JPS6284571A - Multilayer structure type amorphous solar cell - Google Patents
Multilayer structure type amorphous solar cellInfo
- Publication number
- JPS6284571A JPS6284571A JP60224104A JP22410485A JPS6284571A JP S6284571 A JPS6284571 A JP S6284571A JP 60224104 A JP60224104 A JP 60224104A JP 22410485 A JP22410485 A JP 22410485A JP S6284571 A JPS6284571 A JP S6284571A
- Authority
- JP
- Japan
- Prior art keywords
- film
- solar cell
- amorphous
- layer
- type layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010408 film Substances 0.000 claims abstract description 79
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000010409 thin film Substances 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 4
- 238000007865 diluting Methods 0.000 claims 1
- 150000003376 silicon Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 22
- 229910017817 a-Ge Inorganic materials 0.000 abstract description 13
- 230000035945 sensitivity Effects 0.000 abstract description 11
- 238000005275 alloying Methods 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 49
- 238000000034 method Methods 0.000 description 22
- 239000000463 material Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 125000000370 germanetriyl group Chemical group [H][Ge](*)(*)* 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- -1 Zn5SSi 3N Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 description 1
- 229910052986 germanium hydride Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
- H01L31/076—Multiple junction or tandem solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はアモルファスシリコン太陽電池に関する。更に
詳しくは、特に長波長域の光を高い効率で変換し得る多
層構造アモルファス太陽電池に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to amorphous silicon solar cells. More specifically, the present invention relates to a multilayer amorphous solar cell that can convert light in a particularly long wavelength range with high efficiency.
従来の技術
アモルファス半導体は薄膜化・大面積化が可能であり、
大巾な組成の自由度を有し、電気的特性並びに光学的特
性を広範囲に亘り調節できることから各種のデバイスに
利用されているが、これはキャリア移動度が低いことか
ら、結晶半導体はどには注目されなかった。しかし19
68年頃カルコゲナイド系のアモルファス半導体が高速
スイッチ素子等に応用し得ることが公表されて以来大き
な注目を集め、既に各種の応用例が提出され、かなりの
成果を上げつつある。Conventional technology Amorphous semiconductors can be made thinner and larger in area.
It is used in various devices because it has a wide degree of freedom in composition and can adjust electrical and optical properties over a wide range.However, because of its low carrier mobility, crystalline semiconductors are was not noticed. But 19
Around 1968, it was announced that chalcogenide-based amorphous semiconductors could be applied to high-speed switching devices, etc., and since then they have attracted a great deal of attention, and various application examples have already been submitted and considerable results are being achieved.
近年、クリーンで非枯渇性の太陽エネルギーを利用する
太陽電池が注目されているが、上記のようなアモルファ
スシリコンが低コスト太陽電池材料として期待されてい
る。しかしながら、Si、 GaAsなどの結晶半導体
太陽電池と比較すると、光電変換効率が低く、電力電源
として広範に利用されるには至っていない。In recent years, solar cells that utilize clean, non-depletable solar energy have attracted attention, and amorphous silicon as described above is expected to be a low-cost solar cell material. However, compared to crystalline semiconductor solar cells such as Si and GaAs, photoelectric conversion efficiency is low, and they have not been widely used as a power source.
このようにアモルファス半導体が光電変換効率に劣る理
由は、アモルファス半導体の禁止帯中に多数の局在準位
があり、易動度が小さいために相互に束縛し合い、その
ため光励起された電子・正孔対が自由に動くためには大
きな電界が必要とされるなどの難点を有することにある
。The reason why amorphous semiconductors have poor photoelectric conversion efficiency is that there are many localized levels in the forbidden band of amorphous semiconductors, which have low mobility and bind each other. This method has drawbacks such as the need for a large electric field in order for the hole pairs to move freely.
また、太陽電池の光電変換効率を上げるには、広い波長
範囲に亘る光エネルギーを有効に利用することも重要で
あり、このような目的でモディファイア、例えばシリコ
ンと4配位結合を形成し易い■族元素を添加し、アモル
ファスシリコンの禁止帯幅に変化をもたせることが検討
されている。In addition, in order to increase the photoelectric conversion efficiency of solar cells, it is important to effectively utilize light energy over a wide wavelength range, and for this purpose, it is important to use modifiers, such as silicon, to easily form four-coordinate bonds. It is being considered to change the forbidden band width of amorphous silicon by adding group (2) elements.
例えば、モディファイアとして炭素を用いると禁止帯幅
が大きくなり、これを太陽電池のp型層として光の入射
側に使用することにより、より短波長光の有効利用が可
能となり、一方モディファイアとしてGe5Sn、 P
b等の元素を用い、これを1型層として使用することに
より、長波長光の吸収がよくなることが知られている。For example, when carbon is used as a modifier, the forbidden band width increases, and by using carbon as a p-type layer on the light incident side of a solar cell, it becomes possible to use shorter wavelength light more effectively; Ge5Sn, P
It is known that absorption of long wavelength light is improved by using an element such as b as a type 1 layer.
しかしながら、特に後者の場合、禁止帯幅が小さくなり
、膜質が低下してしまうので、長波長光を十分に電気エ
ネルギーに変換することは困難であった。However, especially in the latter case, the forbidden band width becomes small and the film quality deteriorates, making it difficult to sufficiently convert long wavelength light into electrical energy.
更に、最近水素化アモルファスシリコン(以下a −3
i : Hという)が薄膜太陽電池材料として注目され
ており、これは太陽エネルギー分布のピーク近傍の光に
対する吸収係数が結晶Siに比較して1桁程大きく、低
温度で薄膜形成でき、原料から直接グロー放電分解する
ことにより成膜でき、接合の形成も容易であるなどの各
種利点を有している。Furthermore, recently hydrogenated amorphous silicon (hereinafter a-3
i : H) is attracting attention as a thin-film solar cell material, and its absorption coefficient for light near the peak of the solar energy distribution is about an order of magnitude larger than that of crystalline Si. It has various advantages such as being able to form a film by direct glow discharge decomposition and forming a bond easily.
