(透明導電膜2)として、例えばスパッタ法でITO(Indium Tin Oxide)を200nm形成し、さらにAgの櫛形電極を例えばスパッタ法で作製する。
【0025】
[実施例2]
次に、実施例2として、図3に示すように、図示しないガラス基材上に、例えばスパッタ法で図示しないAgを例えば基材温度50℃、厚さ300nm形成し、その上にAlをドープしたZnO薄膜(裏面金属電極6)を例えば基材温度140℃、厚さ10nm形成する。その上に例えば厚さ40nmの微結晶n型ドープシリコン層(n型薄膜5)を例えばプラズマCVD法で形成する。このときの作製条件は、例えば、SiH流量を3.5SCCM、PH/H混合ガス(PH濃度1000ppm)の流量28SCCM、H流量を472SCCM、動作圧力1.5Torr、投入電力は20Wとする。その上に、i型微結晶層(i型微結晶薄膜4)を1μm形成する。このときの作成条件は、例えば、SiH流量10SCCM、H流量400SCCM、動作圧力1.5Torr、投入電力は20Wとする。
【0026】
しかるのちに、i型アモルファスシリコン層(i型非晶質超薄膜8)[作成条件:SiH流量20SCCM、H流量を100SCCM、動作圧力1.0Torr、投入電力10W]20Åと、i型微結晶シリコン層(i型微結晶超薄膜7)[作成条件:SiH流量を10SCCM、H流量を400SCCM、動作圧力1.5Torr、投入電力は20W]20nmとからなる積層体10を3層形成する。
【0027】
さらに、p型微結晶シリコン層(p型微結晶薄膜3)を35nm形成する。このときの作成条件は、例えば、SiH流量3.5SCCM、B/H混合ガス(B濃度5000ppm)流量1SCCM、H流量630SCCM、動作圧力1.5Torrとする。
【0028】
最後に前面電極(透明導電膜2)として例えばスパッタ法でITO(Indium Tin Oxide)を200nm形成し、さらにAgの櫛形電極を例えばスパッタ法で作製する。
【0029】
以下、[実施例1]および[実施例2]とのデータの比較のため、本発明の積層体10を用いない薄膜太陽電池を作成する。作成方法は、[実施例2]の積層体10を作成する工程以外は、[実施例2]と同一である。
【0030】
[比較例]
ガラス基材上にスパッタ法でAgを例えば基材温度50℃、厚さ300nm形成し、その上にAlをドープしたZnO薄膜を基材温度140℃、厚さ10nm形成する。その上に厚さ40nmの微結晶n型ドープシリコン層をプラズマCVD法で形成する。作製条件はSiH流量を3.5SCCM、PH/H混合ガス(PH濃度1000ppm)の流量28SCCM、H流量を472SCCM、動作圧力1.5Torr、投入電力は20Wとした。その上にi型微結晶層[作成条件:SiH流量10SCCM、H流量400SCCM、動作圧力1.5Torr、投入電力は20W]を1μm形成する。さらに、p型微結晶シリコン層[作成条件:SiH流量3.5SCCM、B/H混合ガス(B濃度5000ppm)流量1SCCM、H流量630SCCM、動作圧力1.5Torr]を35nm形成する。最後に前面電極としてスパッタ法でITO(Indium Tin Oxide)を200nm形成し、さらにAgの櫛形電極をスパッタ法で作製する。
【0031】
[試験および結果]
次に、[実施例1]、[実施例2]、および[比較例]の薄膜太陽電池特性を図5に示す。同図にあるように、本発明のアモルファスシリコン超薄膜と微結晶シリコン超薄膜からなる積層体10を微結晶シリコン太陽電池のp型半導体層およびi型半導体層の接合界面に挿入することで、開放電圧と曲線因子(FF値)が大幅に改善し、よって太陽電池の変換効率が大幅に上昇する。
【0032】
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
【0033】
【発明の効果】
以上詳述したようにこの発明では、本発明のアモルファスシリコン超薄膜と微結晶シリコン超薄膜からなる積層体を微結晶シリコン太陽電池のp型半導体層およびi型半導体層の接合界面に挿入することで開放電圧と曲線因子が大幅に改善し、よって太陽電池の変換効率が大幅に上昇する。
【図面の簡単な説明】
【図1】この発明に係わる薄膜太陽電池の構成の一実施形態を示す断面概略図。
【図2】この発明に係わる薄膜太陽電池の構成の一実施形態を示す断面概略図。
【図3】この発明に係わる薄膜太陽電池の構成の一実施形態を示す断面概略図。
【図4】この発明に係わる薄膜太陽電池の構成の一実施形態を示す断面概略図。
【図5】[実施例1]、[実施例2]、および[比較例]の薄膜太陽電池特性を示した図。
【符号の説明】
1…透明性基材、2…透明導電膜、3…p型微結晶薄膜、4…i型微結晶薄膜、5…n型薄膜、6…裏面金属電極、7…i型微結晶超薄膜、8…i型非晶質超薄膜、10…積層体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a silicon-based thin-film solar cell, and more particularly to a solar cell including a non-single-crystal material.
