JPS62159475A - Amorphous silicon solar cell - Google Patents

Amorphous silicon solar cell

Info

Publication number
JPS62159475A
JPS62159475A JP61000559A JP55986A JPS62159475A JP S62159475 A JPS62159475 A JP S62159475A JP 61000559 A JP61000559 A JP 61000559A JP 55986 A JP55986 A JP 55986A JP S62159475 A JPS62159475 A JP S62159475A
Authority
JP
Japan
Prior art keywords
layer
film
type
solar cell
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61000559A
Other languages
Japanese (ja)
Inventor
Haruo Ito
晴夫 伊藤
Juichi Shimada
嶋田 寿一
Toshihisa Tsukada
俊久 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61000559A priority Critical patent/JPS62159475A/en
Publication of JPS62159475A publication Critical patent/JPS62159475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve P/I interface characteristics and to increase a photoelectric conversion efficiency by providing two kinds of repeated layers consisting of main components of the layers on both sides at least either between a P-type layer and an I-type layer or between an N-type layer and an I-type layer. CONSTITUTION:A conductive transmitting film 12 is formed on a glass substrate 11 and a P-type SiC:H film 13 is formed on that film by high-frequency plasma decomposition technique. Further, a buffer layer 14 is formed, which is of a multi-layer thin film structure in which a-SiC:H layers 21, 23, 25, 27, and 29 and a-Si:H layer 22, 24, 26, 28 and 30 are formed alternately. On this layer, an I-type a-Si:H film 15 and an N-type fine crystal Si film 16 are formed in order and an Ag electrode 14 is evaporated lastly. Thus, P/I interface characteristics can be improved and a photoelectric conversion efficiency is increased.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はアモルファスシリコン太陽電池に係り、p/i
界面特性が秀れ光電変換効率の高いアモルファスシリコ
ン太陽電池に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an amorphous silicon solar cell.
This article relates to amorphous silicon solar cells with excellent interfacial properties and high photoelectric conversion efficiency.

〔発明の背景〕[Background of the invention]

p型層−SiC:Hとi型層−Si:Hのへテロ接合を
有する太陽電池ではp/i界面にバッファ層を設けるこ
とにより光電変換効率を高くできることが報告されてい
る第17回太陽エネルギー推進委員会第11回アモルフ
ァス連絡会(昭和59年成果報告)予稿第194頁参照
。該バッファ層は、p/i界面のp層側あるいはi層側
にカーボンドーピング量を変化させて形成され、  p
Jt!側からi層側へ減少する光学ギャップを有する。
It has been reported that in solar cells having a heterojunction of a p-type layer - SiC:H and an i-type layer - Si:H, the photoelectric conversion efficiency can be increased by providing a buffer layer at the p/i interface. See page 194 of the 11th Amorphous Liaison Meeting of the Energy Promotion Committee (Report of Results in 1984). The buffer layer is formed by varying the amount of carbon doping on the p layer side or the i layer side of the p/i interface, and p
Jt! It has an optical gap that decreases from the side to the i-layer side.

該バッファ層の効果としては、p / i界面でのキャ
リアの再結合の減少し、該バッファ層がp層とi層のバ
ンド幅を連続的につなぐためp / i界面の障壁が緩
和されることの2点が考えられている。
The effect of the buffer layer is to reduce carrier recombination at the p/i interface, and because the buffer layer continuously connects the bandwidths of the p and i layers, the barrier at the p/i interface is relaxed. Two points are considered.

従来、該バッファ層は数十人から画数十人と薄い上に、
シランガス流量を一定としメタンやアセチレン等のカー
ボン系ガスの流量を次第に減少させることにより形成さ
れたため、流量制御が面倒であり該膜形成の再現性はあ
まりよくなかった。
Conventionally, the buffer layer is thin, ranging from several tens of layers to several tens of strokes, and
Since the film was formed by keeping the flow rate of silane gas constant and gradually decreasing the flow rate of carbon-based gas such as methane or acetylene, controlling the flow rate was troublesome and the reproducibility of the film formation was not very good.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、p/i界面特性を改善し、曲線因子が
大きく、光電変換効率の高いアモルファスシリコン太陽
電池を提供することにある。
An object of the present invention is to provide an amorphous silicon solar cell with improved p/i interface characteristics, a large fill factor, and high photoelectric conversion efficiency.