このようなアモルファス太陽電池を設計・製造し、ひい
てはこれを実用化するために最も重要な課題は高い変換
効率の達成にあるといえる。そこで、最近添加元素とし
てGeを用い、Geを添加したa−3i:H(以下a
−3iGe : Hという)を、長波長光を吸収する1
層として使用した多層型、即ちpin/pinSpin
/p、i’n/pi”nなどの2層、3層型太陽電池の
開発が活発に行われている。また、バンドギャップとし
ては1.4〜1.6eVが用いられていた。The most important issue in designing and manufacturing such amorphous solar cells and putting them into practical use is achieving high conversion efficiency. Therefore, recently, Ge was used as an additive element, and a-3i:H (hereinafter referred to as a
-3iGe: 1 which absorbs long wavelength light (referred to as H)
Multilayer type used as a layer, i.e. pin/pinSpin
The development of two-layer and three-layer solar cells such as /p, i'n/pi"n, etc. is being actively carried out. In addition, a band gap of 1.4 to 1.6 eV has been used.
発明が解決しようとする問題点
以上述べたようにクリーンかつ非枯渇性の太陽エネルギ
ーを利用する太陽電池の有望な低コスト材料としてアモ
ルファスシリコンが注目されておリ、その光電変換効率
を高める努力がなされている。高変換効率を達成するた
めには広い波長範囲の光を有効に利用し得る構成とする
必要があり、そこで多層構造の太陽電池が提案された。Problems to be Solved by the Invention As mentioned above, amorphous silicon is attracting attention as a promising low-cost material for solar cells that utilize clean and non-depletable solar energy, and efforts are being made to increase its photoelectric conversion efficiency. being done. In order to achieve high conversion efficiency, it is necessary to have a structure that can effectively utilize light in a wide wavelength range, and thus a multilayer structure solar cell was proposed.
従来の多層構造のアモルファスシリコン太陽電池では、
特に長波長光を有利に吸収する1型層としてa −3i
Ge : H膜を用いていたが、この膜の光電特性は太
陽電池用構成要素として機能させるには不十分であり、
多層構造の太陽電池に組込んでモ、その効率はアモルフ
ァスシリコン(a −3i )単層構造のものと殆ど同
程度の効率しか与えず、所期の目的は果たし得なかった
。これはa −3iGe:H膜がSiとGeとの元素比
を変えることによってバンドギャップを変え得るという
興味ある特性を有しているにも拘ず、SiとGeという
異種の元素を組合せた合金系のアモルファス材料である
ために、2元素の組合せにより発生する欠陥を低減する
ことが難しく、膜質を改善できないことに起因するもの
と考えられる。即ちa −3iGe : H膜はGeの
添加により膜質が低下するために、この種の膜を太陽電
池に応用するにはバンドギャップ1.6eV程度までの
Ge添加膜までが限界と考えられていた。In conventional multilayer amorphous silicon solar cells,
a-3i as a type 1 layer that particularly advantageously absorbs long wavelength light.
A Ge:H film was used, but the photoelectric properties of this film were insufficient to function as a component for solar cells;
When incorporated into a solar cell with a multilayer structure, its efficiency was almost the same as that of a single layer structure of amorphous silicon (a-3i), and the intended purpose could not be achieved. Although the a-3iGe:H film has the interesting property that the bandgap can be changed by changing the element ratio of Si and Ge, This is thought to be due to the fact that since it is an amorphous material, it is difficult to reduce defects caused by the combination of two elements, and the film quality cannot be improved. That is, since the film quality of a-3iGe:H film deteriorates due to the addition of Ge, it was thought that the limit for applying this type of film to solar cells was a Ge-added film with a band gap of about 1.6 eV. .
このような情況の下で、上記従来のa −3iGe :
H膜を用いた多層構造アモルファス太陽電池の改良を図
り、より高効率の多層アモルファス太陽電池を開発する
ことは、クリーンで非枯渇性の太陽エネルギーの有効利
用を実現し、これを将来の化石燃料の枯渇の際の代替エ
ネルギー源として実用化する上で極めて大きな意義があ
る。Under these circumstances, the above conventional a-3iGe:
Improving multilayer amorphous solar cells using H film and developing more efficient multilayer amorphous solar cells will realize the effective use of clean, non-depletable solar energy, and will make it possible to use it as a future fossil fuel source. This is of great significance in terms of its practical application as an alternative energy source in the event of depletion.
そこで、本発明の目的は長波長光の有効利用を図ること
ができ、高い変換効率を得ることのできる多層構造型ア
モルファス太陽電池を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a multilayer structure type amorphous solar cell that can effectively utilize long wavelength light and obtain high conversion efficiency.
問題点を解決するための手段
本発明者は、1層としてa −3iGe : H膜を用
いた多層構造型アモルファス太陽電池の上記の如き現状
に鑑みて、その有する各種難点を克服すべく種々検討、
研究した結果、a −3iGe : H膜のGe添加に
よる膜質低下あるいはこれを使用した太陽電池の変換効
率の限界が、異種の元素を組合せた結果生ずる欠陥の解
消が困難であることに基くものであるという事実に着目
し、a −3iGe : H膜の代りに水素化アモルフ
ァスゲルマニウム(以下a −Ge : Hという)膜
を用いることが上記目的を達成するために極めて有効で
あることを見出し、本発明を完成した。Means for Solving the Problems In view of the above-mentioned current state of the multilayer structure type amorphous solar cell using an a-3iGe:H film as one layer, the present inventor has conducted various studies in order to overcome the various difficulties it has. ,
As a result of our research, we found that the reduction in film quality due to the addition of Ge in the a-3iGe:H film or the limit in the conversion efficiency of solar cells using this film is due to the difficulty in eliminating defects that occur as a result of combining different elements. Focusing on the fact that Completed the invention.