[0002]
[Prior art]
Solar cells are attracting attention as an alternative energy source for fossil fuels such as petroleum, which is concerned about future supply and demand and has a problem of carbon dioxide emission that causes global warming. In this solar cell, a pn junction which is a semiconductor is used for a photoelectric conversion layer for converting light energy into electric power, and silicon is generally most often used as a semiconductor constituting the pn junction. As silicon, single crystal silicon is preferably used in terms of photoelectric conversion efficiency. However, single crystal silicon has problems such as a supply of a raw material, an increase in area, and a reduction in cost.
[0003]
On the other hand, a thin film solar cell using amorphous silicon or microcrystalline silicon as a photoelectric conversion layer as a material advantageous for realizing a large area and low cost has been put into practical use (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-B-53-37718.
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned thin film solar cell using amorphous silicon or microcrystalline silicon as a photoelectric conversion layer, low conversion efficiency from sunlight to electricity is the biggest problem for the spread of solar cells.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thin-film solar cell in which the conversion efficiency of a silicon-based thin-film solar cell is increased.
[0007]
[Means for Solving the Problems]
The present invention solves such a problem, and the invention of claim 1 is a pin formed by stacking a p-type semiconductor layer containing silicon or germanium as a main component, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer. A thin-film solar cell having at least one junction, wherein the i-type semiconductor ultrathin film containing silicon or germanium as a main component and the i-type semiconductor layer at a junction interface between at least one pin junction p-type semiconductor layer and an i-type semiconductor layer. A thin-film solar cell characterized in that at least one layer and not more than 10 layers of an i-type semiconductor ultrathin film having a larger band gap than a type thin film are inserted.
[0008]
Therefore, according to the invention of claim 1, at the junction interface between at least one p-type semiconductor layer and the i-type semiconductor layer of the pin junction, the i-type semiconductor ultra-thin film containing silicon or germanium as a main component and the i-type thin film are used. Also, at least one layer and not more than ten layers of an i-type semiconductor ultrathin film having a large band gap are inserted. For this reason, when the laminated body is inserted into the pi interface of the thin-film Si-based solar cell, the leakage current is reduced, and accordingly, the fill factor and open circuit voltage of the solar cell element are increased, and high conversion efficiency can be obtained.
[0009]
According to a second aspect of the present invention, there is provided the thin-film solar cell, wherein the i-type semiconductor ultrathin film having a band gap larger than that of the substantially intrinsic i-type semiconductor layer has a thickness of 5 ° to 100 °.
[0010]
Therefore, according to the invention of claim 2, the thickness of the i-type semiconductor ultrathin film having a band gap larger than that of the substantially intrinsic i-type semiconductor layer is 5 ° to 100 °. For this reason, the effect of claim 1 can be further enhanced.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic sectional view showing a configuration of an embodiment of a solar cell according to the present invention. As a feature of this embodiment, in a thin-film silicon-based solar cell, at the interface between the p-type semiconductor layer and the i-type semiconductor layer, the i-type semiconductor layer and the ultrathin film having a larger band gap than the i-layer alternately. In which a plurality of stacked bodies are inserted.