〔発明の概要〕[Summary of the invention]

結晶成長技術やアモルファス薄膜成長技術の進歩によっ
て材料中の電子波長と同程度の膜厚10〜380人を持
ついわゆる超薄膜が形成可能となり、薄膜材料に2次元
性が現われ、この特徴を利用することが活発に研究開発
されている。この特治を生かし人工的に超薄膜を多層化
していわゆる超格子を形成し、その特徴を利用する種々
の応用が考えらでいる。
Advances in crystal growth technology and amorphous thin film growth technology have made it possible to form so-called ultra-thin films with a thickness of 10 to 380 nanometers, which is about the same as the electron wavelength in the material, and two-dimensionality appears in thin film materials, and this feature can be utilized. This is currently being actively researched and developed. Taking advantage of this special property, a variety of applications are being considered by artificially layering ultra-thin films to form a so-called superlattice, and making use of its characteristics.

本発明は、アモルファスSi太陽電池のp / i界面
のバッファ層にa−SiC:H膜とa −S i:H膜
の多層超′5!を膜を用いp/i界面特性を改善するも
のであり、例えば、膜形成時カーボン系ガスのバルブの
開閉を行う二とにより、形成される。
The present invention provides a buffer layer at the p/i interface of an amorphous Si solar cell using a multilayer super-layer consisting of an a-SiC:H film and an a-Si:H film. This method uses a film to improve the p/i interface characteristics, and is formed, for example, by opening and closing a carbon-based gas valve during film formation.

該バッファ層中、2層側からi層側への光学ギャップの
漸減が、各薄層を数人ないし数十人の厚さとし、かつ同
方向へa−SiC:H膜厚を次第に減少させるとともに
a−5i:H膜厚を次第に増大させることにより実現さ
れた。該バッファ層はp層とi層のバンド幅を連続的に
つなぐためp/i界面の障壁を緩和し、かつ多層超薄膜
構造の採用により界面再結合速度の減少をもたらした。
In the buffer layer, the optical gap gradually decreases from the second layer side to the i layer side, making each thin layer several to several tens of times thicker, and as the a-SiC:H film thickness gradually decreases in the same direction. This was achieved by gradually increasing the a-5i:H film thickness. The buffer layer continuously connects the band widths of the p-layer and i-layer, thereby relaxing the barrier at the p/i interface, and reducing the interfacial recombination rate by employing a multilayer ultra-thin film structure.

本発明は、上記a−SiC:H/a  Si :Hヘテ
ロ接合界面以外でも、a−3i:H,a−SiN:H,
a−SiGe :H,a−SiSn :H,a−SiC
:FZ等のアモルファスSi系材料の組み合せから成る
ペテロ接合界面のバッファ層に適用可能でありいずれも
界面特性の改善が見いだされた。
The present invention provides a-3i:H, a-SiN:H,
a-SiGe:H, a-SiSn:H, a-SiC
: It can be applied to a buffer layer at the Peter junction interface made of a combination of amorphous Si-based materials such as FZ, and it was found that the interface properties were improved in both cases.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図および第2図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