即ち、本発明の多層構造アモルファス太陽電池は、基板
と、核層板上に順次設けられた電極層と、複数組のpi
n接合を構成するアモルファス薄膜層と、上記電極と対
をなす電極層とを含み、上記1層の少なくとも1つがa
−Ge : H膜で構成されていることを特徴とする
ものである。That is, the multilayer structure amorphous solar cell of the present invention includes a substrate, electrode layers sequentially provided on a core laminate, and a plurality of sets of P.I.
It includes an amorphous thin film layer constituting an n-junction, and an electrode layer that pairs with the above-mentioned electrode, and at least one of the above-mentioned layers is a
-Ge: It is characterized by being composed of an H film.
本発明の太陽電池は、例えば第1図に示すような構成を
有する。即ち、基板1と、その上に設けられた電極2と
、更に電極2上に順次設けられた複数のユニット電池(
即ち1組のpln接合)3.4.5(ここでは3組のユ
ニット電池を含む例を示した)と、第2の電極層6によ
り構成され、上記ユニット電池3.4.5は夫々p+1
+nzp212n2およびp* 13 n3の3種の薄
層から構成され、これは勿論nlpの順であってもよい
。The solar cell of the present invention has a configuration as shown in FIG. 1, for example. That is, a substrate 1, an electrode 2 provided thereon, and a plurality of unit batteries (
In other words, it is composed of one set of pln junctions) 3.4.5 (here, an example including three sets of unit batteries) and a second electrode layer 6, and each of the unit batteries 3.4.5 has a p+1
It is composed of three thin layers: +nzp212n2 and p* 13 n3, which may of course be in the order of nlp.
ここで、基板1としてはガラス、セラミックス、プラス
チック、軟鋼、A1、Cu等の金属または合金、ステン
レス鋼、モリブデン等いずれを使用することもできる。Here, as the substrate 1, any of glass, ceramics, plastic, mild steel, metals or alloys such as A1 and Cu, stainless steel, molybdenum, etc. can be used.
また、電極としては、ITOCインジウムスズ酸化物(
Indium Tin 0xide)) 、Sn○2等
の透明電極の他、A1等の金属など、公知のものから適
宜選択して使用することができる。In addition, as an electrode, ITOC indium tin oxide (
In addition to transparent electrodes such as Indium Tin Oxide) and Sn○2, metals such as A1 can be suitably selected from publicly known electrodes.
基板材料と電極材料とは太陽電池の形式によって多少変
化し、例えば第1図の例では基板側から光が入射される
ので、基板1および電極2はいずれも透明材料で形成さ
れる。一方、基板1の材料として不透明な材料を用いた
場合には、第2電極6を透明電極材料で形成し、第2電
極側から光を入射させる構成がとられる。The substrate material and electrode material vary somewhat depending on the type of solar cell. For example, in the example shown in FIG. 1, since light is incident from the substrate side, both the substrate 1 and the electrode 2 are formed of transparent materials. On the other hand, when an opaque material is used as the material for the substrate 1, a configuration is adopted in which the second electrode 6 is formed of a transparent electrode material and light is incident from the second electrode side.
更に、基板を導電性材料で形成し、基板に光電流・充電
圧取出し用の電極としての機能を併せもたせることも当
然可能である。Furthermore, it is naturally possible to form the substrate from a conductive material so that the substrate also functions as an electrode for extracting photocurrent and charge voltage.
尚、太陽光入射側に反射防止コーティングを施して、光
の吸収効率を一層高めることもできる。Note that it is also possible to apply an antireflection coating to the sunlight incident side to further increase the light absorption efficiency.
この□場合、光入射側の電極を1TOで形成することに
より、電極と反射防止コーティングの機能を兼備させる
ことが可能である。In this case, by forming the electrode on the light incident side with 1TO, it is possible to have both the functions of an electrode and an antireflection coating.
第1図の例では3つのpin接合を含む態様を示したが
これは2つあるいは4つ以上を組合せることも可能であ
る。Although the example in FIG. 1 shows an embodiment including three pin junctions, it is also possible to combine two or four or more pin junctions.
このような本発明の多層構造型のアモルファス太陽電池
は以下のような方法に従って作製することができる。ま
ず、適当に選ばれた基板上に電極層、pin接合を構成
する微結晶化Si層、a −3i層、a −3iGe
: )1層またはa −Ge : 8層から選ばれる層
を所定の順序で、更に上記電極と対をなす第2の電極層
を順次適当な成膜法で形成する。Such a multilayer structure type amorphous solar cell of the present invention can be produced according to the following method. First, an electrode layer, a microcrystalline Si layer constituting a pin junction, an a-3i layer, an a-3iGe
: ) 1 layer or a-Ge : 8 layers are formed in a predetermined order, and a second electrode layer to be paired with the above electrode is sequentially formed by an appropriate film forming method.
本発明では、例えば3組のpin接合を含む太陽電池の
場合、光入射側から透明電極/I)+i+n+/p2i
2n2/I)31コn37金属電極(第1図)または同
様に光入射側から透明電極/n1i+p+/n21zp
2/Tl+1:+p*/金属電極の順序とした場合に、
いずれの場合にも13層としてa −Ge : H膜を
用いることが有利である。In the present invention, for example, in the case of a solar cell including three sets of pin junctions, the transparent electrode /I)+i+n+/p2i
2n2/I) 31 n37 metal electrode (Figure 1) or similarly transparent electrode/n1i+p+/n21zp from the light incident side
When the order is 2/Tl+1:+p*/metal electrode,
In both cases, it is advantageous to use an a-Ge:H film as the 13th layer.
p1〜p3に対してはa −3i : Hあるいは微結
晶化Si:H膜を用いることが有利であり、これはn。For p1 to p3 it is advantageous to use a-3i:H or microcrystalline Si:H films, which are n.