[0012]
In addition, as a method for manufacturing a material containing silicon or germanium as a main component according to the embodiment of the present invention, a method in which any one of a plasma CVD method, a photo CVD method, a thermal CVD method, and a hot-wire CVD method is combined It is preferably produced by
[0013]
In the solar cell of the present invention, the base material may be either an insulating material or a conductive material, and may be either flexible or inflexible. In addition, the thin-film solar cell of the present embodiment may have any configuration of a pin-type (super-straight-type) solar cell and a nip-type (substrate-type) solar cell. May be laminated.
[0014]
Furthermore, the i-type semiconductor ultrathin film having a band gap larger than that of the substantially intrinsic i-type semiconductor layer according to claim 1 is amorphous silicon, amorphous silicon germanium, amorphous silicon carbide, amorphous silicon oxide, amorphous silicon nitride. , Microcrystalline silicon, microcrystalline silicon carbide, and the like, but are not limited thereto.
[0015]
Here, the thin-film solar cell according to the embodiment of the present invention will be specifically described with reference to the drawings. However, the present invention is not limited to these drawings. 1 to 4 show schematic cross-sectional views of the thin-film solar cell of the present invention as an example.
[0016]
In the example of the configuration of the thin-film solar cell shown in FIG. 1, a transparent conductive film 2 and a p-type microcrystalline thin film 3 containing silicon or germanium as a main component are formed on a transparent substrate 1, and an i-type thin film of the present invention is formed thereon. A laminate 10 composed of an ultra-thin microcrystalline thin film 7 and an ultrathin i-type amorphous thin film 8 is formed, an i-type microcrystalline thin film 4 and an n-type thin film 5 are produced, and then a back metal electrode 6 is laminated. It is.
[0017]
In the example of the configuration of the thin-film solar cell shown in FIG. 2, the back metal electrode 6, the n-type thin film 5, and the i-type microcrystalline thin film 4 are formed on the transparent substrate 1, and the i-type amorphous of the present invention is further formed thereon. A laminate 10 composed of an ultra-thin crystalline ultrathin film 8 and an ultrathin i-type microcrystalline film 7 is formed, a p-type microcrystalline thin film 3 is produced, and finally a transparent conductive film 2 is laminated.
[0018]
In the example of the configuration of the thin-film solar cell shown in FIG. 3, a transparent conductive film 2 and a p-type microcrystalline thin film 3 containing silicon or germanium as a main component are formed on a transparent substrate 1, and the i-type thin film of the present invention is formed thereon. A laminated body 10 composed of an ultra-thin microcrystalline thin film 7 and an ultrathin i-type amorphous thin film 8 is formed, and an i-type microcrystalline thin film 4 and an n-type thin film 5 are formed. It was done.
[0019]
In the example of the configuration of the thin-film solar cell shown in FIG. 4, the back metal electrode 6, the n-type thin film 5, and the i-type microcrystalline thin film 4 are formed on the transparent substrate 1, and the i-type amorphous of the present invention is further formed thereon. The laminate 10 is formed by forming three layers of a laminated body 10 composed of a crystalline ultrathin film 8 and an i-type microcrystalline ultrathin film 7, further producing a p-type microcrystalline thin film 3, and finally laminating a transparent conductive film 2. The base material shown in FIGS. 2 and 4 may or may not transmit light.
[0020]
Further, the efficiency of the laminated body 10 according to the first aspect is maximized by inserting the laminated body 10 as one layer or more and ten layers or less. Preferably, the number of layers is one or more and three or less. Inserting more than ten layers greatly reduces the current and consequently the efficiency of the solar cell. Further, the thickness of the amorphous ultra-thin film in the laminate 10 needs to be 5 ° to 100 °, preferably 5 ° to 20 °. When the thickness is less than 5 °, no effect is obtained. When the thickness is more than 100 °, the current is greatly reduced and the efficiency of the solar cell is reduced.