まずガラス基板11上にITO/5nOx2層膜から成
る導電性透過膜12を形成した。この上に、モノシラン
ガス、メタンガス、H2ベースBzHeガスの混合ガス
の高周波プラズマ分解法によりp型SjC:H膜13を
形成し、さらにバッファ層14を形成した。該バッファ
層は、第2図に示すように多層薄膜構造を有する。モノ
シランガスを常時流し、メタンガスを断続的に流すこと
によりa −S i C: )I層21,23,25,
27゜29とa−3i:H層22,24,26,28゜
30を交互に形成した。a −S i C: I−1膜
厚は25.20,15,10,5人と減少させ、a−3
i:H1l莫厚は5,10,15,20,25人と増大
させた。さらにこの上にi型a−3i:H膜15、n型
機結晶Si膜16を順次形成し、最後にAg電極17を
蒸着した。
First, a conductive transparent film 12 made of a two-layer film of ITO/5nOx was formed on a glass substrate 11. A p-type SjC:H film 13 was formed thereon by high-frequency plasma decomposition of a mixed gas of monosilane gas, methane gas, and H2-based BzHe gas, and a buffer layer 14 was further formed. The buffer layer has a multilayer thin film structure as shown in FIG. By constantly flowing monosilane gas and intermittently flowing methane gas, a-S i C: )I layers 21, 23, 25,
27°29 and a-3i:H layers 22, 24, 26, and 28°30 were formed alternately. a-S i C: I-1 film thickness was reduced to 25.20, 15, 10, 5, a-3
i: H1l Moko increased to 5, 10, 15, 20, 25 people. Furthermore, an i-type a-3i:H film 15 and an n-type mechanical crystalline Si film 16 were successively formed thereon, and finally an Ag electrode 17 was deposited.

本試料の曲線因子は0.73 と高い値を示し、光電変
換効率は11.1 %であった。
The fill factor of this sample was as high as 0.73, and the photoelectric conversion efficiency was 11.1%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多層超薄ff[!造の特長を生かし、
ガス流量の細かな制御によらずどもガスを流す(バルブ
開閉の)時間の制御のみで光学ギャップの変化した層の
形成ができ、かつ、超構造ゆえに該層における再結合速
度が減少するため、p/i、n/i界面特性の秀れた、
したがって光な変換特性の秀れたアモルファスシリコン
太陽電池を簡便に作製できるとの効果がある。
According to the present invention, a multilayer ultra-thin ff[! Taking advantage of the features of construction,
It is possible to form a layer with a changed optical gap by simply controlling the gas flow time (opening and closing of the valve) without finely controlling the gas flow rate, and because the superstructure reduces the recombination rate in the layer, Excellent p/i and n/i interface characteristics,
Therefore, there is an effect that an amorphous silicon solar cell with excellent light conversion characteristics can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアモルファスシリコン太陽電池の縦断面図、第
2図は第1図14バツフア層の拡大図である。 11・・・ガラス基板、12・・・透明導電膜、13・
・・p型a−SiC:H[,14−・・バッファ層、1
5−・・i型a−Si:H膜、16−n型微結晶Si膜
FIG. 1 is a longitudinal cross-sectional view of an amorphous silicon solar cell, and FIG. 2 is an enlarged view of the buffer layer shown in FIG. 1. 11...Glass substrate, 12...Transparent conductive film, 13.
...p-type a-SiC:H[,14-...buffer layer, 1
5--i-type a-Si:H film, 16-n-type microcrystalline Si film.

Claims (1)

【特許請求の範囲】 1、少なくとも1つのpin構造を有するアモルファス
Si太陽電池において、p型層とi型層の間およびn型
層とi型層の間の少なくとも一方に、両側の層の主成分
から成る2種類の層の繰り返しから成る多層薄膜を有す
ることを特徴とするアモルファスSi太陽電池。 2、特許請求範囲1におけるアモルファス太陽電池にお
いて、上記p型層はp型a−SiC:H、上記i型層は
i型a−Si:Hであり、上記多層薄膜はa−SiC:
Hとa−Si:Hの繰り返しから成ることを特徴とする
アモルファスSi太陽電池。 3、特許請求範囲2におけるアモルファス太陽電池の、
上記多層薄膜は、a−SiC:H膜とa−Si:H膜が
交互に重ねられ、p型層からi型層の方向へa−SiC
:H膜厚は次第に薄く、a−Si:H膜厚は次第に厚く
なつていることを特徴とするアモルファスSi太陽電池
[Claims] 1. In an amorphous Si solar cell having at least one pin structure, at least one of the layers between the p-type layer and the i-type layer and between the n-type layer and the i-type layer has a main layer on both sides. An amorphous Si solar cell characterized in that it has a multilayer thin film consisting of repeating two types of layers consisting of components. 2. In the amorphous solar cell according to claim 1, the p-type layer is p-type a-SiC:H, the i-type layer is i-type a-SiC:H, and the multilayer thin film is a-SiC:H.
An amorphous Si solar cell characterized by consisting of repeating H and a-Si:H. 3. The amorphous solar cell in claim 2,
The above multilayer thin film has a-SiC:H films and a-Si:H films stacked alternately, and a-SiC
An amorphous Si solar cell characterized in that the :H film thickness becomes gradually thinner and the a-Si:H film thickness gradually becomes thicker.
JP61000559A 1986-01-08 1986-01-08 Amorphous silicon solar cell Pending JPS62159475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000559A JPS62159475A (en) 1986-01-08 1986-01-08 Amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000559A JPS62159475A (en) 1986-01-08 1986-01-08 Amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPS62159475A true JPS62159475A (en) 1987-07-15