〜n3についても同様である。また、l、にはa−3i
:Hを、12にはa −3iGe : H膜を用いるこ
とが有利であり、各層の膜厚は11.12.13で発生
する電流が等しくなるように最適設計した膜厚を用いる
ように調整することが有利である。The same applies to ~n3. Also, for l, a-3i
:H and a-3iGe:H film for 12 is advantageous, and the film thickness of each layer is adjusted to use the optimally designed film thickness so that the currents generated in 11.12.13 are equal. It is advantageous to do so.
まず第1に、a −3i : H膜の形成はSi H,
、SiF、、5xHsあるいはこれらの混合ガス等の直
流または高周波グロー放電によって行うことができ、a
−3i:H膜の伝導型(p型、n型)並びに電気伝導
度の制御はSiH,ガス等にPH3などを0.1〜1.
6容量%またはB 2 Hsガスなどを微量(1層程度
)添加することによって実現できる。このa −3i
: H膜の標準的な条件は、放電時の全圧0.1〜1O
Torr。First of all, the a-3i:H film is formed using SiH,
, SiF, , 5xHs, or a mixed gas thereof, etc., can be performed by direct current or high frequency glow discharge, and a
-3i: Control the conductivity type (p type, n type) and electrical conductivity of the H film by adding PH3, etc. to SiH, gas, etc. at 0.1 to 1.
This can be achieved by adding a trace amount (about one layer) of 6% by volume or B 2 Hs gas. This a-3i
: The standard conditions for H film are a total pressure of 0.1 to 1 O during discharge.
Torr.
SiH,等のガス濃度10%以上(これはArまたはH
2で希釈する場合)、ガス流量50〜200cc /分
、放電出力数W〜数十Wであり、300℃以下の比較的
低温条件下で行われる。また、グロー放電法の他、真空
蒸着法、スパッタ法、イオンブレーティング法等の各種
方法を適宜改良して利用することも可能である。Gas concentration of SiH, etc. is 10% or more (this is Ar or H
2), the gas flow rate is 50 to 200 cc/min, the discharge output is several watts to several tens of watts, and the process is performed at a relatively low temperature of 300° C. or lower. In addition to the glow discharge method, it is also possible to use various methods such as a vacuum evaporation method, a sputtering method, an ion blating method, etc., with appropriate modifications.
一方、微結晶化Si : H膜の形成は、上記a−3i
:H膜の形成操作と同様に行い、グロー放電用の印加電
界を大きくするか、または原料ガスの水素希釈率を増加
することにより微結晶化Si:H膜を得ることができる
。On the other hand, the formation of the microcrystalline Si:H film is performed in accordance with the above a-3i.
A microcrystalline Si:H film can be obtained by performing the same operation as in the formation of the :H film and increasing the applied electric field for glow discharge or increasing the hydrogen dilution rate of the source gas.
更に、a −3iGe : H膜は例えば本願出願人が
別途特許出願している方法に従って得ることができる。Further, the a-3iGe:H film can be obtained, for example, according to a method for which the applicant has separately filed a patent application.
即ち、添加源(Ge源)を含む原料ガスに82/(Ge
源+Si源+82)が0.25〜0.60の範囲内とな
るように水素を添加し、グロー放電法、光CVD法など
で成膜できる。Si源としてはSiH,,5I2F6、
SiF< あるいはこれらの混合物などが用いられ、ま
たGe源としてはGeH<、GeF<もしくはこれらの
混合物を使用することができる。また、光CVDの励起
光波長としては0.3μm以下の紫外線が有利に用いら
れる。このGeの添加は、上記のようにアモルファスシ
リコン原料ガス中にGeの水素化物または弗素化合物を
添加し、得られる混合物を同時にグロー放電分解するか
、もしくはアモルファスシリコン原料ガスのグロー放電
分解中に、Geの固体原料をスパッタリングすることに
より行うことができる。That is, 82/(Ge source) is added to the raw material gas containing the additive source (Ge source).
Hydrogen is added so that the ratio of source + Si source + 82) falls within the range of 0.25 to 0.60, and the film can be formed by a glow discharge method, a photo-CVD method, or the like. As a Si source, SiH, 5I2F6,
SiF< or a mixture thereof can be used, and GeH<, GeF< or a mixture thereof can be used as the Ge source. Moreover, as the excitation light wavelength for photo-CVD, ultraviolet rays of 0.3 μm or less are advantageously used. This addition of Ge can be carried out by adding a Ge hydride or a fluorine compound into the amorphous silicon raw material gas as described above, and simultaneously subjecting the resulting mixture to glow discharge decomposition, or during glow discharge decomposition of the amorphous silicon raw material gas. This can be done by sputtering a solid Ge raw material.
本発明のアモルファス太陽電池に特有のa−Ge:H膜
は、a −3i : H膜の形成と同様な方法に従って
形成することができ、Sl源の代りにGe源としてGe
Hl、GeF、もしくはこれらの混合物を使用する。こ
のような成膜法としてはグロー放電法や光CVD法等が
知られており、例えばグロー放電法では原料ガスとして
GeH4を用い、圧力0.1〜10’l’orr、ガス
流量10〜LOO,SCCM、 RF出力5〜50 W
。The a-Ge:H film specific to the amorphous solar cell of the present invention can be formed according to a method similar to the formation of the a-3i:H film, using Ge as the Ge source instead of the Sl source.
Use Hl, GeF, or a mixture thereof. As such a film forming method, a glow discharge method, a photo-CVD method, etc. are known. For example, in the glow discharge method, GeH4 is used as a raw material gas, the pressure is 0.1 to 10'l'orr, and the gas flow rate is 10 to LOOO. ,SCCM, RF output 5~50W
.