[0021]
Hereinafter, an embodiment according to the present invention will be further described according to an actual preparation procedure.
[0022]
[Example 1]
As shown in FIG. 1, Ag (not shown) is formed on a glass substrate (not shown) by, for example, a sputtering method, for example, at a substrate temperature of 50 ° C. and a thickness of 300 nm, and a ZnO thin film doped with Al (back metal electrode 6) is formed thereon. ) Is formed, for example, at a substrate temperature of 140 ° C. and a thickness of 10 nm. A microcrystalline n-type doped silicon layer (n-type thin film 5) having a thickness of, for example, 40 nm is formed thereon by, for example, a plasma CVD method. The production conditions at this time are, for example, a flow rate of 3.5 SCCM for SiH 4, a flow rate of 28 SCCM for a PH 3 / H 2 mixed gas (PH 3 concentration: 1000 ppm), a flow rate of H 2 for 472 SCCM, an operating pressure of 1.5 Torr, and a power of 20 W is there.
[0023]
An i-type microcrystalline layer (i-type microcrystalline thin film 4) is formed thereon at 1 μm. The preparation conditions at this time are, for example, SiH 4 flow rate 10 SCCM, H 2 flow rate 400 SCCM, operating pressure 1.5 Torr, and input power 20 W. Thereafter, an i-type amorphous silicon layer (i-type ultra-thin amorphous film 8) is formed by 20 °. The production conditions at this time are, for example, an SiH 4 flow rate of 20 SCCM, an H 2 flow rate of 100 SCCM, an operating pressure of 1.0 Torr, and an input power of 10 W. Further, an i-type microcrystalline silicon layer (i-type microcrystalline ultrathin film 7) is formed to a thickness of 20 nm. At this time, for example, the production conditions are as follows: SiH 4 flow rate is 10 SCCM, H 2 flow rate is 400 SCCM, operating pressure is 1.5 Torr, and input power is 20 W. These i-type microcrystalline ultrathin film 7 and i-type amorphous ultrathin film 8 are referred to as a laminate 10.
[0024]
Further, a p-type microcrystalline silicon layer (p-type microcrystalline thin film 3) is formed to a thickness of 35 nm. The creation condition at this time, for example, SiH 4 flow rate 3.5SCCM, B 2 H 6 / H 2 gas mixture (B 2 H 6 concentration 5000 ppm) flow rate 1 SCCM, H 2 flow rate 630SCCM, the operating pressure 1.5 Torr. Finally, as a front electrode (transparent conductive film 2), ITO (Indium Tin Oxide) is formed to a thickness of 200 nm by, for example, a sputtering method, and a comb electrode of Ag is formed by, for example, a sputtering method.
[0025]
[Example 2]
Next, as Example 2, as shown in FIG. 3, Ag (not shown) is formed on a glass substrate (not shown) by, for example, a sputtering method at a substrate temperature of 50 ° C. and a thickness of 300 nm, for example, and Al is doped thereon. The formed ZnO thin film (back metal electrode 6) is formed, for example, at a substrate temperature of 140 ° C. and a thickness of 10 nm. A microcrystalline n-type doped silicon layer (n-type thin film 5) having a thickness of, for example, 40 nm is formed thereon by, for example, a plasma CVD method. The manufacturing conditions at this time are, for example, a SiH 4 flow rate of 3.5 SCCM, a PH 3 / H 2 mixed gas (PH 3 concentration of 1000 ppm) flow rate of 28 SCCM, an H 2 flow rate of 472 SCCM, an operating pressure of 1.5 Torr, and an input power of 20 W. And An i-type microcrystalline layer (i-type microcrystalline thin film 4) having a thickness of 1 μm is formed thereon. The production conditions at this time are, for example, SiH 4 flow rate 10 SCCM, H 2 flow rate 400 SCCM, operating pressure 1.5 Torr, and input power 20 W.