Family

ID=11477078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000559A Pending JPS62159475A (en) 1986-01-08 1986-01-08 Amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS62159475A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181476A (en) * 1986-02-05 1987-08-08 Toshiba Corp Semiconductor device
JPH01145875A (en) * 1987-12-02 1989-06-07 Hitachi Ltd Amorphous si solar battery
JPH0225078A (en) * 1988-07-13 1990-01-26 Sanyo Electric Co Ltd Photovoltaic device and manufacture thereof
JP2004335734A (en) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology Thin film solar cell
JP2004335733A (en) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology Thin film solar cell
JP2010135415A (en) * 2008-12-02 2010-06-17 Mitsubishi Electric Corp Method of manufacturing thin-film solar cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181476A (en) * 1986-02-05 1987-08-08 Toshiba Corp Semiconductor device
JPH01145875A (en) * 1987-12-02 1989-06-07 Hitachi Ltd Amorphous si solar battery
JPH0571195B2 (en) * 1987-12-02 1993-10-06 Hitachi Ltd
JPH0225078A (en) * 1988-07-13 1990-01-26 Sanyo Electric Co Ltd Photovoltaic device and manufacture thereof
JP2004335734A (en) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology Thin film solar cell
JP2004335733A (en) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology Thin film solar cell
JP2010135415A (en) * 2008-12-02 2010-06-17 Mitsubishi Electric Corp Method of manufacturing thin-film solar cell

Similar Documents

Publication Publication Date Title
US4598164A (en) Solar cell made from amorphous superlattice material
CN101183689B (en) Graded hybrid amorphous silicon nanowire solar cells
JP2589462B2 (en) Photoelectric device
JPS6233479A (en) Solar cell
JPS62159475A (en) Amorphous silicon solar cell
JPS6334632B2 (en)
JPH0364973A (en) Photovoltaic element
JPH0346377A (en) Solar cell
JPS632385A (en) Multilayer structure p-type silicon film and solar cell
JPS59101879A (en) Thin film solar battery
JPS61222215A (en) Superlattice device
JP3453315B2 (en) Amorphous silicon solar cell and method of manufacturing the same
JPS5952883A (en) Solar battery
JPH03101274A (en) Manufacture of amorphous solar cell
Kurokawa et al. Observation of the photovoltaics effect from the solar cells using silicon quantum dots superlattice as a light absorption layer
JPH0282582A (en) Laminated amorphous silicon solar cell
Itozaki et al. Amorphous Silicon-Germanium Deposited by Photo-CVD
JPH0444366A (en) Amorphous semiconductor solar battery
JPS6095977A (en) Photovoltaic device
JPS6193675A (en) Manufacture of photovoltaic device
JPS62188381A (en) Manufacture of amorphous silicon solar cell
JPS6337675A (en) Amorphous thin film solar cell
JP2002033499A (en) Photovoltaic device
JPS58173872A (en) Amorphous si thin film photovoltaic force element
JPS6284571A (en) Multilayer structure type amorphous solar cell