基板温度100〜250℃にて成膜できる。また、光C
VD法においては水銀増感法を利用し、原料ガスとして
GeH,を用い、圧力0.1〜10Torr、ガス流量
10〜100 SCCM、 fig温度40〜80℃に
て、低圧水銀ランプによりU■光を照射することにより
a −Ge : H膜を作製できる。The film can be formed at a substrate temperature of 100 to 250°C. Also, light C
In the VD method, a mercury sensitization method is used, GeH is used as a raw material gas, and U light is irradiated with a low-pressure mercury lamp at a pressure of 0.1 to 10 Torr, a gas flow rate of 10 to 100 SCCM, and a temperature of 40 to 80°C. An a-Ge:H film can be produced by irradiating with .
尚、a −3i : H膜、a −3iGe : H膜
およびa−Ge : H膜などの1層の形成に利用され
る層には真性化するために硼素(B)が微量に添加され
るが、これはB源、例えばB2H6を層形成原料ガス中
に1FFNに混入させることにより容易に達成できる。Note that a trace amount of boron (B) is added to the layers used to form one layer such as the a-3i:H film, the a-3iGe:H film, and the a-Ge:H film to make them intrinsic. However, this can be easily achieved by mixing a B source, for example B2H6, with 1FFN in the layer forming raw material gas.
更に、電極層の形成は従来公知の各種方法により形成で
き、例えば、AIなどの金属は蒸着法、ハロゲン化物の
還元、金属カルボニルの熱分解、有機金属錯体の熱分解
等によるCVD法などにより、またITOなどは例えば
Snを添加した酸化インジウムを出発物質とした真空蒸
着法、RFスパッタリング法、インジウムとスズの合金
を出発物質とした酸化性雰囲気内での反応性蒸着法、反
応性スパッタリング法、イオンブレーティング法、イオ
ンビームスパッタリング法などがいずれも利用できる。Furthermore, the electrode layer can be formed by various conventionally known methods. For example, metals such as AI can be formed by vapor deposition, reduction of halides, thermal decomposition of metal carbonyl, thermal decomposition of organometallic complexes, etc. by CVD, etc. In addition, ITO can be produced by, for example, a vacuum evaporation method using Sn-doped indium oxide as a starting material, an RF sputtering method, a reactive evaporation method in an oxidizing atmosphere using an alloy of indium and tin as a starting material, or a reactive sputtering method. Both the ion brating method and the ion beam sputtering method can be used.
心理
多層構造型のアモルファス太陽電池において、これを十
分に実用化に耐え得るものとするためには、これまで以
上に光電変換効率を高める必要があった。この変換効率
の改善は、広い波長範囲に亘る太陽エネルギーを有効に
利用することにより達成することができると考えられる
。短波長側の吸収効率を高めることは、既に述べたよう
に、p型層にモディファイアとして炭素を用いることに
より可能となった。一方長波長側の変換効率を高めるた
めには同様にモディファイアとしてGe、 Sn、pb
などを用い、これを1型層として利用することが知られ
ているが、従来の方法、構成では実用化できるに十分な
変換効率を達成するに至っていない。In order to make an amorphous solar cell with a psychological multilayer structure sufficiently suitable for practical use, it was necessary to increase the photoelectric conversion efficiency more than ever before. It is believed that this improvement in conversion efficiency can be achieved by effectively utilizing solar energy over a wide wavelength range. As already mentioned, the absorption efficiency on the short wavelength side can be increased by using carbon as a modifier in the p-type layer. On the other hand, in order to increase the conversion efficiency on the long wavelength side, Ge, Sn, and pb are used as modifiers.
Although it is known to use this as a type 1 layer using the above method, conventional methods and configurations have not yet achieved conversion efficiency sufficient for practical use.
そこで、本発明では複数のユニット電池(1組のpin
接合)における少なくとも1つの1層としてa−3i:
H(B添加)を用いることにより、長波長側の変換効率
を大巾に向上させることが可能となった。Therefore, in the present invention, a plurality of unit batteries (one set of pins)
a-3i as at least one layer in bonding):
By using H (B addition), it has become possible to greatly improve the conversion efficiency on the long wavelength side.
即ち、従来の5iGe合金系ではSl、Geという異質
の2成分の固有の欠陥が同時に防止できず、膜質の悪い
1層となっていたが、本発明の太陽電池におけるように
Ge単独の水素化アモルファス膜で1層を構成した場合
には、欠陥が複雑化されず、その結果欠陥密度が小さく
、電気特性が優れているものと思われる。That is, in the conventional 5iGe alloy system, it was not possible to simultaneously prevent the inherent defects of two different components, Sl and Ge, resulting in a single layer with poor film quality, but as in the solar cell of the present invention, hydrogenation of Ge alone When one layer is composed of an amorphous film, the defects are not complicated, and as a result, the defect density is small and the electrical properties are considered to be excellent.
このa −Ge : Hのバンドギャップは、1.1e
V近傍にあり、従って1. leV以上の大きなエネル
ギーを有する光を吸収し、電気に変換することを可能と
する。a −Ge : H膜を1層として用いたことに
より、長波長域600〜11000nの光を光電変換で
き、このようなユニット電池を2層もしくは3層以上用
いることにより、従来の太陽電池よりも変換効率が大巾
に向上する。このa −Ge : H膜は得られる太陽
電池において、光入射側から最も離れた位置にあるユニ
ット電池の1型層形成材料として使用することが好まし
い。これは、このl型層が長波長光を吸収するという特
性に基くものである。The bandgap of this a-Ge:H is 1.1e
It is near V, therefore 1. It is possible to absorb light with large energy of leV or more and convert it into electricity. By using a -Ge:H film as one layer, it is possible to photoelectrically convert light in the long wavelength range of 600 to 11,000 nm, and by using two or three or more layers of such a unit cell, it is more efficient than conventional solar cells. Conversion efficiency is greatly improved. In the resulting solar cell, this a-Ge:H film is preferably used as a type 1 layer forming material of the unit cell located at the farthest position from the light incident side. This is based on the property that this l-type layer absorbs long wavelength light.