[0026]
Thereafter, the i-type amorphous silicon layer (i-type amorphous ultra-thin film 8) [production conditions: SiH 4 flow rate 20 SCCM, H 2 flow rate 100 SCCM, operating pressure 1.0 Torr, input power 10 W] 20%; Crystalline silicon layer (i-type microcrystalline ultrathin film 7) [Preparation conditions: 3 layers of 10 nm of SiH 4 flow rate, 400 SCCM H 2 flow rate, operating pressure of 1.5 Torr, input power of 20 W], and three layers of 20 nm are formed. I do.
[0027]
Further, a p-type microcrystalline silicon layer (p-type microcrystalline thin film 3) is formed to a thickness of 35 nm. The preparation conditions at this time are, for example, a SiH 4 flow rate of 3.5 SCCM, a B 2 H 6 / H 2 mixed gas (B 2 H 6 concentration 5000 ppm) flow rate of 1 SCCM, an H 2 flow rate of 630 SCCM, and an operating pressure of 1.5 Torr.
[0028]
Finally, ITO (Indium Tin Oxide) is formed to a thickness of 200 nm as a front electrode (transparent conductive film 2) by, for example, a sputtering method, and an Ag comb electrode is formed by, for example, a sputtering method.
[0029]
Hereinafter, for comparison of data with [Example 1] and [Example 2], a thin-film solar cell without using the laminate 10 of the present invention is prepared. The forming method is the same as that of [Example 2] except for the step of forming the laminate 10 of [Example 2].
[0030]
[Comparative example]
Ag is formed on a glass substrate by sputtering, for example, at a substrate temperature of 50 ° C. and a thickness of 300 nm, and a ZnO thin film doped with Al is formed thereon at a substrate temperature of 140 ° C. and a thickness of 10 nm. A microcrystalline n-type doped silicon layer having a thickness of 40 nm is formed thereon by a plasma CVD method. The fabrication conditions were as follows: SiH 4 flow rate was 3.5 SCCM, PH 3 / H 2 mixed gas (PH 3 concentration: 1000 ppm) flow rate was 28 SCCM, H 2 flow rate was 472 SCCM, operating pressure was 1.5 Torr, and input power was 20 W. Its on the i-type microcrystalline layer Create Conditions: SiH 4 flow rate 10 SCCM, H 2 flow rate 400 SCCM, operating pressure 1.5 Torr, applied power is 20W] to 1μm form. Further, a p-type microcrystalline silicon layer [preparation conditions: SiH 4 flow rate 3.5 SCCM, B 2 H 6 / H 2 mixed gas (B 2 H 6 concentration 5000 ppm) flow rate 1 SCCM, H 2 flow rate 630 SCCM, operating pressure 1.5 Torr] Is formed to a thickness of 35 nm. Finally, ITO (Indium Tin Oxide) is formed to a thickness of 200 nm by a sputtering method as a front electrode, and an Ag comb electrode is formed by a sputtering method.
[0031]
[Test and results]
Next, FIG. 5 shows the thin-film solar cell characteristics of [Example 1], [Example 2], and [Comparative Example]. As shown in the figure, by inserting a laminated body 10 composed of an ultra-thin amorphous silicon film and an ultra-thin microcrystalline silicon film of the present invention into a junction interface between a p-type semiconductor layer and an i-type semiconductor layer of a microcrystalline silicon solar cell, The open circuit voltage and fill factor (FF value) are greatly improved, and the conversion efficiency of the solar cell is greatly increased.
[0032]
Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the components without departing from the scope of the invention at the stage of implementation. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Further, components of different embodiments may be appropriately combined.
[0033]
【The invention's effect】
As described in detail above, according to the present invention, a laminate comprising the ultra-thin amorphous silicon film and the ultra-thin microcrystalline silicon film of the present invention is inserted into the junction interface between the p-type semiconductor layer and the i-type semiconductor layer of the microcrystalline silicon solar cell. As a result, the open-circuit voltage and the fill factor are greatly improved, and the conversion efficiency of the solar cell is greatly increased.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a configuration of a thin-film solar cell according to the present invention.