また、同様な理由でa −3iGe : H膜はその次
に光入射側から離れた位置のpin接合の1層とするこ
とが好ましい。Further, for the same reason, it is preferable that the a-3iGe:H film be one layer of the pin junction located next away from the light incident side.
また、本発明の多層構造型アモルファス太陽電池におい
て、各p、i、n層の厚さは11.12、・・・・i、
(nは3以上の整数)の各々において発生する電流が等
しくなるように最適設計することにより変換効率の最適
化を行うことができ、一般にはp型層は50〜200人
、l型層は1000〜8000人、n型層は100〜5
00人の範囲内の厚さとすることにより上記目的を達成
することができる。また電極層の厚さは800〜600
0八程度とするのが一般的である。Further, in the multilayer structure type amorphous solar cell of the present invention, the thickness of each p, i, and n layer is 11.12, ... i,
(n is an integer of 3 or more) The conversion efficiency can be optimized by optimally designing so that the current generated in each is equal. Generally, the p-type layer has 50 to 200 people, and the l-type layer has 1000-8000 people, n-type layer 100-5
The above object can be achieved by setting the thickness within the range of 0.00 mm. In addition, the thickness of the electrode layer is 800 to 600
Generally, it is about 0.08.
更に、変換効率の向上は、光入射側に反射防止コーティ
ングを設けることにより太陽光の吸収効率を上げること
によっても可能となる。このようなコーティングの材料
としてはS+ 0.5102、ZrO2、Zn5SSi
3N、、Ta205、Al2O3,5b20*、TlO
2などあるいはTa205 /Si 02等の多層構造
を利用できる。これらの膜は各材料の特性に応じて、例
えば真空蒸着法、スパッタ法等各種公知の方法で形成で
きる。Furthermore, the conversion efficiency can also be improved by providing an antireflection coating on the light incident side to increase the sunlight absorption efficiency. Materials for such coatings include S+ 0.5102, ZrO2, Zn5SSi
3N, Ta205, Al2O3,5b20*, TlO
2 or a multilayer structure such as Ta205/Si02 can be used. These films can be formed by various known methods, such as vacuum evaporation and sputtering, depending on the characteristics of each material.
この反射防止膜の厚さdとしては、光の波長をλ、材料
の屈折率をn、とした場合に、d=λ/4ni なる条
件を満足するように選ぶことが有利であることが知られ
ている。従って、屈折率の異る材料の膜を2層以上形成
することにより、より一層広範囲の光に対して有効な反
射防止膜とすることができる。It has been found that it is advantageous to select the thickness d of this anti-reflection film so as to satisfy the following condition: d=λ/4ni, where λ is the wavelength of light and n is the refractive index of the material. It is being Therefore, by forming two or more layers of materials with different refractive indexes, it is possible to obtain an antireflection film that is effective against a wider range of light.
本発明の構成上の特徴は、アモルファス太陽電池であっ
て、ナローギャップ(E 、 = 1.1eV)を必要
とする種々の構造において有利に利用することができる
。The structural features of the invention can be advantageously utilized in various structures of amorphous solar cells that require a narrow gap (E, = 1.1 eV).
実施例
以下、実施例により本発明の多層構造型アモルファス太
陽電池を更に具体的に説明する。EXAMPLES Hereinafter, the multilayer structure type amorphous solar cell of the present invention will be explained in more detail using examples.
第1図と同様な構成を有する3組のpln接合を含む多
層構造アモルファス太陽電池を作製した。A multilayer amorphous solar cell including three sets of PLN junctions having a configuration similar to that shown in FIG. 1 was fabricated.
基板1としてはガラスを、透明電極2としてはIT○(
2000人)を、また11s12およびj3としては夫
々a −3i : H膜(400A ) 、a −3i
Ge :H膜(1500A)およびa −Ge : H
膜(5000人)を用い、更にその他のpI”” p3
およびn1〜n3は夫々a −3i : H膜で形成し
、膜厚は夫々100八とした。上記11〜13の禁止帯
幅E、は夫々1.8eV(i +)、■、6eν(12
)および1.1eV (i 3)であった。The substrate 1 is made of glass, and the transparent electrode 2 is made of IT○(
2000 people), and a-3i: H film (400A) and a-3i as 11s12 and j3, respectively.
Ge:H film (1500A) and a-Ge:H
membrane (5000 people) and other pI"" p3
and n1 to n3 were each formed of an a-3i:H film, each having a film thickness of 100. The bandgap E in the above 11 to 13 is 1.8 eV (i +), ■, 6 eν (12
) and 1.1 eV (i 3).
かくして得たアモルファス太陽電池の各1層の300〜
1l100nの範囲の光に対する相対分光感度は第2図
に示すような結果を与えた(分光感度即ち変換効率η=
14%)。300~ for each layer of the amorphous solar cell thus obtained.
The relative spectral sensitivity for light in the range of 1l100n gave the results shown in Figure 2 (spectral sensitivity, that is, conversion efficiency η =
14%).
一方、同様にして、lZ〜1+3を夫々a−3i:H膜
(1°r ; E、=1.8eV) 、a −3iGe
: H膜(i12;E、=1,65eV)およびa
−3iGe : H膜(i’a ; Eg= 1.4e
v)で構成した以外は上記と全く同様にして従来の多層
構造型アモルファス太陽電池を作製し、その分光感度を
測定し第3図にプロットした。On the other hand, in the same way, lZ~1+3 was formed into a-3i:H film (1°r; E, = 1.8 eV) and a-3iGe, respectively.
: H film (i12; E, = 1,65 eV) and a
-3iGe: H film (i'a; Eg=1.4e
A conventional multilayer structure type amorphous solar cell was prepared in exactly the same manner as described above except for the configuration described in v), and its spectral sensitivity was measured and plotted in FIG.
尚、第2図および第3図において、縦軸の相対感度はa
−3i : H(1,8eV)のピーク感度を1とし
た場合の相対値を示すものである。In addition, in Figures 2 and 3, the relative sensitivity on the vertical axis is a
-3i: indicates a relative value when the peak sensitivity of H (1.8 eV) is set to 1.
第2図と第3図とを比較すると、1層3層として本発明
におけるようにE9=1.1eVのa −Ge : H
膜を用いた場合、その相対感度ピークは約900nm付
近にある。長波長側での感度(あるいは吸収効率)大幅
に改善されたことがわかる。ちなみに従来のものでは第
3図に示されたように!’3層の相対感度ピークは70
0nm近傍であり、900nmでは殆ど0であることが
わかる。Comparing FIG. 2 and FIG. 3, it is found that a-Ge: H with E9=1.1 eV as in the present invention as one layer and three layers.
When a film is used, its relative sensitivity peak is around 900 nm. It can be seen that the sensitivity (or absorption efficiency) on the long wavelength side has been significantly improved. By the way, the conventional one is as shown in Figure 3! 'The relative sensitivity peak of the 3 layers is 70
It can be seen that it is near 0 nm and almost 0 at 900 nm.
更に、光入射側から2組目までの構成を同一にし、第3
粗目のユニット電池の禁止帯幅の異る数種の太陽電池を
作製し、効率を測定し、1.8eVのa−31電池の効
率を基準とした場合の各電池の相対効率を計算したとこ
ろ第4図に示すような結果を得た。尚、第4図で横軸の
E、は第3粗目の電池の1型層の禁止帯を表す。この結
果をみると、E、が1.8eVの場合にはA点の効率で
あったものが、ナローギャップ化に伴ってB点における
ようにE9−1.6eVで極大点を示すが、更にE、を
小さくするとa −3iGe : H膜々質は合金化の
進行に伴って低下する。0点(E、=’ 1.3eV)
で極小値をとり再度上昇し、本発明におけるようにE、
= 1.1eVのa −Ge : H膜を用いると再
び高い(極大点Bよりも高い)効率を達成し得ることが
わかる。即ち、Slの混入のないGeのみのアモルファ
ス膜は、合金化等に基く膜質の劣化がないために効率が
改善されたものと考えられる。Furthermore, the configuration of the second set from the light incidence side is made the same, and the third set is made the same.
Several types of solar cells with different forbidden widths of coarse unit cells were fabricated, their efficiencies were measured, and the relative efficiency of each cell was calculated based on the efficiency of the 1.8 eV A-31 cell. The results shown in FIG. 4 were obtained. In FIG. 4, E on the horizontal axis represents the forbidden zone of the type 1 layer of the third coarse battery. Looking at this result, when E is 1.8 eV, the efficiency at point A shows a maximum point at E9-1.6 eV as at point B as the gap becomes narrower, but even further. When E is decreased, the quality of the a-3iGe:H film decreases as alloying progresses. 0 point (E, =' 1.3eV)
It takes a minimum value at and rises again, and as in the present invention, E,
It can be seen that high efficiency (higher than the maximum point B) can be achieved again by using an a-Ge:H film of = 1.1 eV. In other words, it is considered that the efficiency of the amorphous film made only of Ge without the inclusion of Sl is improved because there is no deterioration in film quality due to alloying or the like.
発明の効果
以上詳しく説明したように、本発明の多層構造型アモル
ファス太陽電池においては、その長波長感度(変換効率
)に対して支配的な1層を従来のa −3iGe :
H膜から、合金化等に基く膜質低下を示さないa −G
e : H膜に置換し、禁止帯幅E9を低下させたこと
に基き、光電変換効率が大巾に改善され、実用化に耐え
得るアモルファス太陽電池を得ることが可能となった。Effects of the Invention As explained in detail above, in the multilayer structure type amorphous solar cell of the present invention, the one layer that is dominant for its long wavelength sensitivity (conversion efficiency) is a conventional a-3iGe:
From H film to a-G, which shows no deterioration in film quality due to alloying etc.
By replacing it with an e:H film and lowering the forbidden band width E9, the photoelectric conversion efficiency was greatly improved, and it became possible to obtain an amorphous solar cell that could withstand practical use.
第1図は本発明による多層構造型アモルファス太陽電池
の好ましい一態様を模式的に断面図で示したものであり
、
第2図は本発明の三層構造アモルファス太陽電池の各1
型層の波長に対する相対感度をプロットした図であり、
第3図は従来の太陽電池に対する第2図と同様な図であ
り、
第4図は13層のEを変化させた場合の各太陽電池の変
換効率の変動状況を相対効率で示したグラフである。
(主な参照番号)
1・・基板、 2・・電極
3.4.5・・ユニット電池
6・・第2電極FIG. 1 is a cross-sectional view schematically showing a preferred embodiment of a multilayer amorphous solar cell according to the present invention, and FIG.
This is a diagram plotting the relative sensitivity of the mold layer to wavelength. Figure 3 is a diagram similar to Figure 2 for a conventional solar cell, and Figure 4 is a diagram for each solar cell when E of the 13 layers is changed. 2 is a graph showing changes in conversion efficiency in terms of relative efficiency. (Main reference numbers) 1...Substrate, 2...Electrode 3.4.5...Unit battery 6...Second electrode
Claims (7)
組のpin接合を構成するアモルファス薄膜層および前
記電極と対をなす電極層を含む多層構造型アモルファス
太陽電池において、 前記i型層の少なくとも1つが水素化アモルファスゲル
マニウム層で構成されていることを特徴とする上記多層
型アモルファス太陽電池。(1) The i-type multilayer amorphous solar cell including a substrate, an electrode layer sequentially provided on the substrate, an amorphous thin film layer constituting a plurality of pin junctions, and an electrode layer paired with the electrode, The above multilayer amorphous solar cell, wherein at least one of the layers is composed of a hydrogenated amorphous germanium layer.