FIG. 2 is a schematic sectional view showing an embodiment of the configuration of the thin-film solar cell according to the present invention.
FIG. 3 is a schematic sectional view showing an embodiment of the configuration of the thin-film solar cell according to the present invention.
FIG. 4 is a schematic sectional view showing an embodiment of the configuration of the thin-film solar cell according to the present invention.
FIG. 5 is a diagram showing thin-film solar cell characteristics of [Example 1], [Example 2], and [Comparative Example].
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Transparent base material, 2 ... Transparent conductive film, 3 ... P-type microcrystalline thin film, 4 ... I-type microcrystalline thin film, 5 ... N-type thin film, 6 ... Backside metal electrode, 7 ... I-type microcrystalline ultrathin film, 8 ... i-type amorphous ultra-thin film, 10 ... laminate

Claims (2)

シリコンもしくはゲルマニウムを主成分とするp型半導体層、実質的に真性なi型半導体層、n型半導体層を積層したpin接合を少なくとも一つ有する薄膜太陽電池であって、
少なくとも一つのpin接合のp型半導体層およびi型半導体層の接合界面において、シリコンもしくはゲルマニウムを主成分とする該i型半導体超薄膜と該i型薄膜よりもバンドギャップの大きいi型半導体超薄膜からなる積層体が少なくとも1層以上10層以下挿入されていることを特徴とする薄膜太陽電池。
A thin-film solar cell having at least one pin junction in which a p-type semiconductor layer containing silicon or germanium as a main component, a substantially intrinsic i-type semiconductor layer, and an n-type semiconductor layer are stacked,
An i-type semiconductor ultrathin film containing silicon or germanium as a main component and an i-type semiconductor ultrathin film having a larger band gap than the i-type thin film at a junction interface between the p-type semiconductor layer and the i-type semiconductor layer of at least one pin junction; Characterized in that at least one layer and not more than 10 layers of the laminate are inserted.
請求項1に記載の薄膜太陽電池において、
実質的に真性な該i型半導体層よりもバンドギャップの大きいi型半導体超薄膜の膜厚が5Å以上100Å以下であることを特徴とする薄膜太陽電池。
The thin-film solar cell according to claim 1,
A thin-film solar cell, wherein the i-type semiconductor ultrathin film having a band gap larger than that of the substantially intrinsic i-type semiconductor layer has a thickness of 5 ° to 100 °.
JP2003129423A 2003-05-07 2003-05-07 Thin film solar cell Pending JP2004335733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129423A JP2004335733A (en) 2003-05-07 2003-05-07 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129423A JP2004335733A (en) 2003-05-07 2003-05-07 Thin film solar cell

Publications (1)

Publication Number Publication Date
JP2004335733A true JP2004335733A (en) 2004-11-25

Family

ID=33505267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129423A Pending JP2004335733A (en) 2003-05-07 2003-05-07 Thin film solar cell

Country Status (1)

Country Link
JP (1) JP2004335733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237111A (en) * 2005-02-23 2006-09-07 Toppan Printing Co Ltd Non-single crystal solar cell and its manufacturing method and non-single crystal solar cell manufacturing apparatus
WO2009011338A1 (en) * 2007-07-18 2009-01-22 Omron Corporation Solar cell
WO2012036074A1 (en) * 2010-09-15 2012-03-22 三菱重工業株式会社 Method for producing photovoltaic devices
CN102916061A (en) * 2012-11-05 2013-02-06 南开大学 Micro-crystalline germanium and non-crystalline germanium heterogeneous absorption layer material with narrow band gap and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050973A (en) * 1983-08-31 1985-03-22 Agency Of Ind Science & Technol Semiconductor device
JPS62159475A (en) * 1986-01-08 1987-07-15 Hitachi Ltd Amorphous silicon solar cell
JPS62181476A (en) * 1986-02-05 1987-08-08 Toshiba Corp Semiconductor device