れたi型層が光入射側から最も離れたpin接合のi型
層であることを特徴とする特許請求の範囲第1項記載の
アモルファス太陽電池。(2) The amorphous solar cell according to claim 1, wherein the i-type layer composed of the hydrogenated amorphous germanium layer is a pin-junction i-type layer farthest from the light incidence side.
ピングされた水素化アモルファスシリコン膜、微結晶化
水素化シリコン膜またはゲルマニウムを添加した水素化
アモルファスシリコン膜で構成されていることを特徴と
する特許請求の範囲第1項または第2項記載のアモルフ
ァス太陽電池。(3) The p-type layer and the n-type layer are each composed of an impurity-doped hydrogenated amorphous silicon film, a microcrystalline hydrogenated silicon film, or a germanium-doped hydrogenated amorphous silicon film. An amorphous solar cell according to claim 1 or 2.
シリコン膜が、添加源を含む原料ガスを、全ガス流量に
対する水素ガス流量の比を0.25〜0.6の範囲とす
るように水素で希釈した状態で成膜したものであること
を特徴とする特許請求の範囲第3項記載のアモルファス
太陽電池。(4) The germanium-doped hydrogenated amorphous silicon film is prepared by diluting the raw material gas containing the doping source with hydrogen such that the ratio of the hydrogen gas flow rate to the total gas flow rate is in the range of 0.25 to 0.6. 4. The amorphous solar cell according to claim 3, wherein the amorphous solar cell is formed as a film in a state in which the amorphous solar cell is formed into a film.
たi型層以外のi型層が水素化アモルファスシリコン膜
またはゲルマニウムを添加した水素化アモルファスシリ
コン膜で構成されていることを特徴とする特許請求の範
囲第1〜4項のいずれか1項に記載のアモルファス太陽
電池。(5) Claims characterized in that the i-type layer other than the i-type layer made of hydrogenated amorphous germanium is made of a hydrogenated amorphous silicon film or a hydrogenated amorphous silicon film added with germanium. The amorphous solar cell according to any one of items 1 to 4.
シリコン膜で構成されるi型層ができるだけ光入射側か
ら離れた位置にあるpin接合内のi型層であることを
特徴とする特許請求の範囲第5項記載のアモルファス太
陽電池。(6) The i-type layer composed of the germanium-doped hydrogenated amorphous silicon film is an i-type layer in a pin junction located as far away from the light incident side as possible. The amorphous solar cell according to item 5.
とを特徴とする特許請求の範囲第1〜6項のいずれか1
項に記載のアモルファス太陽電池。(7) Any one of claims 1 to 6, wherein the i-type layer has boron as an additive for making it intrinsic.
The amorphous solar cell described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60224104A JPS6284571A (en) | 1985-10-08 | 1985-10-08 | Multilayer structure type amorphous solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60224104A JPS6284571A (en) | 1985-10-08 | 1985-10-08 | Multilayer structure type amorphous solar cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6284571A true JPS6284571A (en) | 1987-04-18 |
Family
ID=16808602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60224104A Pending JPS6284571A (en) | 1985-10-08 | 1985-10-08 | Multilayer structure type amorphous solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6284571A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0271565A (en) * | 1988-09-06 | 1990-03-12 | Sanyo Electric Co Ltd | Photodetecting device |
US5279679A (en) * | 1991-02-22 | 1994-01-18 | Canon Kabushiki Kaisha | Multi-layered photovoltaic element having at least three unit cells |
US5403404A (en) * | 1991-07-16 | 1995-04-04 | Amoco Corporation | Multijunction photovoltaic device and method of manufacture |
-
1985
- 1985-10-08 JP JP60224104A patent/JPS6284571A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0271565A (en) * | 1988-09-06 | 1990-03-12 | Sanyo Electric Co Ltd | Photodetecting device |
US5279679A (en) * | 1991-02-22 | 1994-01-18 | Canon Kabushiki Kaisha | Multi-layered photovoltaic element having at least three unit cells |
US5403404A (en) * | 1991-07-16 | 1995-04-04 | Amoco Corporation | Multijunction photovoltaic device and method of manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3583631B1 (en) | Multijunction photovoltaic device | |
EP0523919B1 (en) | Multijunction photovoltaic device and fabrication method | |
US6121541A (en) | Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys | |
KR101024288B1 (en) | Silicon based thin film solar cell | |
US8030120B2 (en) | Hybrid window layer for photovoltaic cells | |
TWI455338B (en) | New structure solar cell with superlattices | |
JPS6249672A (en) | Amorphous photovoltaic element | |
EP1939947A1 (en) | Silicon-based thin-film photoelectric converter and method of manufacturing the same | |
DE19932640A1 (en) | Photovoltaic module for converting solar radiation into electrical energy, comprises substrate front and back dual layer contacts and at least one solar cell | |
JP2006080557A (en) | Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition | |
CN111628032B (en) | Structure of intrinsic passivation layer of silicon heterojunction solar cell and manufacturing method thereof | |
KR20130028449A (en) | Thin film type solar cells and manufacturing method thereof | |
US5419783A (en) | Photovoltaic device and manufacturing method therefor | |
CN101246926A (en) | Amorphous boron carbon alloy and photovoltaic application thereof | |
JPH0595126A (en) | Thin film solar battery and manufacturing method thereof | |
CN101246929A (en) | Production of multi-knot thin film photovoltaic device | |
JPS6284571A (en) | Multilayer structure type amorphous solar cell | |
JP2632740B2 (en) | Amorphous semiconductor solar cell | |
JP3245962B2 (en) | Manufacturing method of thin film solar cell | |
JP2020505786A (en) | Single-type, tandem-type, and heterojunction-type solar cell devices and methods for forming the same | |
JPS6152992B2 (en) | ||
JPH0513790A (en) | Photoelectromotive force element | |
KR102093567B1 (en) | Photovoltaic cell and method of fabricating the same | |
JPS62165374A (en) | Amorphous photovoltaic element | |
JPH04192373A (en) | Photovoltaic element |