JPS63104383A (en) * 1986-10-20 1988-05-09 Sanyo Electric Co Ltd Photovolatic element
JPH0242765A (en) * 1988-08-02 1990-02-13 Nkk Corp Solar cell and manufacture thereof
JPH02177371A (en) * 1988-08-30 1990-07-10 Tonen Corp Manufacture of amorphous solar cell
JPH03101274A (en) * 1989-06-30 1991-04-26 Tonen Corp Manufacture of amorphous solar cell
JPH04324685A (en) * 1991-04-24 1992-11-13 Sanyo Electric Co Ltd Photovoltaic device
JPH08172208A (en) * 1994-12-16 1996-07-02 Crystal Device:Kk Superlattice device and manufacture thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050973A (en) * 1983-08-31 1985-03-22 Agency Of Ind Science & Technol Semiconductor device
JPS62159475A (en) * 1986-01-08 1987-07-15 Hitachi Ltd Amorphous silicon solar cell
JPS62181476A (en) * 1986-02-05 1987-08-08 Toshiba Corp Semiconductor device
JPS63104383A (en) * 1986-10-20 1988-05-09 Sanyo Electric Co Ltd Photovolatic element
JPH0242765A (en) * 1988-08-02 1990-02-13 Nkk Corp Solar cell and manufacture thereof
JPH02177371A (en) * 1988-08-30 1990-07-10 Tonen Corp Manufacture of amorphous solar cell
JPH03101274A (en) * 1989-06-30 1991-04-26 Tonen Corp Manufacture of amorphous solar cell
JPH04324685A (en) * 1991-04-24 1992-11-13 Sanyo Electric Co Ltd Photovoltaic device
JPH08172208A (en) * 1994-12-16 1996-07-02 Crystal Device:Kk Superlattice device and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237111A (en) * 2005-02-23 2006-09-07 Toppan Printing Co Ltd Non-single crystal solar cell and its manufacturing method and non-single crystal solar cell manufacturing apparatus
WO2009011338A1 (en) * 2007-07-18 2009-01-22 Omron Corporation Solar cell
WO2012036074A1 (en) * 2010-09-15 2012-03-22 三菱重工業株式会社 Method for producing photovoltaic devices
CN102916061A (en) * 2012-11-05 2013-02-06 南开大学 Micro-crystalline germanium and non-crystalline germanium heterogeneous absorption layer material with narrow band gap and application thereof

Similar Documents

Publication Publication Date Title
JP6793274B1 (en) Solar cell module, solar cell and its manufacturing method
TWI355752B (en) Solar cell
JP6788144B1 (en) Solar cell module, solar cell and its manufacturing method
JP5409007B2 (en) High efficiency solar cell and preparation method thereof
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
JP2002076409A (en) Photovoltaic device
KR20080045598A (en) Solar cell and method of manufacturing the same
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
CN104600157A (en) Manufacturing method of hetero-junction solar cell and hetero-junction solar cell
TW201123481A (en) Solar cell and manufacturing method thereof
TWI424582B (en) Method of fabricating solar cell
CN102341919B (en) Solar cell
JP2012186415A (en) Manufacturing method of photoelectric conversion element, photoelectric conversion element, and tandem-type photoelectric conversion element
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
CN106449850B (en) A kind of efficient silicon based hetero-junction double-side cell and preparation method thereof
US20120285508A1 (en) Four terminal multi-junction thin film photovoltaic device and method
JP2004335733A (en) Thin film solar cell
JP2004335734A (en) Thin film solar cell
US4857115A (en) Photovoltaic device
JP2002016271A (en) Thin-film photoelectric conversion element
JP4441377B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4187328B2 (en) Photovoltaic element manufacturing method
WO2006049003A1 (en) Process for producing thin-film photoelectric converter
CN110797428A (en) Heterojunction solar cell
CN115172478B (en) Solar cell and photovoltaic module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427